1932

Abstract

In the past 50 years, the application of synthetic nitrogen (N) fertilizer to farmland resulted in a dramatic increase in crop yields but with considerable negative impacts on the environment. New solutions are therefore needed to simultaneously increase yields while maintaining, or preferably decreasing, applied N to maximize the nitrogen use efficiency (NUE) of crops. In this review, we outline the definition of NUE, the selection and development of NUE crops, and the factors that interact with NUE. In particular, we emphasize the challenges of developing crop plants with enhanced NUE, using more classical genetic approaches based on utilizing existing allelic variation for NUE traits. The challenges of phenotyping, mapping quantitative trait loci (QTLs), and selecting candidate genes for NUE improvement are described. In addition, we highlight the importance of different factors that lead to changes in the NUE components of nitrogen uptake efficiency (NUpE) and nitrogen utilization efficiency (NUtE).

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-112414-055037
2015-11-23
2024-09-08
Loading full text...

Full text loading...

/deliver/fulltext/genet/49/1/annurev-genet-112414-055037.html?itemId=/content/journals/10.1146/annurev-genet-112414-055037&mimeType=html&fmt=ahah

Literature Cited

  1. Abeledo LG, Calderini DF, Slafer GA. 1.  2002. Physiological changes associated with breeding progress in barley. Barley Science: Recent Advances from Molecular Biology to Agronomy of Yield and Quality GA Slafer, JL Molina-Cano, R Savin, JL Araus, I Romagosa 361–85 New York: Food Prod. Press [Google Scholar]
  2. Abeledo LG, Calderini DF, Slafer GA. 2.  2008. Nitrogen economy in old and modern malting barleys. Field Crops Res. 106:171–78 [Google Scholar]
  3. 3. Agriculture and Agri-food Canada 2012. Canadian farm fuel and fertilizer: prices and expenses Mark. Outlook Rep. 4 Winnipeg, Manit: Agric. Agri-food Can. [Google Scholar]
  4. Allison DB, Fernandez JR, Heo M, Zhu S, Etzel C. 4.  et al. 2002. Bias in estimates of quantitative-trait-locus effect in genome scans: demonstration of the phenomenon and a method-of-moments procedure for reducing bias. Am. J. Hum. Genet. 70:575–85 [Google Scholar]
  5. Anbessa Y, Juskiw P, Good A, Nyachiro J, Helm J. 5.  2009. Genetic variability in nitrogen use efficiency of spring barley. Crop Sci. 49:1259–69 [Google Scholar]
  6. Backes G, Graner A, Foroughi-Wehr B, Fischbeck G, Wenzel G, Jahoor A. 6.  1995. Localization of quantitative trait loci (QTL) for agronomic important characters by the use of an RFLP map in barley (Hordeum vulgare L.). Theor. Appl. Genet. 90:294–302 [Google Scholar]
  7. Bänziger M, Edmeades GO, Lafitte HR. 7.  1999. Selection for drought tolerance increases maize yields across a range of nitrogen levels. Crop Sci. 39:1035–40 [Google Scholar]
  8. Barraclough PB, Howarth JR, Jones J, Lopez-Bellido R, Parmar S. 8.  et al. 2010. Nitrogen efficiency of wheat: genotypic and environmental variation and prospects for improvement. Eur. J. Agron. 33:1–11 [Google Scholar]
  9. Beatty PH, Anbessa Y, Juskiw P, Carroll RT, Wang J, Good AG. 9.  2010. Nitrogen use efficiencies of spring barley grown under varying nitrogen conditions in the field and growth chamber. Ann. Bot. 105:1171–82 [Google Scholar]
  10. Beatty PH, Good AG. 10.  2011. Future prospects for cereals that fix nitrogen. Science 333:416–17 [Google Scholar]
  11. Beavis W. 11.  1998. QTL analysis: power, precision and accuracy. Molecular Dissection of Complex Traits A Paterson 145–62 Boca Raton, FL: CRC Press [Google Scholar]
  12. Berger GL, Liu S, Hall MD, Brooks WS, Chao S. 12.  et al. 2013. Marker-trait associations in Virginia Tech winter barley identified using genome-wide mapping. Theor. Appl. Genet. 126:693–710 [Google Scholar]
  13. Bertin P, Gallais A. 13.  2000. Genetic variation for nitrogen use efficiency in a set of recombinant maize inbred lines. 1. Agrophysiological results. Maydica 45:53–66 [Google Scholar]
  14. Bingham IJ. 14.  2005. Agronomic approaches for modifying root system of field crops: opportunities and constraints. Asp. Appl. Biol. 73:169–78 [Google Scholar]
  15. Bingham IJ, Karley AJ, White PJ, Thomas WTB, Russell JR. 15.  2012. Analysis of improvements in nitrogen use efficiency associated with 75 years of spring barley breeding. Eur. J. Agron. 42:49–58 [Google Scholar]
  16. Bingham IJ, Wu L. 16.  2011. Simulation of wheat growth using the 3D root architecture model SPACSYS: validation and sensitivity analysis. Eur. J. Agron. 34:181–89 [Google Scholar]
  17. Bonnett DG, Rebetzke GJ, Spielmeyer W. 17.  2005. Strategies for efficient implementation of molecular markers in wheat breeding. Mol. Breed. 15:75–85 [Google Scholar]
  18. Bordes J, Ravel C, Jaubertie JP, Duperrier B, Gardet O. 18.  et al. 2013. Genomic regions associated with the nitrogen limitation response revealed in a global wheat core collection. Theor. Appl. Genet. 126:805–22 [Google Scholar]
  19. Bundy LG, Carter PR. 19.  1988. Corn hybrid response to nitrogen fertilization in the northern corn belt. J. Prod. Agric. 1:99–104 [Google Scholar]
  20. Byers DL. 20.  2005. Evolution in heterogeneous environments and the potential of maintenance of genetic variation in traits of adaptive significance. Genetica 123:107–24 [Google Scholar]
  21. Calderini DF, Torres-Leon S, Slafer GA. 21.  1995. Consequences of wheat breeding on nitrogen and phosphorus yield grain nitrogen and associated traits. Ann. Bot. 76:315–22 [Google Scholar]
  22. Campbell CA, Myers RJK, Curtin D. 22.  1995. Managing nitrogen for sustainable crop production. Fertil. Res. 42:277–96 [Google Scholar]
  23. Campos H, Cooper M, Edmeades GO, Löffler C, Schussler JR, Ibañez M. 23.  2006. Changes in drought tolerance in maize associated with fifty years of breeding for yield in the U.S. corn belt. Maydica 51:369–81 [Google Scholar]
  24. Carberry PS, Liang W, Twomlow S, Holzworth DP, Dimes JP. 24.  et al. 2013. Scope for improved eco-efficiency varies among diverse cropping systems. PNAS 110:8381–86 [Google Scholar]
  25. Carlone MR, Russell WA. 25.  1987. Response to plant densities and nitrogen levels for four maize cultivars from different eras of breeding. Crop Sci. 27:465–70 [Google Scholar]
  26. Cassman KG. 26.  1999. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. PNAS 96:5952–59 [Google Scholar]
  27. Cassman KG, Dobermann A, Walters DT, Yang H. 27.  2003. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 28:315–58 [Google Scholar]
  28. Castleberry RM, Crum CW, Krull CF. 28.  1984. Genetic yield improvement of U.S. maize cultivars under varying fertility and climatic environments. Crop Sci. 24:33–36 [Google Scholar]
  29. Castro MC. 28a.  2013. Nitrogen-use-efficient maize ready for release in Africa Mexico City: CIMMYT http://blog.cimmyt.org/nitrogen-use-efficient-maize-ready-for-release-in-africa/ [Google Scholar]
  30. Chen X-P, Cui Z-L, Vitousek PM, Cassman KG, Matson PA. 29.  et al. 2011. Integrated soil-crop system management for food security. PNAS 108:6399–404 [Google Scholar]
  31. Crasswell E, Godwin D. 30.  1984. The efficiency of nitrogen fertilizers applied to cereals grown in different climates. Advances in Plant Nutrition P Tinker, A Lauchli 1–55 New York: Praeger Publ. [Google Scholar]
  32. Crews TE, Peoples MB. 31.  2005. Can the synchrony of nitrogen supply and crop demand be improved in legume and fertilizer-based agroecosystems? A review. Nutr. Cycl. Agroecosyst. 72:101–20 [Google Scholar]
  33. Daberkow S, Taylor H, Huang W. 32.  2000. Nutrient use and management. Agricultural Resources and Environmental Indicators Econ. Res. Serv. Rep. AH722 Washington, DC: USDA-ERS [Google Scholar]
  34. Danesh-Shahraki A, Nadian H, Bakhshandeh A, Fathi G, Alamisaied K, Gharineh M. 33.  2008. Optimization of irrigation and nitrogen regimes for rapeseed production under drought stress. J. Agron. 7:321–26 [Google Scholar]
  35. David MB, Drinkwater LE, McIsaac GF. 34.  2010. Sources of nitrate yields in the Mississippi River Basin. J. Environ. Qual. 39:1657–67 [Google Scholar]
  36. Dawson JC, Huggins DR, Jones SS. 35.  2008. Characterizing nitrogen use efficiency in natural and agricultural ecosystems to improve the performance of cereal crops in low-input and organic agricultural systems. Field Crops Res. 107:89–101 [Google Scholar]
  37. Desta ZA, Ortiz R. 36.  2014. Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci. 19:592–601 [Google Scholar]
  38. Dhugga KS, Waines JG. 37.  1989. Analysis of nitrogen accumulation and use in bread and durum wheat. Crop Sci. 29:1232–39 [Google Scholar]
  39. Dobermann A. 38.  2005. Nitrogen use efficiency: state of the art. IFA Int. Workshop 1:28–30 [Google Scholar]
  40. Duvick DN. 39.  1984. Genetic contributions to yield gains of U.S. hybrid maize, 1930 to 1980. Genetic Contributions to Yield Gains of Five Major Crop Plants WR Fehr 15–47 Madison, WI: Crop Sci. Soc. Am. Am. Soc. Agron. [Google Scholar]
  41. Duvick DN. 40.  1992. Genetic contributions to advances in yield of U.S. maize. Maydica 37:69–79 [Google Scholar]
  42. Duvick DN. 41.  2005. The contribution of breeding (Zea mays L.). Adv. Agron. 86:83–145 [Google Scholar]
  43. Duvick DN. 42.  2005. Genetic progress in yield of United States maize (Zea mays L.). Maydica 50:193–202 [Google Scholar]
  44. Duvick DN, Cassman KG. 43.  1999. Post–Green Revolution trends in yield potential of temperate maize in the north-central United States. Crop Sci. 39:1622–30 [Google Scholar]
  45. Eagles HA, McLean R, Eastwood RF, Appelbee M-J, Cane K. 44.  et al. 2014. High-yielding lines of wheat carrying Gpc-B1 adapted to Mediterranean-type environments of the south and west of Australia. Crop Pasture Sci. 65:854–61 [Google Scholar]
  46. Echarte L, Rothstein S, Tollenaar M. 45.  2008. The response of leaf photosynthesis and dry matter accumulation to nitrogen supply in an older and a newer maize hybrid. Crop Sci. 48:656–65 [Google Scholar]
  47. Estaghvirou SBO, Ogutu JO, Piepho H. 46.  2014. Influence of outliers on accuracy estimation in genomic prediction in plant breeding. Genes Genomes Genet. 4:2317–28 [Google Scholar]
  48. Fischer RA, Byerlee D, Edmeades GO. 47.  2009. Can technology deliver on the yield challenge to 2050? Presented at FAO Expert Meet. How Feed World 2050, Rome [Google Scholar]
  49. Fontaine J-X, Ravel C, Pageau K, Heumez E, Dubois F. 48.  et al. 2009. A quantitative genetic study for elucidating the contribution of glutamine synthetase, glutamate dehydrogenase and other nitrogen-related physiological traits to the agronomic performance of common wheat. Theor. Appl. Genet. 119:645–62 [Google Scholar]
  50. Foulkes MJ, Hawkesford MJ, Barraclough PB, Holdsworth MJ, Kerr S. 49.  et al. 2009. Identifying traits to improve the nitrogen economy of wheat: recent advances and future prospects. Field Crops Res. 114:329–42 [Google Scholar]
  51. Foulkes MJ, Sylvester-Bradley R, Scott RK. 50.  1998. Evidence for differences between winter wheat cultivars in acquisition of soil mineral nitrogen and uptake and utilization of applied fertilizer nitrogen. J. Agric. Sci. 130:29–44 [Google Scholar]
  52. Gali VJ, Brown CG. 51.  2000. Assisting decision-making in Queensland barley production through chance constrained programming. Aust. J. Agric. Resour. Econ. 44:269–87 [Google Scholar]
  53. Gallais A, Hirel B. 52.  2004. An approach to the genetics of nitrogen use efficiency in maize. J. Exp. Bot. 55:295–306 [Google Scholar]
  54. Gardner CAC, Bax PL, Bailey DJ, Cavalieri AJ, Clausen CR. 53.  et al. 1990. Response of corn hybrids to nitrogen fertilizer. J. Prod. Agric. 3:39–43 [Google Scholar]
  55. Garnett T, Conn V, Kaiser BN. 54.  2009. Root based approaches to improving nitrogen use efficiency in plants. Plant Cell Environ. 32:1272–83 [Google Scholar]
  56. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D. 55.  et al. 2010. Food security: the challenge of feeding 9 billion people. Science 327:812–18 [Google Scholar]
  57. Good AG, Beatty PH. 56.  2011. Fertilizing nature: a tragedy of excess in the commons. PLOS Biol. 9:e1001124 [Google Scholar]
  58. Good AG, Shrawat AK, Muench DG. 57.  2004. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production?. Trends Plant Sci. 9:597–605 [Google Scholar]
  59. Goulding K. 58.  2004. Pathways and losses of fertilizer nitrogen at different scales. Agriculture and the Nitrogen Cycle: Assessing the Impacts of Fertilizer Use on Food Production and the Environment AR Mosier, KJ Syers, JR Freney 209–19 Washington, DC: Island Press [Google Scholar]
  60. Grassini P, Eskridge KM, Cassman KG. 59.  2013. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 4:1–11 [Google Scholar]
  61. Habash DZ, Bernard S, Schondelmaier J, Weyen J, Quarrie SA. 60.  2007. The genetics of nitrogen use in hexaploid wheat: N utilisation, development and yield. Theor. Appl. Genet. 114:403–19 [Google Scholar]
  62. Hawkesford MJ. 61.  2012. Improving nutrient use efficiency in crops. eLS. doi: 10.1002/9780470015902.a0023734 [Google Scholar]
  63. Hawkesford MJ. 62.  2011. An overview of nutrient use efficiency and strategies for crop improvement. The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops MJ Hawkesford, P Barraclough 3–19 Chichester, UK: Wiley-Blackwell [Google Scholar]
  64. Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B. 63.  et al. 1993. Quantitative trait locus effect and environmental interaction in a sample of North American barley germ plasm. Theor. Appl. Genet. 87:392–401 [Google Scholar]
  65. Heidlebaugh NM, Trethewey BR, Jukanti AK, Parrott DL, Martin JM, Fischer AM. 64.  2008. Effects of a barley (Hordeum vulgare) chromosome 6 grain protein content locus on whole-plant nitrogen reallocation under two different fertilisation regimes. Funct. Plant Biol. 35:619–32 [Google Scholar]
  66. Hill C, Taylor J, Edwards J, Mather D. 65.  2013. Whole-genome mapping of agronomic and metabolic traits to identify novel quantitative trait loci in bread wheat grown in a water-limited environment. Plant Physiol. 162:1266–81 [Google Scholar]
  67. Hirel B, Bertin P, Quillere I, Bourdoncle W, Dellay C. 66.  et al. 2001. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol. 125:1258–70 [Google Scholar]
  68. Hirel B, Le Gouis J, Ney B, Gallais A. 67.  2007. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J. Exp. Bot. 58:2369–87 [Google Scholar]
  69. Ho MD, Rosas JC, Brown KM, Lynch JP. 68.  2005. Root architectural tradeoffs for water and phosphorus acquisition. Funct. Plant Biol. 32:737–48 [Google Scholar]
  70. Horii H, Nemoto K, Miyamoto N, Harada J. 69.  2006. Quantitative trait loci for adventitious and lateral roots in rice. Plant Breed. 125:198–200 [Google Scholar]
  71. Horst WJ, Behrens T, Heuberger H, Kamh M, Reidenbach G, Wiesler F. 70.  2003. Genotypic differences in nitrogen use-efficiency in crop plants. Innovative Soil-Plant Systems for Sustainable Agricultural Production JM Lynch, JS Schepers, I Ünver 75–92 Paris: OECD [Google Scholar]
  72. Kamprath EJ, Moll RH, Rodriguez N. 71.  1982. Effects of nitrogen fertilization and recurrent selection on performance of hybrid populations of corn. Agron. J. 74:955–58 [Google Scholar]
  73. Kearsey MJ, Farquhar AGL. 72.  1998. QTL analysis in plants; where are we now?. Heredity 80:137–42 [Google Scholar]
  74. Kindu GA, Tang J, Yin X, Struik PC. 73.  2014. Quantitative trait locus analysis of nitrogen use efficiency in barley (Hordeum vulgare L.). Euphytica 199:207–21 [Google Scholar]
  75. Lande R, Thompson R. 74.  1990. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–56 [Google Scholar]
  76. Laperche A, Brancourt-Hulmel M, Heumez E, Gardet O, Hanocq E. 75.  et al. 2007. Using genotype x nitrogen interaction variables to evaluate the QTL involved in wheat tolerance to nitrogen constraints. Theor. Appl. Genet. 115:399–415 [Google Scholar]
  77. Le Gouis J, Béghin D, Heumez E, Pluchard P. 76.  2000. Genetic differences for nitrogen uptake and nitrogen utilisation efficiencies in winter wheat. Eur. J. Agron. 12:163–73 [Google Scholar]
  78. Lea PJ, Azevedo RA. 77.  2007. Nitrogen use efficiency. 2. Amino acid metabolism. Ann. Appl. Biol. 151:269–75 [Google Scholar]
  79. Limami AM, Rouillon C, Hirel B. 78.  2002. Genetic and physiological analysis of germination efficiency in maize in relation to nitrogen metabolism reveals the importance of cytosolic glutamine synthetase. Plant Physiol. 130:1860–70 [Google Scholar]
  80. Liu R, Zhang H, Zhao P, Zhang Z, Liang W. 79.  et al. 2012. Mining of candidate maize genes for nitrogen use efficiency by integrating gene expression and QTL data. Plant Mol. Biol. Rep. 30:297–308 [Google Scholar]
  81. Mahjourimajd S, Kuchel H, Langridge L, Okamoto M. 80.  2015. Evaluation of Australian wheat genotypes for response to variable nitrogen application. Plant Soil Submitted [Google Scholar]
  82. McAllister CH, Beatty PH, Good AG. 81.  2012. Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnol. J. 10:1011–25 [Google Scholar]
  83. Mickelson S, See D, Meyer FD, Garner JP, Foster CR. 82.  et al. 2003. Mapping of QTL associated with nitrogen storage and remobilization in barley (Hordeum vulgare L.) leaves. J. Exp. Bot. 54:383801–12 [Google Scholar]
  84. Mikel MA. 83.  2006. Availability and analysis of proprietary dent corn inbred lines with expired U.S. plant variety protection. Crop Sci. 46:2555–60 [Google Scholar]
  85. Mikel MA, Dudley JW. 84.  2006. Evolution of North American dent corn from public to proprietary germplasm. Crop Sci. 46:1193–205 [Google Scholar]
  86. Moll RH, Kamprath EJ, Jackson WA. 85.  1982. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 74:562–64 [Google Scholar]
  87. Moose S, Below FE. 86.  2009. Biotechnology approaches to improving maize nitrogen use efficiency. Molecular Genetic Approaches to Maize Improvement, Biotechnology in Agriculture and Forestry AL Kriz, BA Larkins. 65–77 Berlin-Heidelberg, Germ: Springer-Verlag [Google Scholar]
  88. Mullen R, Thomison PR, Diedrick KA, Henry DC. 87.  2010. Corn response to nitrogen fertilizer as affected by planting date and hybrid. Crop Manag. doi:10.1094/CM-2010-0405-01-RS [Google Scholar]
  89. Mulvaney RL, Khan SA, Ellsworth TR. 88.  2009. Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable cereal production. J. Environ. Qual. 38:2295–314 [Google Scholar]
  90. Muurinen S, Slafer GA, Peltonen-Sainio P. 89.  2006. Breeding effects on nitrogen use efficiency of spring cereals under northern conditions. Crop Sci. 46:561–68 [Google Scholar]
  91. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z. 90.  et al. 2009. Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–202 [Google Scholar]
  92. Nelson PT, Goodman MM. 91.  2008. Evaluation of elite exotic maize inbreds for use in temperate breeding. Crop Sci. 48:85–92 [Google Scholar]
  93. Norouzi M, Toorchi M, Hosseini Salekdeh G, Mohammadi SA, Neyshabouri MR, Aharizad S. 92.  2008. Effect of water deficit on growth, grain yield and osmotic adjustment in rapeseed. J. Food Agric. Environ. 6:312–18 [Google Scholar]
  94. Novoa R, Loomis RS. 93.  1981. Nitrogen and plant production. Plant Soil 58:177–204 [Google Scholar]
  95. Obara M, Kajiura M, Fukuta Y, Yano M, Hayashi M. 94.  et al. 2001. Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.). J. Exp. Bot. 52:1209–17 [Google Scholar]
  96. Oldroyd GED, Dixon R. 95.  2014. Biotechnological solutions to the nitrogen problem. Curr. Opin. Biotechnol. 26:19–24 [Google Scholar]
  97. O'Neill PM, Schepers JS, Caldwell B, Shanahan JF. 96.  2004. Agronomic responses of corn hybrids from different eras to deficit and adequate levels of water and nitrogen. Agron. J. 96:1660–67 [Google Scholar]
  98. Ortiz-Monasterio JI, Sayre KD, Rajaram S, McMahon M. 97.  1997. Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Sci. 37:898–904 [Google Scholar]
  99. Paszkiewicz S, Butzen S. 98.  2010. Corn hybrid response to plant population. Crop Insights 17:1–4 [Google Scholar]
  100. Peoples MB, Boyer EW, Goulding KWT, Heffer P, Ochwoh VA. 99.  et al. 2004. Pathways of nitrogen loss and their impacts on human health and the environment. Agriculture and the Nitrogen Cycle: The Scientific Committee on Problems of the Environment AR Mosier, KJ Syers, JR Freney 53–69 Covelo, CA: Island Press [Google Scholar]
  101. Prasad M, Varshney RK, Kumar A, Balyan HS, Sharma PC. 100.  et al. 1999. A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat. Theor. Appl. Genet. 99:341–45 [Google Scholar]
  102. Presterl T, Groh S, Landbeck M, Seitz G, Schmidt W, Geiger HH. 101.  2002. Nitrogen uptake and utilization efficiency of European maize hybrids developed under conditions of low and high nitrogen input. Plant Breed. 121:480–86 [Google Scholar]
  103. 103. Queensland Gov 2012. Wheat-Nutrition Brisbane, Aust: Dep. Agric. Fish http://www.daff.qld.gov.au/plants/field-crops-and-pastures/broadacre-field-crops/wheat/nutrition [Google Scholar]
  104. Quraishi UM, Abrouk M, Murat F, Pont C, Foucrier S. 102.  et al. 2011. Cross-genome map based dissection of a nitrogen use efficiency ortho-metaQTL in bread wheat unravels concerted cereal genome evolution. Plant J. 65:745–56 [Google Scholar]
  105. Raun WR, Johnson GV. 103.  1999. Improving nitrogen use efficiency for cereal production. Agron. J. 91:357–63 [Google Scholar]
  106. Reitz LP. 104.  1970. New wheats and social progress: improved varieties of wheat have helped make possible unprecedentedly high levels of food production. Science 169:952–55 [Google Scholar]
  107. Riedelsheimer C, Lisec J, Czedik-Eysenberg A, Sulpice R, Flis A, Grieder C. 105.  2012. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. PNAS 109:8872–77 [Google Scholar]
  108. Robertson A. 106.  1967. The nature of quantitative genetic variation. Heritage from Mende R Brink, E Styles 265–80 Madison, WI: Univ. Wisc. Press [Google Scholar]
  109. Robertson GP. 107.  1997. Nitrogen use efficiency in row-crop agriculture: crop nitrogen use and soil nitrogen loss. Ecology in Agriculture L Jackson 347–65 San Diego, CA: Academic [Google Scholar]
  110. Semenov MA, Mitchell RAC, Whitmore AP, Hawkesford MJ, Parry MAJ, Shewry PR. 108.  2012. Shortcomings in wheat yield predictions. Nat. Clim. Change 2:380–82 [Google Scholar]
  111. Shen J, Li Y, Liu X, Luo X, Tang H. 109.  et al. 2013. Atmospheric dry and wet nitrogen deposition on three contrasting land use types of an agricultural catchment in subtropical central China. Atmos. Environ. 67:415–24 [Google Scholar]
  112. Shen L, Courtois B, McNally KL, Robin S, Li Z. 110.  2001. Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor. Appl. Genet. 103:75–83 [Google Scholar]
  113. Shepard A, Thomison P, Nafziger E, Mullen R, Clucas C. 111.  2011. Nutridense corn response to nitrogen rates. Agron. J. 103:169–74 [Google Scholar]
  114. Shi G, Chavas J-P, Lauer J. 112.  2013. Commercialized transgenic traits, maize productivity and yield risk. Nat. Biotechnol. 31:111–14 [Google Scholar]
  115. Silla F, Escudero A. 113.  2004. Nitrogen-use efficiency: trade-offs between N productivity and mean residence time at organ, plant and population. Funct. Ecol. 18:511–21 [Google Scholar]
  116. Smiciklas K, Below F. 114.  1990. Influence of heterotic pattern on nitrogen use and yield of maize. Maydica 35:209–13 [Google Scholar]
  117. Su TJW, Good AG. 114.  2016. A meta-analysis of nitrogen use efficiency genes in barley: searching for QTLs controlling complex physiological traits. Theor. Appl. Genet. Submitted [Google Scholar]
  118. Sutton MA, Howard CM, Erisman JW. 115.  2011. The need to integrate nitrogen science and policies. The European Nitrogen Assessment MA Sutton, CM Howard, JW Erisman 82–96 Cambridge: Cambridge Univ. Press [Google Scholar]
  119. Thomas H, Smart CM. 116.  1993. Crops that stay green. Ann. Appl. Biol. 123:193–219 [Google Scholar]
  120. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S. 117.  2002. Agricultural sustainability and intensive production practices. Nature 418:671–77 [Google Scholar]
  121. Tollenaar M, Nissanka SP, Rajcan I, Bruulsema TW. 118.  1997. Yield response of old and new corn hybrids to nitrogen. Better Crop 81:3–5 [Google Scholar]
  122. Tong C, Shen L, Lv Y, Wang Z, Wang X. 119.  et al. 2012. Structural mapping: how to study the genetic architecture of a phenotypic trait through its formation mechanism. Brief. Bioinform. 15:43–53 [Google Scholar]
  123. Tsai CY, Dweikat I, Huber DM, Warren HL. 120.  1992. Interrelationship of nitrogen nutrition with maize (Zea mays) grain yield, nitrogen use efficiency and grain quality. J. Sci. Food Agric. 58:1–8 [Google Scholar]
  124. Tsai CY, Huber DM. 121.  1996. Genetic variation of maize hybrids in grain yield response to potassium and inhibiting nitrification. J. Sci. Food Agric. 70:263–70 [Google Scholar]
  125. Tsai CY, Huber DM, Glover DV, Warren HL. 122.  1984. Relationship of N deposition to grain yield and N response of three maize hybrids. Crop Sci. 24:277–81 [Google Scholar]
  126. Uauy C, Brevis JC, Dubcovsky J. 123.  2006. The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J. Exp. Bot. 57:2785–94 [Google Scholar]
  127. Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. 124.  2006. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–301 [Google Scholar]
  128. Uribelarrea M, Moose SP, Below FE. 125.  2007. Divergent selection for grain protein affects nitrogen use in maize hybrids. Field Crops Res. 100:82–90 [Google Scholar]
  129. 126. USDA-ERS 2011. Nitrogen used on corn, rate per fertilized acre receiving nitrogen, selected states, 1964–2010 Washington, DC: USDA-ERS http://www.ers.usda.gov/Data/FertilizerUse [Google Scholar]
  130. Utz H, Melchinger A. 127.  1994. Comparison of different approaches to interval mapping of quantitative trait loci. Biometrics in Plant Breeding: Applications of Molecular Markers: Proceedings of the 9th Meeting of the EUCARPIA Section Biometrics in Plant Breeding J Van Ooijen, J Jansen 195–201 Wageningen, Neth: CPRO-DLO [Google Scholar]
  131. Van Keulen H. 128.  1977. Nitrogen requirements of rice, with special reference to Java. Contrib. Cent. Res. Inst. Agric. Bogor. 30:1–67 [Google Scholar]
  132. Varshney RK, Ribaut J-M, Buckler ES, Tuberosa R, Rafalski JA, Langridge P. 129.  2012. Can genomics boost productivity of orphan crops?. Nat. Biotechnol. 30:1172–76 [Google Scholar]
  133. Vitousek PMM, Naylor R, Crews T, David MB, Drinkwater LEE. 130.  et al. 2009. Nutrient imbalances in agricultural development. Science 324:1519–20 [Google Scholar]
  134. Wang T, Ma X, Li Y, Bai D, Liu C. 131.  et al. 2011. Changes in yield and yield components of single-cross maize hybrids released in China between 1964 and 2001. Crop Sci. 51:512–25 [Google Scholar]
  135. Worku M, Bänziger M, Erley GSA, Friesen D, Diallo AO, Horst WJ. 132.  2007. Nitrogen uptake and utilization in contrasting nitrogen efficient tropical maize hybrids. Crop Sci. 47:519–28 [Google Scholar]
  136. Wu P, Luo A. 133.  1996. Investigation on genetic background of leaf chlorophyll content variation in rice under nitrogen stressed condition via molecular markers. Yi Chuan Xue Bao 23:431–38 [Google Scholar]
  137. Wuebbles DJ. 134.  2009. Nitrous oxide: no laughing matter. Science 326:56–57 [Google Scholar]
  138. Xu Y, Wang R, Tong Y, Zhao H, Xie Q. 135.  et al. 2014. Mapping QTLs for yield and nitrogen-related traits in wheat: influence of nitrogen and phosphorus fertilization on QTL expression. Theor. Appl. Genet. 127:59–72 [Google Scholar]
  139. Yadav R, Courtois B, Huang N, McLaren G. 136.  1997. Mapping genes controlling root morphology and root distribution in a doubled-haploid population of rice. Theor. Appl. Genet. 94:619–32 [Google Scholar]
  140. Yamaya T, Obara M, Nakajima H, Sasaki S. 137.  2002. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J. Exp. Bot. 53:917–25 [Google Scholar]
  141. Yang D-L, Jing R-L, Chang X-P, Li W. 138.  2007. Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics 176:571–84 [Google Scholar]
  142. Zhang F, Cui Z, Fan M, Zhang W, Chen X, Jiang R. 139.  2011. Integrated soil-crop system management: reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China. J. Environ. Qual. 40:1051–57 [Google Scholar]
  143. Zhang H, Forde BG. 140.  1998. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–9 [Google Scholar]
  144. Zhang Q, He K, Huo H. 141.  2012. Cleaning China's air. Nature 484:161–62 [Google Scholar]
  145. Zhuang J-Y, Lin H-X, Lu J, Qian H-R, Hittalmani S. 142.  et al. 1997. Analysis of QTL×environment interaction for yield components and plant height in rice. Theor. Appl. Genet. 95:799–808 [Google Scholar]
/content/journals/10.1146/annurev-genet-112414-055037
Loading
/content/journals/10.1146/annurev-genet-112414-055037
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error