Metabolic networks are extensively regulated to facilitate tissue-specific metabolic programs and robustly maintain homeostasis in response to dietary changes. Homeostatic metabolic regulation is achieved through metabolite sensing coupled to feedback regulation of metabolic enzyme activity or expression. With a wealth of transcriptomic, proteomic, and metabolomic data available for different cell types across various conditions, we are challenged with understanding global metabolic network regulation and the resulting metabolic outputs. Stoichiometric metabolic network modeling integrated with “omics” data has addressed this challenge by generating nonintuitive, testable hypotheses about metabolic flux rewiring. Model organism studies have also yielded novel insight into metabolic networks. This review covers three topics: the feedback loops inherent in metabolic regulatory networks, metabolic network modeling, and interspecies studies utilizing and various bacterial diets that have revealed novel metabolic paradigms.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adler LN, Gomez TA, Clarke SG, Linster CL. 1.  2011. A novel GDP-D-glucose phosphorylase involved in quality control of the nucleoside diphosphate sugar pool in Caenorhabditis elegans and mammals. J. Biol. Chem. 286:21511–23 [Google Scholar]
  2. Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J. 2.  2012. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput. Biol. 8:e1002518 [Google Scholar]
  3. Ahmad MF, Dealwis CG. 3.  2013. The structural basis for the allosteric regulation of ribonucleotide reductase. Prog. Mol. Biol. Transl. Sci. 117:389–410 [Google Scholar]
  4. Andreini C, Banci L, Bertini I, Rosato A. 4.  2006. Counting the zinc-proteins encoded in the human genome. J. Proteome Res. 5:196–201 [Google Scholar]
  5. Bar-Peled L, Sabatini DM. 5.  2014. Regulation of mTORC1 by amino acids. Trends Cell Biol. 24:400–6 [Google Scholar]
  6. Barua D, Kim J, Reed JL. 6.  2010. An automated phenotype-driven approach (GeneForce) for refining metabolic and regulatory models. PLoS Comput. Biol. 6:e1000970 [Google Scholar]
  7. Barua S, Chadman KK, Kuizon S, Buenaventura D, Stapley NW. 7.  et al. 2014. Increasing maternal or post-weaning folic acid alters gene expression and moderately changes behavior in the offspring. PLoS ONE 9:e101674 [Google Scholar]
  8. B'Chir W, Maurin AC, Carraro V, Averous J, Jousse C. 8.  et al. 2013. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 41:7683–99 [Google Scholar]
  9. Becker SA, Palsson BO. 9.  2008. Context-specific metabolic networks are consistent with experiments. PLoS Comput. Biol. 4:e1000082 [Google Scholar]
  10. Bekaert M. 10.  2012. Reconstruction of Danio rerio metabolic model accounting for subcellular compartmentalisation. PLoS ONE 7:e49903 [Google Scholar]
  11. Berrabah W, Aumercier P, Lefebvre P, Staels B. 11.  2011. Control of nuclear receptor activities in metabolism by post-translational modifications. FEBS Lett. 585:1640–50 [Google Scholar]
  12. Bester AC, Roniger M, Oren YS, Im MM, Sarni D. 12.  et al. 2011. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145:435–46 [Google Scholar]
  13. Bjorklund S, Skog S, Tribukait B, Thelander L. 13.  1990. S-phase-specific expression of mammalian ribonucleotide reductase R1 and R2 subunit mRNAs. Biochemistry 29:5452–58 [Google Scholar]
  14. Braeckman BP, Houthoofd K, Vanfleteren JR. 14.  2009. Intermediary metabolism. WormBook. doi: 10.1895/wormbook.1.146.1 [Google Scholar]
  15. Cabreiro F, Au C, Leung KY, Vergara-Irigaray N, Cocheme HM. 15.  et al. 2013. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153:228–39 [Google Scholar]
  16. Cabreiro F, Gems D. 16.  2013. Worms need microbes too: microbiota, health and aging in Caenorhabditis elegans. EMBO Mol. Med. 5:1300–10 [Google Scholar]
  17. Canali R, Natarelli L, Leoni G, Azzini E, Comitato R. 17.  et al. 2014. Vitamin C supplementation modulates gene expression in peripheral blood mononuclear cells specifically upon an inflammatory stimulus: a pilot study in healthy subjects. Genes Nutr. 9:390 [Google Scholar]
  18. Carlberg C, Seuter S. 18.  2009. A genomic perspective on vitamin D signaling. Anticancer Res. 29:3485–93 [Google Scholar]
  19. Chabes AL, Pfleger CM, Kirschner MW, Thelander L. 19.  2003. Mouse ribonucleotide reductase R2 protein: a new target for anaphase-promoting complex-Cdh1-mediated proteolysis. PNAS 100:3925–29 [Google Scholar]
  20. Chakravarthy MV, Lodhi IJ, Yin L, Malapaka RR, Xu HE. 20.  et al. 2009. Identification of a physiologically relevant endogenous ligand for PPARα in liver. Cell 138:476–88 [Google Scholar]
  21. Champier J, Claustrat F, Nazaret N, Fevre Montange M, Claustrat B. 21.  2012. Folate depletion changes gene expression of fatty acid metabolism, DNA synthesis, and circadian cycle in male mice. Nutr. Res. 32:124–32 [Google Scholar]
  22. Chandrasekaran S, Price ND. 22.  2010. Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. PNAS 107:17845–50 [Google Scholar]
  23. Cheng Z, Tseng Y, White MF. 23.  2010. Insulin signaling meets mitochondria in metabolism. Trends Endocrinol. Metab. 21:589–98 [Google Scholar]
  24. Cheung PC, Salt IP, Davies SP, Hardie DG, Carling D. 24.  2000. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem. J. 346:Pt. 3659–69 [Google Scholar]
  25. Choi S, Bird AJ. 25.  2014. Zinc'ing sensibly: controlling zinc homeostasis at the transcriptional level. Metallomics Integr. Biometal Sci. 6:1198–215 [Google Scholar]
  26. Choi S, Yoon H, Oh KS, Oh YT, Kim YI. 26.  et al. 2011. Widespread effects of nicotinic acid on gene expression in insulin-sensitive tissues: implications for unwanted effects of nicotinic acid treatment. Metabolism 60:134–44 [Google Scholar]
  27. Cichy SB, Uddin S, Danilkovich A, Guo S, Klippel A, Unterman TG. 27.  1998. Protein kinase B/Akt mediates effects of insulin on hepatic insulin-like growth factor-binding protein-1 gene expression through a conserved insulin response sequence. J. Biol. Chem. 273:6482–87 [Google Scholar]
  28. Coolon JD, Jones KL, Todd TC, Carr BC, Herman MA. 28.  2009. Caenorhabditis elegans genomic response to soil bacteria predicts environment-specific genetic effects on life history traits. PLoS Genet. 5:e1000503 [Google Scholar]
  29. Couturier A, Keller J, Most E, Ringseis R, Eder K. 29.  2014. Niacin in pharmacological doses alters microRNA expression in skeletal muscle of obese Zucker rats. PLoS ONE 9:e98313 [Google Scholar]
  30. Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO. 30.  2004. Integrating high-throughput and computational data elucidates bacterial networks. Nature 429:92–96 [Google Scholar]
  31. Covert MW, Schilling CH, Palsson B. 31.  2001. Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213:73–88 [Google Scholar]
  32. Covert MW, Xiao N, Chen TJ, Karr JR. 32.  2008. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 24:2044–50 [Google Scholar]
  33. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. 33.  2005. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93 [Google Scholar]
  34. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. 34.  1995. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–89 [Google Scholar]
  35. D'Aniello E, Waxman JS. 35.  2015. Input overload: contributions of retinoic acid signaling feedback mechanisms to heart development and teratogenesis. Dev. Dyn. 244:513–23 [Google Scholar]
  36. David CJ, Chen M, Assanah M, Canoll P, Manley JL. 36.  2010. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463:364–68 [Google Scholar]
  37. de Oliveira Dal'Molin CG, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK. 37.  2010. AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol. 152:579–89 [Google Scholar]
  38. di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L. 38.  et al. 2015. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol. Asp. Med. 41:1–115 [Google Scholar]
  39. Dong XY, Tang SQ, Chen JD. 39.  2012. Dual functions of Insig proteins in cholesterol homeostasis. Lipids Health Dis. 11:173 [Google Scholar]
  40. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML. 40.  et al. 2007. Global reconstruction of the human metabolic network based on genomic and bibliomic data. PNAS 104:1777–82 [Google Scholar]
  41. Efrat S, Tal M, Lodish HF. 41.  1994. The pancreatic beta-cell glucose sensor. Trends Biochem. Sci. 19:535–38 [Google Scholar]
  42. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J. 42.  et al. 2001. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54 [Google Scholar]
  43. Faria JP, Overbeek R, Xia F, Rocha M, Rocha I, Henry CS. 43.  2014. Genome-scale bacterial transcriptional regulatory networks: reconstruction and integrated analysis with metabolic models. Brief. Bioinform. 15:592–611 [Google Scholar]
  44. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO. 44.  2009. Reconstruction of biochemical networks in microorganisms. Nat. Rev. Microbiol. 7:129–43 [Google Scholar]
  45. Ferguson AA, Roy S, Kormanik KN, Kim Y, Dumas KJ. 45.  et al. 2013. TATN-1 mutations reveal a novel role for tyrosine as a metabolic signal that influences developmental decisions and longevity in Caenorhabditis elegans. PLoS Genet. 9:e1004020 [Google Scholar]
  46. Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T. 46.  2011. Predicting selective drug targets in cancer through metabolic networks. Mol. Syst. Biol. 7:501 [Google Scholar]
  47. Fraser DA, Hessvik NP, Nikolic N, Aas V, Hanssen KF. 47.  et al. 2012. Benfotiamine increases glucose oxidation and downregulates NADPH oxidase 4 expression in cultured human myotubes exposed to both normal and high glucose concentrations. Genes Nutr. 7:459–69 [Google Scholar]
  48. Frezza C, Zheng L, Tennant DA, Papkovsky DB, Hedley BA. 48.  et al. 2011. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival. PLoS ONE 6:e24411 [Google Scholar]
  49. Gao J, Kim HM, Elia AE, Elledge SJ, Colaiacovo MP. 49.  2015. NatB domain-containing CRA-1 antagonizes hydrolase ACER-1 linking Acetyl-CoA metabolism to the initiation of recombination during C. elegans meiosis. PLoS Genet. 11:e1005029 [Google Scholar]
  50. Giammona LM, Fuhrken PG, Papoutsakis ET, Miller WM. 50.  2006. Nicotinamide (vitamin B3) increases the polyploidisation and proplatelet formation of cultured primary human megakaryocytes. Br. J. Haematol. 135:554–66 [Google Scholar]
  51. Goelzer A, Bekkal Brikci F, Martin-Verstraete I, Noirot P, Bessieres P. 51.  et al. 2008. Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis. BMC Syst. Biol. 2:20 [Google Scholar]
  52. Gracida X, Eckmann CR. 52.  2013. Fertility and germline stem cell maintenance under different diets requires nhr-114/HNF4 in C. elegans. Curr. Biol. 23:607–13 [Google Scholar]
  53. Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP. 53.  et al. 2007. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J. Biol. Chem. 282:30107–19 [Google Scholar]
  54. Gunther V, Lindert U, Schaffner W. 54.  2012. The taste of heavy metals: gene regulation by MTF-1. Biochim. Biophys. Acta 1823:1416–25 [Google Scholar]
  55. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A. 55.  et al. 2008. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30:214–26 [Google Scholar]
  56. Han JM, Jeong SJ, Park MC, Kim G, Kwon NH. 56.  et al. 2012. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149:410–24 [Google Scholar]
  57. Harada H, Itasaka S, Kizaka-Kondoh S, Shibuya K, Morinibu A. 57.  et al. 2009. The Akt/mTOR pathway assures the synthesis of HIF-1α protein in a glucose- and reoxygenation-dependent manner in irradiated tumors. J. Biol. Chem. 284:5332–42 [Google Scholar]
  58. Hardie DG. 58.  2014. AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr. Opin. Cell Biol. 33C:1–7 [Google Scholar]
  59. Haussler MR, Haussler CA, Bartik L, Whitfield GK, Hsieh JC. 59.  et al. 2008. Vitamin D receptor: molecular signaling and actions of nutritional ligands in disease prevention. Nutr. Rev. 66:S98–112 [Google Scholar]
  60. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L. 60.  et al. 2003. Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2:28 [Google Scholar]
  61. Hay N, Sonenberg N. 61.  2004. Upstream and downstream of mTOR. Genes Dev. 18:1926–45 [Google Scholar]
  62. Helliwell KE, Wheeler GL, Smith AG. 62.  2013. Widespread decay of vitamin-related pathways: coincidence or consequence?. Trends Genet. 29:469–78 [Google Scholar]
  63. Henquin JC. 63.  2011. The dual control of insulin secretion by glucose involves triggering and amplifying pathways in β-cells. Diabetes Res. Clin. Pract. 93:Suppl. 1S27–31 [Google Scholar]
  64. Herrgard MJ, Lee BS, Portnoy V, Palsson BO. 64.  2006. Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res. 16:627–35 [Google Scholar]
  65. Hinnebusch AG. 65.  2005. Translational regulation of GCN4 and the general amino acid control of yeast. Annu. Rev. Microbiol. 59:407–50 [Google Scholar]
  66. Hofer A, Crona M, Logan DT, Sjoberg BM. 66.  2012. DNA building blocks: keeping control of manufacture. Crit. Rev. Biochem. Mol. Biol. 47:50–63 [Google Scholar]
  67. Holz MK, Ballif BA, Gygi SP, Blenis J. 67.  2005. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123:569–80 [Google Scholar]
  68. Horton JD, Goldstein JL, Brown MS. 68.  2002. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Investig. 109:1125–31 [Google Scholar]
  69. Inoki K, Li Y, Zhu T, Wu J, Guan KL. 69.  2002. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4:648–57 [Google Scholar]
  70. Inoki K, Zhu T, Guan KL. 70.  2003. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–90 [Google Scholar]
  71. Jerby L, Shlomi T, Ruppin E. 71.  2010. Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol. Syst. Biol. 6:401 [Google Scholar]
  72. Jerby L, Wolf L, Denkert C, Stein GY, Hilvo M. 72.  et al. 2012. Metabolic associations of reduced proliferation and oxidative stress in advanced breast cancer. Cancer Res. 72:5712–20 [Google Scholar]
  73. Jewell JL, Kim YC, Russell RC, Yu FX, Park HW. 73.  et al. 2015. Differential regulation of mTORC1 by leucine and glutamine. Science 347:194–98 [Google Scholar]
  74. Jun HJ, Kim S, Dawson K, Choi DW, Kim JS. 74.  et al. 2011. Effects of acute oral administration of vitamin C on the mouse liver transcriptome. J. Med. Food 14:181–94 [Google Scholar]
  75. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. 75.  2012. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40:D109–14 [Google Scholar]
  76. Kanzaki M. 76.  2006. Insulin receptor signals regulating GLUT4 translocation and actin dynamics. Endocr. J. 53:267–93 [Google Scholar]
  77. Karagianni P, Talianidis I. 77.  2015. Transcription factor networks regulating hepatic fatty acid metabolism. Biochim. Biophys. Acta 1851:2–8 [Google Scholar]
  78. Kersten S. 78.  2014. Integrated physiology and systems biology of PPARα. Mol. Metab. 3:354–71 [Google Scholar]
  79. Kim SG, Buel GR, Blenis J. 79.  2013. Nutrient regulation of the mTOR complex 1 signaling pathway. Mol. Cells 35:463–73 [Google Scholar]
  80. Kitano H. 80.  2004. Biological robustness. Nat. Rev. Genet. 5:826–37 [Google Scholar]
  81. Kotas ME, Medzhitov R. 81.  2015. Homeostasis, inflammation, and disease susceptibility. Cell 160:816–27 [Google Scholar]
  82. Kousteni S. 82.  2012. FoxO1, the transcriptional chief of staff of energy metabolism. Bone 50:437–43 [Google Scholar]
  83. Landrier JF, Gouranton E, Reboul E, Cardinault N, El Yazidi C. 83.  et al. 2010. Vitamin E decreases endogenous cholesterol synthesis and apo-AI-mediated cholesterol secretion in Caco-2 cells. J. Nutr. Biochem. 21:1207–13 [Google Scholar]
  84. LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. 84.  2013. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr. Opin. Biotechnol. 24:160–68 [Google Scholar]
  85. Li Y, Xu S, Mihaylova MM, Zheng B, Hou X. 85.  et al. 2011. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13:376–88 [Google Scholar]
  86. Liberles JS, Thorolfsson M, Martinez A. 86.  2005. Allosteric mechanisms in ACT domain containing enzymes involved in amino acid metabolism. Amino Acids 28:1–12 [Google Scholar]
  87. Lin YW, Wang JL, Chen HM, Zhang YJ, Lu R. 87.  et al. 2011. Folic acid supplementary reduce the incidence of adenocarcinoma in a mouse model of colorectal cancer: microarray gene expression profile. J. Exp. Clin. Cancer Res. 30:116 [Google Scholar]
  88. Liu S, Stromberg A, Tai HH, Moscow JA. 88.  2004. Thiamine transporter gene expression and exogenous thiamine modulate the expression of genes involved in drug and prostaglandin metabolism in breast cancer cells. Mol. Cancer Res. 2:477–87 [Google Scholar]
  89. Liu Y, Cox SR, Morita T, Kourembanas S. 89.  1995. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ. Res. 77:638–43 [Google Scholar]
  90. Liu YC, Li F, Handler J, Huang CR, Xiang Y. 90.  et al. 2008. Global regulation of nucleotide biosynthetic genes by c-Myc. PLoS ONE 3:e2722 [Google Scholar]
  91. Lushchak OV, Piroddi M, Galli F, Lushchak VI. 91.  2014. Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species. Redox Rep. Commun. Free Radic. Res. 19:8–15 [Google Scholar]
  92. Ma H, Sorokin A, Mazein A, Selkov A, Selkov E. 92.  et al. 2007. The Edinburgh human metabolic network reconstruction and its functional analysis. Mol. Syst. Biol. 3:135 [Google Scholar]
  93. Ma W, Trusina A, El-Samad H, Lim WA, Tang C. 93.  2009. Defining network topologies that can achieve biochemical adaptation. Cell 138:760–73 [Google Scholar]
  94. Machado D, Herrgard M. 94.  2014. Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput. Biol. 10:e1003580 [Google Scholar]
  95. MacKenzie ED, Selak MA, Tennant DA, Payne LJ, Crosby S. 95.  et al. 2007. Cell-permeating α-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol. Cell. Biol. 27:3282–89 [Google Scholar]
  96. MacNeil LT, Walhout AJ. 96.  2011. Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression. Genome Res. 21:645–57 [Google Scholar]
  97. MacNeil LT, Walhout AJ. 97.  2013. Food, pathogen, signal: the multifaceted nature of a bacterial diet. Worm 2:e26454 [Google Scholar]
  98. MacNeil LT, Watson E, Arda HE, Zhu LJ, Walhout AJ. 98.  2013. Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell 153:240–52 [Google Scholar]
  99. Magnuson B, Ekim B, Fingar DC. 99.  2012. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem. J. 441:1–21 [Google Scholar]
  100. Makpol S, Zainuddin A, Chua KH, Mohd Yusof YA, Ngah WZ. 100.  2013. Gamma-tocotrienol modulated gene expression in senescent human diploid fibroblasts as revealed by microarray analysis. Oxid. Med. Cell. Longev. 2013:454328 [Google Scholar]
  101. Maret W. 101.  2013. Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv. Nutr. 4:82–91 [Google Scholar]
  102. Marin-Hernandez A, Gallardo-Perez JC, Ralph SJ, Rodriguez-Enriquez S, Moreno-Sanchez R. 102.  2009. HIF-1α modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini-Rev. Med. Chem. 9:1084–101 [Google Scholar]
  103. McCall KA, Huang C, Fierke CA. 103.  2000. Function and mechanism of zinc metalloenzymes. J. Nutr. 130:1437S–46 [Google Scholar]
  104. McKenna MC. 104.  2011. Glutamate dehydrogenase in brain mitochondria: Do lipid modifications and transient metabolon formation influence enzyme activity?. Neurochem. Int. 59:525–33 [Google Scholar]
  105. Menard L, Maughan D, Vigoreaux J. 105.  2014. The structural and functional coordination of glycolytic enzymes in muscle: evidence of a metabolon?. Biology 3:623–44 [Google Scholar]
  106. Mihaylova MM, Shaw RJ. 106.  2011. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13:1016–23 [Google Scholar]
  107. Monk J, Nogales J, Palsson BO. 107.  2014. Optimizing genome-scale network reconstructions. Nat. Biotechnol. 32:447–52 [Google Scholar]
  108. Mottillo EP, Bloch AE, Leff T, Granneman JG. 108.  2012. Lipolytic products activate peroxisome proliferator-activated receptor (PPAR) α and δ in brown adipocytes to match fatty acid oxidation with supply. J. Biol. Chem. 287:25038–48 [Google Scholar]
  109. Munday MR. 109.  2002. Regulation of mammalian acetyl-CoA carboxylase. Biochem. Soc. Trans. 30:1059–64 [Google Scholar]
  110. Mustacich DJ, Gohil K, Bruno RS, Yan M, Leonard SW. 110.  et al. 2009. Alpha-tocopherol modulates genes involved in hepatic xenobiotic pathways in mice. J. Nutr. Biochem. 20:469–76 [Google Scholar]
  111. Nakano E, Mushtaq S, Heath PR, Lee ES, Bury JP. 111.  et al. 2011. Riboflavin depletion impairs cell proliferation in adult human duodenum: identification of potential effectors. Dig. Dis. Sci. 56:1007–19 [Google Scholar]
  112. Nam H, Campodonico M, Bordbar A, Hyduke DR, Kim S. 112.  et al. 2014. A systems approach to predict oncometabolites via context-specific genome-scale metabolic networks. PLoS Comput. Biol. 10:e1003837 [Google Scholar]
  113. Nijhout HF, Reed MC, Ulrich CM. 113.  2008. Mathematical models of folate-mediated one-carbon metabolism. Vitam. Horm. 79:45–82 [Google Scholar]
  114. Nowicki S, Gottlieb E. 114.  2015. Oncometabolites: tailoring our genes. FEBS J. 282:2796–805 [Google Scholar]
  115. Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L. 115.  et al. 1997. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389:994–99 [Google Scholar]
  116. Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY. 116.  et al. 2000. Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel-Lindau protein. Nat. Cell Biol. 2:423–27 [Google Scholar]
  117. Pang S, Curran SP. 117.  2014. Adaptive capacity to bacterial diet modulates aging in C. elegans. Cell Metab. 19:221–31 [Google Scholar]
  118. Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA. 118.  et al. 2011. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146:408–20 [Google Scholar]
  119. Porstmann T, Santos CR, Griffiths B, Cully M, Wu M. 119.  et al. 2008. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8:224–36 [Google Scholar]
  120. Ravi S, Schilder RJ, Kimball SR. 120.  2015. Role of precursor mRNA splicing in nutrient-induced alterations in gene expression and metabolism. J. Nutr. 145:841–46 [Google Scholar]
  121. Robey IF, Lien AD, Welsh SJ, Baggett BK, Gillies RJ. 121.  2005. Hypoxia-inducible factor-1α and the glycolytic phenotype in tumors. Neoplasia 7:324–30 [Google Scholar]
  122. Roh HC, Dimitrov I, Deshmukh K, Zhao G, Warnhoff K. 122.  et al. 2015. A modular system of DNA enhancer elements mediates tissue-specific activation of transcription by high dietary zinc in C. elegans. Nucleic Acids Res. 43:803–16 [Google Scholar]
  123. Rouault TA. 123.  2002. Post-transcriptional regulation of human iron metabolism by iron regulatory proteins. Blood Cells Mol. Dis. 29:309–14 [Google Scholar]
  124. Ryu JY, Kim HU, Lee SY. 124.  2015. Reconstruction of genome-scale human metabolic models using omics data. Integr. Biol. 7:859–68 [Google Scholar]
  125. Sakai J, Duncan EA, Rawson RB, Hua X, Brown MS, Goldstein JL. 125.  1996. Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell 85:1037–46 [Google Scholar]
  126. Sakamoto T, Weng JS, Hara T, Yoshino S, Kozuka-Hata H. 126.  et al. 2014. Hypoxia-inducible factor 1 regulation through cross talk between mTOR and MT1-MMP. Mol. Cell. Biol. 34:30–42 [Google Scholar]
  127. Salceda S, Caro J. 127.  1997. Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem. 272:22642–47 [Google Scholar]
  128. Samarasinghe SP, Sutanto MM, Danos AM, Johnson DN, Brady MJ, Cohen RN. 128.  2009. Altering PPARγ ligand selectivity impairs adipogenesis by thiazolidinediones but not hormonal inducers. Obesity 17:965–72 [Google Scholar]
  129. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC. 129.  et al. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–501 [Google Scholar]
  130. Schofield CJ, Ratcliffe PJ. 130.  2004. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 5:343–54 [Google Scholar]
  131. Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C. 131.  et al. 2004. BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res. 32:D431–33 [Google Scholar]
  132. Semenza GL. 132.  2013. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Investig. 123:3664–71 [Google Scholar]
  133. Semenza GL, Roth PH, Fang HM, Wang GL. 133.  1994. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269:23757–63 [Google Scholar]
  134. Shenefelt RE. 134.  1972. Morphogenesis of malformations in hamsters caused by retinoic acid: relation to dose and stage at treatment. Teratology 5:103–18 [Google Scholar]
  135. Shlomi T, Benyamini T, Gottlieb E, Sharan R, Ruppin E. 135.  2011. Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect. PLoS Comput. Biol. 7:e1002018 [Google Scholar]
  136. Shlomi T, Cabili MN, Herrgard MJ, Palsson BO, Ruppin E. 136.  2008. Network-based prediction of human tissue-specific metabolism. Nat. Biotechnol. 26:1003–10 [Google Scholar]
  137. Shlomi T, Eisenberg Y, Sharan R, Ruppin E. 137.  2007. A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol. Syst. Biol. 3:101 [Google Scholar]
  138. Sigurdsson MI, Jamshidi N, Steingrimsson E, Thiele I, Palsson BO. 138.  2010. A detailed genome-wide reconstruction of mouse metabolism based on human Recon 1. BMC Syst. Biol. 4:140 [Google Scholar]
  139. Supuran CT. 139.  2008. Carbonic anhydrases: an overview. Curr. Pharm. Des. 14:603–14 [Google Scholar]
  140. Takahashi K, Kishimoto Y, Konishi T, Fujita Y, Ito M. 140.  et al. 2014. Ascorbic acid deficiency affects genes for oxidation-reduction and lipid metabolism in livers from SMP30/GNL knockout mice. Biochim. Biophys. Acta 1840:2289–98 [Google Scholar]
  141. Tanaka H, Arakawa H, Yamaguchi T, Shiraishi K, Fukuda S. 141.  et al. 2000. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404:42–49 [Google Scholar]
  142. Tanaka T, Sohmiya K, Kono T, Terasaki F, Horie R. 142.  et al. 2007. Thiamine attenuates the hypertension and metabolic abnormalities in CD36-defective SHR: uncoupling of glucose oxidation from cellular entry accompanied with enhanced protein O-GlcNAcylation in CD36 deficiency. Mol. Cell. Biochem. 299:23–35 [Google Scholar]
  143. Thiele I, Palsson BO. 143.  2010. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5:93–121 [Google Scholar]
  144. Thiele I, Swainston N, Fleming RM, Hoppe A, Sahoo S. 144.  et al. 2013. A community-driven global reconstruction of human metabolism. Nat. Biotechnol. 31:419–25 [Google Scholar]
  145. Toya K, Hirata A, Ohata T, Sanada Y, Kato N, Yanaka N. 145.  2012. Regulation of colon gene expression by vitamin B6 supplementation. Mol. Nutr. Food Res. 56:641–52 [Google Scholar]
  146. Tzameli I, Fang H, Ollero M, Shi H, Hamm JK. 146.  et al. 2004. Regulated production of a peroxisome proliferator-activated receptor-γ ligand during an early phase of adipocyte differentiation in 3T3-L1 adipocytes. J. Biol. Chem. 279:36093–102 [Google Scholar]
  147. Varga T, Czimmerer Z, Nagy L. 147.  2011. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim. Biophys. Acta 1812:1007–22 [Google Scholar]
  148. Vazquez A, Liu J, Zhou Y, Oltvai ZN. 148.  2010. Catabolic efficiency of aerobic glycolysis: the Warburg effect revisited. BMC Syst. Biol. 4:58 [Google Scholar]
  149. Virk B, Correia G, Dixon DP, Feyst I, Jia J. 149.  et al. 2012. Excessive folate synthesis limits lifespan in the C. elegans: E. coli aging model. BMC Biol. 10:67 [Google Scholar]
  150. Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA. 150.  et al. 2015. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347:188–94 [Google Scholar]
  151. Wang X, Sato R, Brown MS, Hua X, Goldstein JL. 151.  1994. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 77:53–62 [Google Scholar]
  152. Wang Y, Eddy JA, Price ND. 152.  2012. Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst. Biol. 6:153 [Google Scholar]
  153. Watson E, MacNeil LT, Arda HE, Zhu LJ, Walhout AJ. 153.  2013. Integration of metabolic and gene regulatory networks modulates the C. elegans dietary response. Cell 153:253–66 [Google Scholar]
  154. Watson E, MacNeil LT, Ritter AD, Yilmaz LS, Rosebrock AP. 154.  et al. 2014. Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits. Cell 156:759–70 [Google Scholar]
  155. Wegner A, Meiser J, Weindl D, Hiller K. 155.  2014. How metabolites modulate metabolic flux. Curr. Opin. Biotechnol. 34:16–22 [Google Scholar]
  156. Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV. 156.  et al. 2011. Structure of mammalian AMPK and its regulation by ADP. Nature 472:230–33 [Google Scholar]
  157. Yilmaz LS, Walhout AJ. 157.  2014. Worms, bacteria, and micronutrients: an elegant model of our diet. Trends Genet. 30:496–503 [Google Scholar]
  158. Zhang P, Suidasari S, Hasegawa T, Yanaka N, Kato N. 158.  2014. Vitamin B6 activates p53 and elevates p21 gene expression in cancer cells and the mouse colon. Oncol. Rep. 31:2371–76 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error