Planar polarity is a well-studied phenomenon resulting in the directional coordination of cells in the plane of a tissue. In invertebrates and vertebrates, planar polarity is established and maintained by the largely independent core and Fat/Dachsous/Four-jointed (Ft-Ds-Fj) pathways. Loss of function of these pathways can result in a wide range of developmental or cellular defects, including failure of gastrulation and problems with placement and function of cilia. This review discusses the conservation of these pathways across the animal kingdom. The lack of vital core pathway components in basal metazoans suggests that the core planar polarity pathway evolved shortly after, but not necessarily alongside, the emergence of multicellularity.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ackley BD. 1.  2014. Wnt-signaling and planar cell polarity genes regulate axon guidance along the anteroposterior axis in C. elegans. Dev. Neurobiol. 74:781–96 [Google Scholar]
  2. Adamska M, Degnan BM, Green K, Zwafink C. 2.  2011. What sponges can tell us about the evolution of developmental processes. Zoology (Jena) 114:1–10 [Google Scholar]
  3. Adamska M, Larroux C, Adamski M, Green K, Lovas E. 3.  et al. 2010. Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica. Evol. Dev. 12:494–518 [Google Scholar]
  4. Adell T, Nefkens I, Muller WE. 4.  2003. Polarity factor “Frizzled” in the demosponge Suberites domuncula: identification, expression and localization of the receptor in the epithelium/pinacoderm(1). FEBS Lett. 554:363–68 [Google Scholar]
  5. Adell T, Thakur AN, Muller WE. 5.  2007. Isolation and characterization of Wnt pathway-related genes from Porifera. Cell Biol. Int. 31:939–49 [Google Scholar]
  6. Adler PN, Charlton J, Liu J. 6.  1998. Mutations in the cadherin superfamily member gene dachsous cause a tissue polarity phenotype by altering frizzled signaling. Development 125:959–68 [Google Scholar]
  7. Almuedo-Castillo M, Salo E, Adell T. 7.  2011. Dishevelled is essential for neural connectivity and planar cell polarity in planarians. PNAS 108:2813–18 [Google Scholar]
  8. Ambegaonkar AA, Pan G, Mani M, Feng Y, Irvine KD. 8.  2012. Propagation of Dachsous-Fat planar cell polarity. Curr. Biol. 22:1302–8 [Google Scholar]
  9. Axelrod JD. 9.  2001. Unipolar membrane association of Dishevelled mediates Frizzled planar cell polarity signaling. Genes Dev. 15:1182–87 [Google Scholar]
  10. Bacallao RL, McNeill H. 10.  2009. Cystic kidney diseases and planar cell polarity signaling. Clin. Genet. 75:107–17 [Google Scholar]
  11. Baena-Lopez LA, Baonza A, Garcia-Bellido A. 11.  2005. The orientation of cell divisions determines the shape of Drosophila organs. Curr. Biol. 15:1640–44 [Google Scholar]
  12. Bastock R, Strutt H, Strutt D. 12.  2003. Strabismus is asymmetrically localised and binds to Prickle and Dishevelled during Drosophila planar polarity patterning. Development 130:3007–14 [Google Scholar]
  13. Beane WS, Tseng AS, Morokuma J, Lemire JM, Levin M. 13.  2012. Inhibition of planar cell polarity extends neural growth during regeneration, homeostasis, and development. Stem Cells Dev. 21:2085–94 [Google Scholar]
  14. Bergquist PR, Green CR, Sinclair ME, Roberts HS. 14.  1977. The morphology of cilia in sponge larvae. Tissue Cell 9:179–84 [Google Scholar]
  15. Boutros M, Mlodzik M. 15.  1999. Dishevelled: at the crossroads of divergent intracellular signaling pathways. Mech. Dev. 83:27–37 [Google Scholar]
  16. Brittle A, Thomas C, Strutt D. 16.  2012. Planar polarity specification through asymmetric subcellular localization of Fat and Dachsous. Curr. Biol. 22:907–14 [Google Scholar]
  17. Brittle AL, Repiso A, Casal J, Lawrence PA, Strutt D. 17.  2010. Four-jointed modulates growth and planar polarity by reducing the affinity of dachsous for fat. Curr. Biol. 20:803–10 [Google Scholar]
  18. Budd GE, Jensen S. 18.  2000. A critical reappraisal of the fossil record of the bilaterian phyla. Biol. Rev. Camb. Philos. Soc. 75:253–95 [Google Scholar]
  19. Byrum CA, Xu R, Bince JM, McClay DR, Wikramanayake AH. 19.  2009. Blocking Dishevelled signaling in the noncanonical Wnt pathway in sea urchins disrupts endoderm formation and spiculogenesis, but not secondary mesoderm formation. Dev. Dyn. 238:1649–65 [Google Scholar]
  20. Casal J, Lawrence PA, Struhl G. 20.  2006. Two separate molecular systems, Dachsous/Fat and Starry night/Frizzled, act independently to confer planar cell polarity. Development 133:4561–72 [Google Scholar]
  21. Cho SJ, Valles Y, Giani VC Jr, Seaver EC, Weisblat DA. 21.  2010. Evolutionary dynamics of the wnt gene family: a lophotrochozoan perspective. Mol. Biol. Evol. 27:1645–58 [Google Scholar]
  22. Clark HF, Brentrup D, Schneitz K, Bieber A, Goodman C, Noll M. 22.  1995. Dachsous encodes a member of the cadherin superfamily that controls imaginal disc morphogenesis in Drosophila. Genes Dev. 9:1530–42 [Google Scholar]
  23. Croce J, Duloquin L, Lhomond G, McClay DR, Gache C. 23.  2006. Frizzled5/8 is required in secondary mesenchyme cells to initiate archenteron invagination during sea urchin development. Development 133:547–57 [Google Scholar]
  24. Curtin JA, Quint E, Tsipouri V, Arkell RM, Cattanach B. 24.  et al. 2003. Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr. Biol. 13:1129–33 [Google Scholar]
  25. Damen WG. 25.  2007. Evolutionary conservation and divergence of the segmentation process in arthropods. Dev. Dyn. 236:1379–91 [Google Scholar]
  26. Dellaporta SL, Xu A, Sagasser S, Jakob W, Moreno MA. 26.  et al. 2006. Mitochondrial genome of Trichoplax adhaerens supports placozoa as the basal lower metazoan phylum. PNAS 103:8751–56 [Google Scholar]
  27. Demilly A, Steinmetz P, Gazave E, Marchand L, Vervoort M. 27.  2013. Involvement of the Wnt/beta-catenin pathway in neurectoderm architecture in Platynereis dumerilii. Nat. Commun. 4:1915 [Google Scholar]
  28. Devenport D. 28.  2014. The cell biology of planar cell polarity. J. Cell Biol. 207:171–79 [Google Scholar]
  29. Ereskovsky AV, Dondua AK. 29.  2006. The problem of germ layers in sponges (Porifera) and some issues concerning early metazoan evolution. Zool. Anz. 245:65–76 [Google Scholar]
  30. Fahey B, Degnan BM. 30.  2010. Origin of animal epithelia: insights from the sponge genome. Evol. Dev. 12:601–17 [Google Scholar]
  31. Feiguin F, Hannus M, Mlodzik M, Eaton S. 31.  2001. The ankyrin repeat protein Diego mediates Frizzled-dependent planar polarization. Dev. Cell 1:93–101 [Google Scholar]
  32. Gao B. 32.  2012. Wnt regulation of planar cell polarity (PCP). Curr. Top. Dev. Biol. 101:263–95 [Google Scholar]
  33. Gao FB, Kohwi M, Brenman JE, Jan LY, Jan YN. 33.  2000. Control of dendritic field formation in Drosophila: the roles of flamingo and competition between homologous neurons. Neuron 28:91–101 [Google Scholar]
  34. Goodrich LV, Strutt D. 34.  2011. Principles of planar polarity in animal development. Development 138:1877–92 [Google Scholar]
  35. Gubb D, Garcia-Bellido A. 35.  1982. A genetic analysis of the determination of cuticular polarity during development in Drosophila melanogaster. J. Embryol. Exp. Morphol. 68:37–57 [Google Scholar]
  36. Guirao B, Meunier A, Mortaud S, Aguilar A, Corsi JM. 36.  et al. 2010. Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia. Nat. Cell Biol. 12:341–50 [Google Scholar]
  37. Gurley KA, Rink JC, Sanchez Alvarado A. 37.  2008. Beta-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 319:323–27 [Google Scholar]
  38. Harumoto T, Ito M, Shimada Y, Kobayashi TJ, Ueda HR. 38.  et al. 2010. Atypical cadherins Dachsous and Fat control dynamics of noncentrosomal microtubules in planar cell polarity. Dev. Cell 19:389–401 [Google Scholar]
  39. Hilman D, Gat U. 39.  2011. The evolutionary history of YAP and the hippo/YAP pathway. Mol. Biol. Evol. 28:2403–17 [Google Scholar]
  40. Hobmayer B, Rentzsch F, Kuhn K, Happel CM, von Laue CC. 40.  et al. 2000. WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature 407:186–89 [Google Scholar]
  41. Hoffmann M, Segbert C, Helbig G, Bossinger O. 41.  2010. Intestinal tube formation in Caenorhabditis elegans requires vang-1 and egl-15 signaling. Dev. Biol. 339:268–79 [Google Scholar]
  42. Honnen SJ, Buchter C, Schroder V, Hoffmann M, Kohara Y. 42.  et al. 2012. C. elegans VANG-1 modulates life span via insulin/IGF-1-like signaling. PLOS ONE 7:e32183 [Google Scholar]
  43. Hotta K, Takahashi H, Ueno N, Gojobori T. 43.  2003. A genome-wide survey of the genes for planar polarity signaling or convergent extension-related genes in Ciona intestinalis and phylogenetic comparisons of evolutionary conserved signaling components. Gene 317:165–85 [Google Scholar]
  44. Hulpiau P, van Roy F. 44.  2011. New insights into the evolution of metazoan cadherins. Mol. Biol. Evol. 28:647–57 [Google Scholar]
  45. Ishikawa HO, Takeuchi H, Haltiwanger RS, Irvine KD. 45.  2008. Four-jointed is a Golgi kinase that phosphorylates a subset of cadherin domains. Science 321:401–4 [Google Scholar]
  46. Jager M, Chiori R, Alie A, Dayraud C, Queinnec E, Manuel M. 46.  2011. New insights on ctenophore neural anatomy: immunofluorescence study in Pleurobrachia pileus (Muller, 1776). J. Exp. Zool. 316B:171–87 [Google Scholar]
  47. Jager M, Dayraud C, Mialot A, Queinnec E, le Guyader H, Manuel M. 47.  2013. Evidence for involvement of Wnt signalling in body polarities, cell proliferation, and the neuro-sensory system in an adult ctenophore. PLOS ONE 8:e84363 [Google Scholar]
  48. Jiang D, Munro EM, Smith WC. 48.  2005. Ascidian prickle regulates both mediolateral and anterior-posterior cell polarity of notochord cells. Curr. Biol. 15:79–85 [Google Scholar]
  49. Keys DN, Levine M, Harland RM, Wallingford JB. 49.  2002. Control of intercalation is cell-autonomous in the notochord of Ciona intestinalis. Dev. Biol. 246:329–40 [Google Scholar]
  50. Kim J, Kim W, Cunningham CW. 50.  1999. A new perspective on lower metazoan relationships from 18S rDNA sequences. Mol. Biol. Evol. 16:423–27 [Google Scholar]
  51. King RS, Maiden SL, Hawkins NC, Kidd AR 3rd, Kimble J. 51.  et al. 2009. The N- or C-terminal domains of DSH-2 can activate the C. elegans Wnt/beta-catenin asymmetry pathway. Dev. Biol. 328:234–44 [Google Scholar]
  52. Kourakis MJ, Reeves W, Newman-Smith E, Maury B, Abdul-Wajid S, Smith WC. 52.  2014. A one-dimensional model of PCP signaling: polarized cell behavior in the notochord of the ascidian Ciona. Dev. Biol. 395:120–30 [Google Scholar]
  53. Kumburegama S, Wijesena N, Xu R, Wikramanayake AH. 53.  2011. Strabismus-mediated primary archenteron invagination is uncoupled from Wnt/beta-catenin-dependent endoderm cell fate specification in Nematostella vectensis (Anthozoa, Cnidaria): implications for the evolution of gastrulation. EvoDevo 2:2 [Google Scholar]
  54. Kusserow A, Pang K, Sturm C, Hrouda M, Lentfer J. 54.  et al. 2005. Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433:156–60 [Google Scholar]
  55. Lapebie P, Borchiellini C, Houliston E. 55.  2011. Dissecting the PCP pathway: one or more pathways?: Does a separate Wnt-Fz-Rho pathway drive morphogenesis?. BioEssays 33:759–68 [Google Scholar]
  56. Lapebie P, Ruggiero A, Barreau C, Chevalier S, Chang P. 56.  et al. 2014. Differential responses to Wnt and PCP disruption predict expression and developmental function of conserved and novel genes in a cnidarian. PLOS Genet. 10:e1004590 [Google Scholar]
  57. Lawrence PA. 57.  1966. Gradients in insect segment: orientation of hairs in milkweed bug Oncopeltus fasciatus. J. Exp. Biol. 44:607–20 [Google Scholar]
  58. Lawrence PA. 58.  1974. Cell movement during pattern regulation in Oncopeltus. Nature 248:609–10 [Google Scholar]
  59. Lawrence PA, Casal J, Struhl G. 59.  2004. Cell interactions and planar polarity in the abdominal epidermis of Drosophila. Development 131:4651–64 [Google Scholar]
  60. Lee PN, Pang K, Matus DQ, Martindale MQ. 60.  2006. A WNT of things to come: evolution of Wnt signaling and polarity in cnidarians. Semin. Cell Dev. Biol. 17:157–67 [Google Scholar]
  61. Lengfeld T, Watanabe H, Simakov O, Lindgens D, Gee L. 61.  et al. 2009. Multiple Wnts are involved in Hydra organizer formation and regeneration. Dev. Biol. 330:186–99 [Google Scholar]
  62. Leys SP. 62.  2004. Gastrulation in sponges. Gastrulation: From Cells to Embryo C.D. Stern 23–32 Woodbury, NY: Cold Spring Harb. Lab. Press [Google Scholar]
  63. Leys SP, Degnan BM. 63.  2001. Cytological basis of photoresponsive behavior in a sponge larva. Biol. Bull. 201:323–38 [Google Scholar]
  64. Leys SP, Degnan BM. 64.  2002. Embryogenesis and metamorphosis in a haplosclerid demosponge: gastrulation and transdifferentiation of larval ciliated cells to choanocytes. Invertebr. Biol. 121:171–89 [Google Scholar]
  65. Leys SP, Eerkes-Medrano D. 65.  2005. Gastrulation in calcareous sponges: in search of Haeckel's Gastraea. Integr. Comp. Biol. 45:342–51 [Google Scholar]
  66. Leys SP, Ereskovsky AV. 66.  2006. Embryogenesis and larval differentiation in sponges. Can. J. Zool. 84:262–87 [Google Scholar]
  67. Locke M. 67.  1959. The cuticular pattern in an insect, Rhodnius prolixus Stål. J. Exp. Biol. 36:459–76 [Google Scholar]
  68. Ludeman DA, Farrar N, Riesgo A, Paps J, Leys SP. 68.  2014. Evolutionary origins of sensation in metazoans: functional evidence for a new sensory organ in sponges. BMC Evol. Biol. 14:3 [Google Scholar]
  69. Mahoney PA, Weber U, Onofrechuk P, Biessmann H, Bryant PJ, Goodman CS. 69.  1991. The fat tumor suppressor gene in Drosophila encodes a novel member of the cadherin gene superfamily. Cell 67:853–68 [Google Scholar]
  70. Manuel M. 70.  2009. Early evolution of symmetry and polarity in metazoan body plans. C. R. Biol. 332:184–209 [Google Scholar]
  71. Maro GS, Klassen MP, Shen K. 71.  2009. A beta-catenin-dependent Wnt pathway mediates anteroposterior axon guidance in C. elegans motor neurons. PLOS ONE 4:e4690 [Google Scholar]
  72. Martindale MQ. 72.  2005. The evolution of metazoan axial properties. Nat. Rev. Genet. 6:917–27 [Google Scholar]
  73. Martinelli C, Spring J. 73.  2003. Distinct expression patterns of the two T-box homologues Brachyury and Tbx2/3 in the placozoan Trichoplax adhaerens. Dev. Genes Evol. 213:492–99 [Google Scholar]
  74. Matakatsu H, Blair SS. 74.  2004. Interactions between Fat and Dachsous and the regulation of planar cell polarity in the Drosophila wing. Development 131:3785–94 [Google Scholar]
  75. Maung SM, Jenny A. 75.  2011. Planar cell polarity in Drosophila. Organogenesis 7:165–79 [Google Scholar]
  76. McCauley BS, Akyar E, Filliger L, Hinman VF. 76.  2013. Expression of wnt and frizzled genes during early sea star development. Gene Expr. Patterns 13:437–44 [Google Scholar]
  77. Merkel M, Sagner A, Gruber FS, Etournay R, Blasse C. 77.  et al. 2014. The balance of prickle/spiny-legs isoforms controls the amount of coupling between core and fat PCP systems. Curr. Biol. 24:2111–23 [Google Scholar]
  78. Miller DJ, Ball EE. 78.  2005. Animal evolution: the enigmatic phylum Placozoa revisited. Curr. Biol. 15:R26–28 [Google Scholar]
  79. Miller DJ, Ball EE. 79.  2008. Animal evolution: Trichoplax, trees, and taxonomic turmoil. Curr. Biol. 18:R1003–5 [Google Scholar]
  80. Minobe S, Fei K, Yan L, Sarras M Jr, Werle M. 80.  2000. Identification and characterization of the epithelial polarity receptor “Frizzled” in Hydra vulgaris. Dev. Genes Evol. 210:258–62 [Google Scholar]
  81. Mitchell B, Jacobs R, Li J, Chien S, Kintner C. 81.  2007. A positive feedback mechanism governs the polarity and motion of motile cilia. Nature 447:97–101 [Google Scholar]
  82. Mohr O. 82.  1929. Exaggeration and inhibition phenomena encountered in the analysis of an autosomal dominant. Z. Indukt. Abstamm. Vererb. 50:113–200 [Google Scholar]
  83. Momose T, Derelle R, Houliston E. 83.  2008. A maternally localised Wnt ligand required for axial patterning in the cnidarian Clytia hemisphaerica. Development 135:2105–13 [Google Scholar]
  84. Momose T, Houliston E. 84.  2007. Two oppositely localised frizzled RNAs as axis determinants in a cnidarian embryo. PLOS Biol. 5:e70 [Google Scholar]
  85. Momose T, Kraus Y, Houliston E. 85.  2012. A conserved function for Strabismus in establishing planar cell polarity in the ciliated ectoderm during cnidarian larval development. Development 139:4374–82 [Google Scholar]
  86. Montcouquiol M, Rachel RA, Lanford PJ, Copeland NG, Jenkins NA, Kelley MW. 86.  2003. Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 423:173–77 [Google Scholar]
  87. Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP. 87.  et al. 2014. The ctenophore genome and the evolutionary origins of neural systems. Nature 510:109–14 [Google Scholar]
  88. Mushegian A, Gurevich VV, Gurevich EV. 88.  2012. The origin and evolution of G protein–coupled receptor kinases. PLOS ONE 7:e33806 [Google Scholar]
  89. Nichols SA, Dirks W, Pearse JS, King N. 89.  2006. Early evolution of animal cell signaling and adhesion genes. PNAS 103:12451–56 [Google Scholar]
  90. Nielsen C. 90.  2008. Six major steps in animal evolution: Are we derived sponge larvae?. Evol. Dev. 10:241–57 [Google Scholar]
  91. Niwano T, Takatori N, Kumano G, Nishida H. 91.  2009. Wnt5 is required for notochord cell intercalation in the ascidian Halocynthia roretzi. Biol. Cell 101:645–59 [Google Scholar]
  92. Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A. 92.  et al. 1998. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95:829–37 [Google Scholar]
  93. Nubler-Jung K. 93.  1987. Tissue polarity in an insect segment: denticle patterns resemble spontaneously forming fibroblast patterns. Development 100:171–77 [Google Scholar]
  94. Pang K, Ryan JF, Mullikin JC, Baxevanis AD, Martindale MQ. 94.  2010. Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi. EvoDevo 1:10 [Google Scholar]
  95. Park FD, Priess JR. 95.  2003. Establishment of POP-1 asymmetry in early C. elegans embryos. Development 130:3547–56 [Google Scholar]
  96. Park FD, Tenlen JR, Priess JR. 96.  2004. C. elegans MOM-5/frizzled functions in MOM-2/Wnt-independent cell polarity and is localized asymmetrically prior to cell division. Curr. Biol. 14:2252–58 [Google Scholar]
  97. Park M, Moon RT. 97.  2002. The planar cell–polarity gene stbm regulates cell behaviour and cell fate in vertebrate embryos. Nat. Cell Biol. 4:20–25 [Google Scholar]
  98. Pei J, Grishin NV. 98.  2012. Cysteine-rich domains related to Frizzled receptors and Hedgehog-interacting proteins. Protein Sci. 21:1172–84 [Google Scholar]
  99. Peterson KJ, McPeek MA, Evans DAD. 99.  2005. Tempo and mode of early animal evolution: inferences from rocks, Hox, and molecular clocks. Paleobiology 31:36–55 [Google Scholar]
  100. Pettitt J, Wood WB, Plasterk RH. 100.  1996. cdh-3, a gene encoding a member of the cadherin superfamily, functions in epithelial cell morphogenesis in Caenorhabditis elegans. Development 122:4149–57 [Google Scholar]
  101. Philipp I, Aufschnaiter R, Ozbek S, Pontasch S, Jenewein M. 101.  et al. 2009. Wnt/beta-catenin and noncanonical Wnt signaling interact in tissue evagination in the simple eumetazoan Hydra. PNAS 106:4290–95 [Google Scholar]
  102. Philippe H, Derelle R, Lopez P, Pick K, Borchiellini C. 102.  et al. 2009. Phylogenomics revives traditional views on deep animal relationships. Curr. Biol. 19:706–12 [Google Scholar]
  103. Piepho H. 103.  1955. Uber die ausrichtung der schuppenbalge und schuppen am schmetterlingsrumpf. Naturwissenschaften 42:22 [Google Scholar]
  104. Prabhu Y, Eichinger L. 104.  2006. The Dictyostelium repertoire of seven transmembrane domain receptors. Eur. J. Cell Biol. 85:937–46 [Google Scholar]
  105. Pruliere G, Cosson J, Chevalier S, Sardet C, Chenevert J. 105.  2011. Atypical protein kinase C controls sea urchin ciliogenesis. Mol. Biol. Cell 22:2042–53 [Google Scholar]
  106. Qian G, Li G, Chen X, Wang Y. 106.  2013. Characterization and embryonic expression of four amphioxus Frizzled genes with important functions during early embryogenesis. Gene Expr. Patterns 13:445–53 [Google Scholar]
  107. Rawls AS, Guinto JB, Wolff T. 107.  2002. The cadherins fat and dachsous regulate dorsal/ventral signaling in the Drosophila eye. Curr. Biol. 12:1021–26 [Google Scholar]
  108. Roszko I, Sawada A, Solnica-Krezel L. 108.  2009. Regulation of convergence and extension movements during vertebrate gastrulation by the Wnt/PCP pathway. Semin. Cell Dev. Biol. 20:986–97 [Google Scholar]
  109. Saburi S, Hester I, Fischer E, Pontoglio M, Eremina V. 109.  et al. 2008. Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat. Genet. 40:1010–15 [Google Scholar]
  110. Sagner A, Merkel M, Aigouy B, Gaebel J, Brankatschk M. 110.  et al. 2012. Establishment of global patterns of planar polarity during growth of the Drosophila wing epithelium. Curr. Biol. 22:1296–301 [Google Scholar]
  111. Sanchez-Alvarez L, Visanuvimol J, McEwan A, Su A, Imai JH, Colavita A. 111.  2011. VANG-1 and PRKL-1 cooperate to negatively regulate neurite formation in Caenorhabditis elegans. PLOS Genet. 7:e1002257 [Google Scholar]
  112. Schierwater B. 112.  2005. My favorite animal, Trichoplax adhaerens. BioEssays 27:1294–302 [Google Scholar]
  113. Schierwater B, de Jong D, Desalle R. 113.  2009. Placozoa and the evolution of Metazoa and intrasomatic cell differentiation. Int. J. Biochem. Cell Biol. 41:370–79 [Google Scholar]
  114. Shimada Y, Usui T, Yanagawa S, Takeichi M, Uemura T. 114.  2001. Asymmetric colocalization of Flamingo, a seven-pass transmembrane cadherin, and Dishevelled in planar cell polarization. Curr. Biol. 11:859–63 [Google Scholar]
  115. Simon MA, Xu A, Ishikawa HO, Irvine KD. 115.  2010. Modulation of Fat:Dachsous binding by the cadherin domain kinase Four-jointed. Curr. Biol. 20:811–17 [Google Scholar]
  116. Smith CL, Varoqueaux F, Kittelmann M, Azzam RN, Cooper B. 116.  et al. 2014. Novel cell types, neurosecretory cells, and body plan of the early-diverging metazoan Trichoplax adhaerens. Curr. Biol. 24:1565–72 [Google Scholar]
  117. Solnica-Krezel L, Sepich DS. 117.  2012. Gastrulation: making and shaping germ layers. Annu. Rev. Cell Dev. Biol. 28:687–717 [Google Scholar]
  118. Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U. 118.  et al. 2008. The Trichoplax genome and the nature of placozoans. Nature 454:955–60 [Google Scholar]
  119. Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME. 119.  et al. 2010. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:720–26 [Google Scholar]
  120. Staley BK, Irvine KD. 120.  2012. Hippo signaling in Drosophila: recent advances and insights. Dev. Dyn. 241:3–15 [Google Scholar]
  121. Strutt D. 121.  2009. Gradients and the specification of planar polarity in the insect cuticle. Cold Spring Harb. Perspect. Biol. 1:a000489 [Google Scholar]
  122. Strutt D, Warrington SJ. 121a.  2008. Planar polarity genes in the Drosophila wing regulate the localisation of the FH3-domain protein Multiple Wing Hairs to control the site of hair production. Development 135:3103–11 [Google Scholar]
  123. Strutt DI. 122.  2001. Asymmetric localization of frizzled and the establishment of cell polarity in the Drosophila wing. Mol. Cell 7:367–75 [Google Scholar]
  124. Strutt H, Strutt D. 123.  2002. Nonautonomous planar polarity patterning in Drosophila: dishevelled-independent functions of frizzled. Dev. Cell 3:851–63 [Google Scholar]
  125. Strutt H, Strutt D. 124.  2008. Differential stability of flamingo protein complexes underlies the establishment of planar polarity. Curr. Biol. 18:1555–64 [Google Scholar]
  126. Strutt H, Warrington SJ, Strutt D. 125.  2011. Dynamics of core planar polarity protein turnover and stable assembly into discrete membrane subdomains. Dev. Cell 20:511–25 [Google Scholar]
  127. Stumpf HF. 126.  1966. Uber gefalleabhangige bildungen des insektensegmentes. J. Insect Physiol. 12:601–17 [Google Scholar]
  128. Sulston JE, Schierenberg E, White JG, Thomson JN. 127.  1983. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100:64–119 [Google Scholar]
  129. Syed T, Schierwater B. 128.  2002. Trichoplax adhaerens: discovered as a missing link, forgotten as a hydrozoan, re-discovered as a key to metazoan evolution. Vie Milieu Life Environ. 52:177–87 [Google Scholar]
  130. Tamm SL. 129.  2012. Patterns of comb row development in young and adult stages of the ctenophores Mnemiopsis leidyi and Pleurobrachia pileus. J. Morphol. 273:1050–63 [Google Scholar]
  131. Thomas C, Strutt D. 130.  2012. The roles of the cadherins Fat and Dachsous in planar polarity specification in Drosophila. Dev. Dyn. 241:27–39 [Google Scholar]
  132. Tissir F, Qu Y, Montcouquiol M, Zhou L, Komatsu K. 131.  et al. 2010. Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nat. Neurosci. 13:700–7 [Google Scholar]
  133. Tree DR, Shulman JM, Rousset R, Scott MP, Gubb D, Axelrod JD. 132.  2002. Prickle mediates feedback amplification to generate asymmetric planar cell polarity signaling. Cell 109:371–81 [Google Scholar]
  134. Ueda T, Koya S, Maruyama YK. 133.  1999. Dynamic patterns in the locomotion and feeding behaviors by the placozoan Trichoplax adhaerence. BioSystems 54:65–70 [Google Scholar]
  135. Usui T, Shima Y, Shimada Y, Hirano S, Burgess RW. 134.  et al. 1999. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98:585–95 [Google Scholar]
  136. Valentine JW. 135.  2004. On the Origin of Phyla Chicago: Univ. Chicago Press
  137. Vladar EK, Bayly RD, Sangoram AM, Scott MP, Axelrod JD. 136.  2012. Microtubules enable the planar cell polarity of airway cilia. Curr. Biol. 22:2203–12 [Google Scholar]
  138. Voigt O, Collins AG, Pearse VB, Pearse JS, Ender A. 137.  et al. 2004. Placozoa: no longer a phylum of one. Curr. Biol. 14:R944–45 [Google Scholar]
  139. Walck-Shannon E, Hardin J. 138.  2014. Cell intercalation from top to bottom. Nat. Rev. Mol. Cell Biol. 15:34–48 [Google Scholar]
  140. Wallingford JB. 139.  2010. Planar cell polarity signaling, cilia and polarized ciliary beating. Curr. Opin. Cell Biol. 22:597–604 [Google Scholar]
  141. Wallingford JB. 140.  2012. Planar cell polarity and the developmental control of cell behavior in vertebrate embryos. Annu. Rev. Cell Dev. Biol. 28:627–53 [Google Scholar]
  142. Wallingford JB, Fraser SE, Harland RM. 141.  2002. Convergent extension: the molecular control of polarized cell movement during embryonic development. Dev. Cell 2:695–706 [Google Scholar]
  143. Wang Y, Nathans J. 142.  2007. Tissue/planar cell polarity in vertebrates: new insights and new questions. Development 134:647–58 [Google Scholar]
  144. Whittaker CA, Bergeron KF, Whittle J, Brandhorst BP, Burke RD, Hynes RO. 142a.  2006. The echinoderm adhesome. Dev. Biol. 300:252–66 [Google Scholar]
  145. Wiggan O, Hamel PA. 143.  2002. Pax3 regulates morphogenetic cell behavior in vitro coincident with activation of a PCP/non-canonical Wnt-signaling cascade. J. Cell Sci. 115:531–41 [Google Scholar]
  146. Williams-Masson EM, Heid PJ, Lavin CA, Hardin J. 144.  1998. The cellular mechanism of epithelial rearrangement during morphogenesis of the Caenorhabditis elegans dorsal hypodermis. Dev. Biol. 204:263–76 [Google Scholar]
  147. Wolff T, Rubin GM. 145.  1998. strabismus, a novel gene that regulates tissue polarity and cell fate decisions in Drosophila. Development 125:1149–59 [Google Scholar]
  148. Wong LL, Adler PN. 145a.  1993. Tissue polarity genes of Drosophila regulate the subcellular location for prehair initiation in pupal wing cells. J. Cell. Biol. 123:209–21 [Google Scholar]
  149. Wu J, Roman AC, Carvajal-Gonzalez JM, Mlodzik M. 146.  2013. Wg and Wnt4 provide long-range directional input to planar cell polarity orientation in Drosophila. Nat. Cell Biol. 15:1045–55 [Google Scholar]
  150. Wu M, Herman MA. 147.  2006. A novel noncanonical Wnt pathway is involved in the regulation of the asymmetric B cell division in C. elegans. Dev. Biol. 293:316–29 [Google Scholar]
  151. Yan J, Huen D, Morely T, Johnson G, Gubb D. 147a.  et al. 2008. The multiple-wing-hairs gene encodes a novel GBD-FH3 domain-containing protein that functions both prior to and after wing hair initiation. Genetics 180:219–28 [Google Scholar]
  152. Yang CH, Axelrod JD, Simon MA. 148.  2002. Regulation of Frizzled by fat-like cadherins during planar polarity signaling in the Drosophila compound eye. Cell 108:675–88 [Google Scholar]
  153. Zallen JA, Wieschaus E. 149.  2004. Patterned gene expression directs bipolar planar polarity in Drosophila. Dev. Cell 6:343–55 [Google Scholar]
  154. Zeidler MP, Perrimon N, Strutt DI. 150.  1999. The four-jointed gene is required in the Drosophila eye for ommatidial polarity specification. Curr. Biol. 9:1363–72 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error