1932

Abstract

Structural maintenance of chromosomes (SMC) complexes are key organizers of chromosome architecture in all kingdoms of life. Despite seemingly divergent functions, such as chromosome segregation, chromosome maintenance, sister chromatid cohesion, and mitotic chromosome compaction, it appears that these complexes function via highly conserved mechanisms and that they represent a novel class of DNA translocases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-112618-043633
2019-12-03
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/genet/53/1/annurev-genet-112618-043633.html?itemId=/content/journals/10.1146/annurev-genet-112618-043633&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adolph KW, Cheng SM, Paulson JR, Laemmli UK 1977. Isolation of a protein scaffold from mitotic HeLa cell chromosomes. PNAS 74:4937–41
    [Google Scholar]
  2. 2. 
    Alipour E, Marko JF. 2012. Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res 40:11202–12
    [Google Scholar]
  3. 3. 
    Alomer RM, da Silva EML, Chen J, Piekarz KM, McDonald K et al. 2017. Esco1 and Esco2 regulate distinct cohesin functions during cell cycle progression. PNAS 114:9906–11
    [Google Scholar]
  4. 4. 
    Anderson DE, Losada A, Erickson HP, Hirano T 2002. Condensin and cohesin display different arm conformations with characteristic hinge angles. J. Cell Biol. 156:419–24
    [Google Scholar]
  5. 5. 
    Andrews EA, Palecek J, Sergeant J, Taylor E, Lehmann AR, Watts FZ 2005. Nse2, a component of the Smc5-6 complex, is a SUMO ligase required for the response to DNA damage. Mol. Cell. Biol. 25:185–96
    [Google Scholar]
  6. 6. 
    Ansbach AB, Noguchi C, Klansek IW, Heidlebaugh M, Nakamura TM, Noguchi E 2008. RFCCtf18 and the Swi1-Swi3 complex function in separate and redundant pathways required for the stabilization of replication forks to facilitate sister chromatid cohesion in Schizosaccharomyces pombe. . Mol. Biol. Cell 19:595–607
    [Google Scholar]
  7. 7. 
    Banigan EJ, Mirny LA. 2018. Limits of chromosome compaction by loop-extruding motors. bioRxiv 476424. https://doi.org/10.1101/476424
    [Crossref]
  8. 8. 
    Beckouët F, Srinivasan M, Roig MB, Chan K-L, Scheinost JC et al. 2016. Releasing activity disengages cohesin's Smc3/Scc1 interface in a process blocked by acetylation. Mol. Cell 61:563–74
    [Google Scholar]
  9. 9. 
    Bisht KK, Daniloski Z, Smith S 2013. SA1 binds directly to DNA through its unique AT-hook to promote sister chromatid cohesion at telomeres. J. Cell. Sci. 126:Part 153493–503
    [Google Scholar]
  10. 10. 
    Bonev B, Mendelson Cohen N, Szabo Q, Fritsch L, Papadopoulos GL et al. 2017. Multiscale 3D genome rewiring during mouse neural development. Cell 171:557–72.e24
    [Google Scholar]
  11. 11. 
    Borges V, Smith DJ, Whitehouse I, Uhlmann F 2013. An Eco1-independent sister chromatid cohesion establishment pathway in S. cerevisiae. Chromosoma 122:121–34
    [Google Scholar]
  12. 12. 
    Boveri T. 1904. Ergebnisse über die Konstitution der chromatischen Substanz des Zellkerns Jena, Ger: G. Fischer
  13. 13. 
    Boy de la Tour E, Laemmli UK 1988. The metaphase scaffold is helically folded: Sister chromatids have predominantly opposite helical handedness. Cell 55:937–44
    [Google Scholar]
  14. 14. 
    Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C et al. 2009. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–32
    [Google Scholar]
  15. 15. 
    Buheitel J, Stemmann O. 2013. Prophase pathway-dependent removal of cohesin from human chromosomes requires opening of the Smc3–Scc1 gate. EMBO J 32:666–76
    [Google Scholar]
  16. 16. 
    Bürmann F, Basfeld A, Vazquez Nunez R, Diebold-Durand M-L, Wilhelm L, Gruber S 2017. Tuned SMC arms drive chromosomal loading of prokaryotic condensin. Mol. Cell 65:861–69
    [Google Scholar]
  17. 17. 
    Bürmann F, Lee B-G, Than T, Sinn L, O'Reilly FJ et al. 2019. A folded conformation of MukBEF and cohesin. Nat. Struct. Mol. Biol. 26:227–36
    [Google Scholar]
  18. 18. 
    Bürmann F, Shin H-C, Basquin J, Soh Y-M, Giménez-Oya V et al. 2013. An asymmetric SMC–kleisin bridge in prokaryotic condensin. Nat. Struct. Mol. Biol. 20:371–79
    [Google Scholar]
  19. 19. 
    Busslinger GA, Stocsits RR, van der Lelij P, Axelsson E, Tedeschi A et al. 2017. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature 544:503–7
    [Google Scholar]
  20. 20. 
    Cairns J. 1963. The bacterial chromosome and its manner of replication as seen by autoradiography. J. Mol. Biol. 6:208–13
    [Google Scholar]
  21. 21. 
    Çamdere G, Guacci V, Stricklin J, Koshland D 2015. The ATPases of cohesin interface with regulators to modulate cohesin-mediated DNA tethering. eLife 4:e11315
    [Google Scholar]
  22. 22. 
    Chan K-L, Gligoris T, Upcher W, Kato Y, Shirahige K et al. 2013. Pds5 promotes and protects cohesin acetylation. PNAS 110:13020–25
    [Google Scholar]
  23. 23. 
    Chan K-L, Roig MB, Hu B, Beckouët F, Metson J, Nasmyth K 2012. Cohesin's DNA exit gate is distinct from its entrance gate and is regulated by acetylation. Cell 150:961–74
    [Google Scholar]
  24. 24. 
    Chao WCH, Murayama Y, Muñoz S, Jones AW, Wade BO et al. 2017. Structure of the cohesin loader Scc2. Nat. Commun. 8:13952
    [Google Scholar]
  25. 25. 
    Chapard C, Jones R, van Oepen T, Scheinost JC, Nasmyth K 2019. Sister DNA entrapment between juxtaposed Smc heads and kleisin of the cohesin complex. Mol. Cell 75:224–37.e5
    [Google Scholar]
  26. 26. 
    Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A et al. 2000. Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol. Cell 5:243–54
    [Google Scholar]
  27. 27. 
    Countryman P, Fan Y, Gorthi A, Pan H, Strickland J et al. 2018. Cohesin SA2 is a sequence-independent DNA-binding protein that recognizes DNA replication and repair intermediates. J. Biol. Chem. 293:1054–69
    [Google Scholar]
  28. 28. 
    Cremer T, Cremer C. 2001. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2:292–301
    [Google Scholar]
  29. 29. 
    Cuartero S, Weiss FD, Dharmalingam G, Guo Y, Ing-Simmons E et al. 2018. Control of inducible gene expression links cohesin to hematopoietic progenitor self-renewal and differentiation. Nat. Immunol. 19:932–41
    [Google Scholar]
  30. 30. 
    Cuylen S, Metz J, Haering CH 2011. Condensin structures chromosomal DNA through topological links. Nat. Struct. Mol. Biol. 18:894–901
    [Google Scholar]
  31. 31. 
    Danilova O, Reyes-Lamothe R, Pinskaya M, Sherratt D, Possoz C 2007. MukB colocalizes with the oriC region and is required for organization of the two Escherichia coli chromosome arms into separate cell halves. Mol. Microbiol. 65:1485–92
    [Google Scholar]
  32. 32. 
    Davidson IF, Goetz D, Zaczek MP, Molodtsov MI, Huis in ’t Veld PJ et al. 2016. Rapid movement and transcriptional re-localization of human cohesin on DNA. EMBO J 35:2671–85
    [Google Scholar]
  33. 33. 
    de Wit E, Vos ESM, Holwerda SJB, Valdes-Quezada C, Verstegen MJAM et al. 2015. CTCF binding polarity determines chromatin looping. Mol. Cell 60:676–84
    [Google Scholar]
  34. 34. 
    Delbrück M. 1954. On the replication of deoxyribonucleic acid (DNA). PNAS 40:783–88
    [Google Scholar]
  35. 35. 
    Diebold-Durand M-L, Lee H, Ruiz Avila LB, Noh H, Shin H-C et al. 2017. Structure of full-length SMC and rearrangements required for chromosome organization. Mol. Cell 67:334–35
    [Google Scholar]
  36. 36. 
    Dixon JR, Selvaraj S, Yue F, Kim A, Li Y et al. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–80
    [Google Scholar]
  37. 37. 
    Dolgin E. 2017. DNA's secret weapon against knots and tangles. Nature 544:284–86
    [Google Scholar]
  38. 38. 
    Doyle JM, Gao J, Wang J, Yang M, Potts PR 2010. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol. Cell 39:963–74
    [Google Scholar]
  39. 39. 
    Duan X, Sarangi P, Liu X, Rangi GK, Zhao X, Ye H 2009. Structural and functional insights into the roles of the Mms21 subunit of the Smc5/6 complex. Mol. Cell 35:657–68
    [Google Scholar]
  40. 40. 
    DuPraw EJ. 1965. Macromolecular organization of nuclei and chromosomes: a folded fibre model based on whole-mount electron microscopy. Nature 206:338–43
    [Google Scholar]
  41. 41. 
    Ebert A, Hill L, Busslinger M 2015. Spatial regulation of V-(D)J recombination at antigen receptor loci. Adv. Immunol. 128:93–121
    [Google Scholar]
  42. 42. 
    Eeftens JM, Katan AJ, Kschonsak M, Hassler M, de Wilde L et al. 2016. Condensin Smc2-Smc4 dimers are flexible and dynamic. Cell Rep 14:1813–18
    [Google Scholar]
  43. 43. 
    Eichinger CS, Kurze A, Oliveira RA, Nasmyth K 2013. Disengaging the Smc3/kleisin interface releases cohesin from Drosophila chromosomes during interphase and mitosis. EMBO J 32:656–65
    [Google Scholar]
  44. 44. 
    Elbatsh AMO, Haarhuis JHI, Petela N, Chapard C, Fish A et al. 2016. Cohesin releases DNA through asymmetric ATPase-driven ring opening. Mol. Cell 61:575–88
    [Google Scholar]
  45. 45. 
    Elgin SCR, Reuter G. 2013. Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb.. Perspect. Biol 5:a017780
    [Google Scholar]
  46. 46. 
    Eltsov M, MacLellan KM, Maeshima K, Frangakis AS, Dubochet J 2008. Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. PNAS 105:19732–37
    [Google Scholar]
  47. 47. 
    Errico A, Cosentino C, Rivera T, Losada A, Schwob E et al. 2009. Tipin/Tim1/And1 protein complex promotes Polα chromatin binding and sister chromatid cohesion. EMBO J 28:3681–92
    [Google Scholar]
  48. 48. 
    Fennell-Fezzie R, Gradia SD, Akey D, Berger JM 2005. The MukF subunit of Escherichia coli condensin: architecture and functional relationship to kleisins. EMBO J 24:1921–30
    [Google Scholar]
  49. 49. 
    Feytout A, Vaur S, Genier S, Vazquez S, Javerzat J-P 2011. Psm3 acetylation on conserved lysine residues is dispensable for viability in fission yeast but contributes to Eso1-mediated sister chromatid cohesion by antagonizing Wpl1. Mol. Cell. Biol. 31:1771–86
    [Google Scholar]
  50. 50. 
    Flemming W. 1882. Zellsubstanz, Kern und Zelltheilung [Cell substance, nucleus and cell division] Leipzig, Ger: F.C.W. Vogel
  51. 51. 
    Fogel MA, Waldor MK. 2006. A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes Dev 20:3269–82
    [Google Scholar]
  52. 52. 
    Freese E. 1958. The arrangement of DNA in the chromosome. Cold Spring Harb. Symp. Quant. Biol. 23:13–18
    [Google Scholar]
  53. 53. 
    Fudenberg G, Abdennur N, Imakaev M, Goloborodko A, Mirny LA 2017. Emerging evidence of chromosome folding by loop extrusion. Cold Spring Harb. Symp. Quant. Biol. 82:45–55
    [Google Scholar]
  54. 54. 
    Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA 2016. Formation of chromosomal domains by loop extrusion. Cell Rep 15:2038–49
    [Google Scholar]
  55. 55. 
    Gall JG. 1963. Kinetics of deoxyribonuclease action on chromosomes. Nature 198:36–38
    [Google Scholar]
  56. 56. 
    Gan H, Serra-Cardona A, Hua X, Zhou H, Labib K et al. 2018. The Mcm2-Ctf4-Polα axis facilitates parental histone H3-H4 transfer to lagging strands. Mol. Cell 72:140–43
    [Google Scholar]
  57. 57. 
    Ganji M, Shaltiel IA, Bisht S, Kim E, Kalichava A et al. 2018. Real-time imaging of DNA loop extrusion by condensin. Science 360:102–5
    [Google Scholar]
  58. 58. 
    Gassler J, Brandão HB, Imakaev M, Flyamer IM, Ladstatter S et al. 2017. A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture. EMBO J 36:3600–18
    [Google Scholar]
  59. 59. 
    Georgatos SD, Markaki Y, Christogianni A, Politou AS 2009. Chromatin remodeling during mitosis: a structure-based code?. Front. Biosci. 14:2017–27
    [Google Scholar]
  60. 60. 
    Gibcus JH, Samejima K, Goloborodko A, Samejima I, Naumova N et al. 2018. A pathway for mitotic chromosome formation. Science 359:eaao6135
    [Google Scholar]
  61. 61. 
    Gligoris TG, Scheinost JC, Bürmann F, Petela N, Chan K-L et al. 2014. Closing the cohesin ring: structure and function of its Smc3-kleisin interface. Science 346:963–67
    [Google Scholar]
  62. 62. 
    Gloyd M, Ghirlando R, Guarné A 2011. The role of MukE in assembling a functional MukBEF complex. J. Mol. Biol. 412:578–90
    [Google Scholar]
  63. 63. 
    Goloborodko A, Imakaev MV, Marko JF, Mirny L 2016. Compaction and segregation of sister chromatids via active loop extrusion. eLife 5:e14864
    [Google Scholar]
  64. 64. 
    Griese JJ, Hopfner K-P. 2011. Structure and DNA-binding activity of the Pyrococcus furiosus SMC protein hinge domain. Proteins 79:558–68
    [Google Scholar]
  65. 65. 
    Griese JJ, Witte G, Hopfner K-P 2010. Structure and DNA binding activity of the mouse condensin hinge domain highlight common and diverse features of SMC proteins. Nucleic Acids Res 38:3454–65
    [Google Scholar]
  66. 66. 
    Gruber S, Arumugam P, Katou Y, Kuglitsch D, Helmhart W et al. 2006. Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge. Cell 127:523–37
    [Google Scholar]
  67. 67. 
    Gruber S, Haering CH, Nasmyth K 2003. Chromosomal cohesin forms a ring. Cell 112:765–77
    [Google Scholar]
  68. 68. 
    Guacci V, Koshland D, Strunnikov A 1997. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91:47–57
    [Google Scholar]
  69. 69. 
    Guo Y, Xu Q, Canzio D, Shou J, Li J et al. 2015. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162:900–10
    [Google Scholar]
  70. 70. 
    Haarhuis JHI, van der Weide RH, Blomen VA, Yáñez-Cuna JO, Amendola M et al. 2017. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169:693–707.e14
    [Google Scholar]
  71. 71. 
    Haering CH, Farcas A-M, Arumugam P, Metson J, Nasmyth K 2008. The cohesin ring concatenates sister DNA molecules. Nature 454:297–301
    [Google Scholar]
  72. 72. 
    Haering CH, Löwe J, Hochwagen A, Nasmyth K 2002. Molecular architecture of SMC proteins and the yeast cohesin complex. Mol. Cell 9:773–88
    [Google Scholar]
  73. 73. 
    Haering CH, Schoffnegger D, Nishino T, Helmhart W, Nasmyth K, Löwe J 2004. Structure and stability of cohesin's Smc1-kleisin interaction. Mol. Cell 15:951–64
    [Google Scholar]
  74. 74. 
    Hanna JS, Kroll ES, Lundblad V, Spencer FA 2001. Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol. Cell. Biol. 21:3144–58
    [Google Scholar]
  75. 75. 
    Hara K, Kinoshita K, Migita T, Murakami K, Shimizu K et al. 2019. Structural basis of HEAT-kleisin interactions in the human condensin I subcomplex. EMBO Rep 20:e47183
    [Google Scholar]
  76. 76. 
    Hara K, Zheng G, Qu Q, Liu H, Ouyang Z et al. 2014. Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion. Nat. Struct. Mol. Biol. 21:864–70
    [Google Scholar]
  77. 77. 
    Hartman T, Stead K, Koshland D, Guacci V 2000. Pds5p is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae. J. Cell Biol 151:613–26
    [Google Scholar]
  78. 78. 
    Hassler M, Shaltiel IA, Haering CH 2018. Towards a unified model of SMC complex function. Curr. Biol. 28:R1266–81
    [Google Scholar]
  79. 79. 
    Hiraga S, Niki H, Ogura T, Ichinose C, Mori H et al. 1989. Chromosome partitioning in Escherichia coli: novel mutants producing anucleate cells. J. Bacteriol. 171:1496–505
    [Google Scholar]
  80. 80. 
    Hirano M, Hirano T. 2004. Positive and negative regulation of SMC–DNA interactions by ATP and accessory proteins. EMBO J 23:2664–73
    [Google Scholar]
  81. 81. 
    Hirano T, Kobayashi R, Hirano M 1997. Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89:511–21
    [Google Scholar]
  82. 82. 
    Hirano T, Mitchison TJ. 1994. A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79:449–58
    [Google Scholar]
  83. 83. 
    Hnisz D, Day DS, Young RA 2016. Insulated neighborhoods: structural and functional units of mammalian gene control. Cell 167:1188–200
    [Google Scholar]
  84. 84. 
    Hons MT, Huis in ’t Veld PJ, Kaesler J, Rombaut P, Schleiffer A et al. 2016. Topology and structure of an engineered human cohesin complex bound to Pds5B. Nat. Commun. 7:12523
    [Google Scholar]
  85. 85. 
    Houlard M, Godwin J, Metson J, Lee J, Hirano T, Nasmyth K 2015. Condensin confers the longitudinal rigidity of chromosomes. Nat. Cell Biol. 17:771–81
    [Google Scholar]
  86. 86. 
    Huis in ’t Veld PJ, Herzog F, Ladurner R, Davidson IF, Piric S et al. 2014. Characterization of a DNA exit gate in the human cohesin ring. Science 346:968–72
    [Google Scholar]
  87. 87. 
    Jans J, Gladden JM, Ralston EJ, Pickle CS, Michel AH et al. 2009. A condensin-like dosage compensation complex acts at a distance to control expression throughout the genome. Genes Dev 23:602–18
    [Google Scholar]
  88. 88. 
    Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA et al. 2010. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467:430–35
    [Google Scholar]
  89. 89. 
    Kamada K, Miyata M, Hirano T 2013. Molecular basis of SMC ATPase activation: role of internal structural changes of the regulatory subcomplex ScpAB. Structure 21:581–94
    [Google Scholar]
  90. 90. 
    Kamada K, Su'etsugu M, Takada H, Miyata M, Hirano T 2017. Overall shapes of the SMC-ScpAB complex are determined by balance between constraint and relaxation of its structural parts. Structure 25:603–16.e4
    [Google Scholar]
  91. 91. 
    Kikuchi S, Borek DM, Otwinowski Z, Tomchick DR, Yu H 2016. Crystal structure of the cohesin loader Scc2 and insight into cohesinopathy. PNAS 113:12444–49
    [Google Scholar]
  92. 92. 
    Klein F, Mahr P, Galova M, Buonomo SB, Michaelis C et al. 1999. A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98:91–103
    [Google Scholar]
  93. 93. 
    Kleinschmidt A, Lang D, Plescher C, Hellmann W, Haass J et al. 2014. Über die intrazelluläre Formation von Bakterien - DNS. Z. Naturforschung 16:730–39
    [Google Scholar]
  94. 94. 
    Koshland D, Hartwell LH. 1987. The structure of sister minichromosome DNA before anaphase in Saccharomyces cerevisiae. Science 238:1713–16
    [Google Scholar]
  95. 95. 
    Kraft K, Magg A, Heinrich V, Riemenschneider C, Schöpflin R et al. 2019. Serial genomic inversions induce tissue-specific architectural stripes, gene misexpression and congenital malformations. Nat. Cell Biol. 21:305–10
    [Google Scholar]
  96. 96. 
    Kschonsak M, Merkel F, Bisht S, Metz J, Rybin V et al. 2017. Structural basis for a safety-belt mechanism that anchors condensin to chromosomes. Cell 171:588–600.e24
    [Google Scholar]
  97. 97. 
    Ku B, Lim J-H, Shin H-C, Shin S-Y, Oh B-H 2010. Crystal structure of the MukB hinge domain with coiled-coil stretches and its functional implications. Proteins 78:1483–90
    [Google Scholar]
  98. 98. 
    Kueng S, Hegemann B, Peters BH, Lipp JJ, Schleiffer A et al. 2006. Wapl controls the dynamic association of cohesin with chromatin. Cell 127:955–67
    [Google Scholar]
  99. 99. 
    Kurze A, Michie KA, Dixon SE, Mishra A, Itoh T et al. 2011. A positively charged channel within the Smc1/Smc3 hinge required for sister chromatid cohesion. EMBO J 30:364–78
    [Google Scholar]
  100. 100. 
    Ladurner R, Kreidl E, Ivanov MP, Ekker H, Idarraga-Amado MH et al. 2016. Sororin actively maintains sister chromatid cohesion. EMBO J 35:635–53
    [Google Scholar]
  101. 101. 
    Lammens A, Schele A, Hopfner K-P 2004. Structural biochemistry of ATP-driven dimerization and DNA-stimulated activation of SMC ATPases. Curr. Biol. 14:1778–82
    [Google Scholar]
  102. 102. 
    Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB et al. 2017. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547:236–40
    [Google Scholar]
  103. 103. 
    Larson AG, Narlikar GJ. 2018. The role of phase separation in heterochromatin formation, function, and regulation. Biochemistry 57:2540–48
    [Google Scholar]
  104. 104. 
    Le TBK, Imakaev MV, Mirny LA, Laub MT 2013. High-resolution mapping of the spatial organization of a bacterial chromosome. Science 342:731–34
    [Google Scholar]
  105. 105. 
    Lee B-G, Roig MB, Jansma M, Petela N, Metson J et al. 2016. Crystal structure of the cohesin gatekeeper Pds5 and in complex with kleisin Scc1. Cell Rep 14:2108–15
    [Google Scholar]
  106. 106. 
    Lengronne A, Katou Y, Mori S, Yokobayashi S, Kelly GP et al. 2004. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430:573–78
    [Google Scholar]
  107. 107. 
    Lengronne A, McIntyre J, Katou Y, Kanoh Y, Hopfner K-P et al. 2006. Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. Mol. Cell 23:787–99
    [Google Scholar]
  108. 108. 
    Li Y, Muir KW, Bowler MW, Metz J, Haering CH, Panne D 2018. Structural basis for Scc3-dependent cohesin recruitment to chromatin. eLife 7:e38356
    [Google Scholar]
  109. 109. 
    Li Y, Schoeffler AJ, Berger JM, Oakley MG 2010. The crystal structure of the hinge domain of the Escherichia coli structural maintenance of chromosomes protein MukB. J. Mol. Biol. 395:11–19
    [Google Scholar]
  110. 110. 
    Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–93
    [Google Scholar]
  111. 111. 
    Lin SG, Ba Z, Alt FW, Zhang Y 2018. RAG chromatin scanning during V(D)J recombination and chromatin loop extrusion are related processes. Adv. Immunol. 139:93–135
    [Google Scholar]
  112. 112. 
    Liu Y, Sung S, Kim Y, Li F, Gwon G et al. 2016. ATP-dependent DNA binding, unwinding, and resection by the Mre11/Rad50 complex. EMBO J 35:743–58
    [Google Scholar]
  113. 113. 
    Löwe J, Cordell SC, van den Ent F 2001. Crystal structure of the SMC head domain: an ABC ATPase with 900 residues antiparallel coiled-coil inserted. J. Mol. Biol. 306:25–35
    [Google Scholar]
  114. 114. 
    Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F et al. 2015. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:1012–25
    [Google Scholar]
  115. 115. 
    Marbouty M, Le Gall A, Cattoni DI, Cournac A, Koh A et al. 2015. Condensin- and replication-mediated bacterial chromosome folding and origin condensation revealed by Hi-C and super-resolution imaging. Mol. Cell 59:588–602
    [Google Scholar]
  116. 116. 
    Marko JF. 2009. Linking topology of tethered polymer rings with applications to chromosome segregation and estimation of the knotting length. Phys. Rev. E 79:5 Part 1051905
    [Google Scholar]
  117. 117. 
    Marko JF, De Los Rios P, Barducci A, Gruber S 2019. DNA-segment-capture model for loop extrusion by structural maintenance of chromosome (SMC) protein complexes. Nucleic Acids Res 47:695672
    [Google Scholar]
  118. 118. 
    Mayer ML, Gygi SP, Aebersold R, Hieter P 2001. Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae.. Mol. Cell 7:959–70
    [Google Scholar]
  119. 119. 
    Mayer ML, Pot I, Chang M, Xu H, Aneliunas V et al. 2004. Identification of protein complexes required for efficient sister chromatid cohesion. Mol. Biol. Cell 15:1736–45
    [Google Scholar]
  120. 120. 
    Michaelis C, Ciosk R, Nasmyth K 1997. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91:35–45
    [Google Scholar]
  121. 121. 
    Moldovan G-L, Pfander B, Jentsch S 2006. PCNA controls establishment of sister chromatid cohesion during S phase. Mol. Cell 23:723–32
    [Google Scholar]
  122. 122. 
    Muir KW, Kschonsak M, Li Y, Metz J, Haering CH, Panne D 2016. Structure of the Pds5-Scc1 complex and implications for cohesin function. Cell Rep 14:2116–26
    [Google Scholar]
  123. 123. 
    Murayama Y, Samora CP, Kurokawa Y, Iwasaki H, Uhlmann F 2018. Establishment of DNA-DNA interactions by the cohesin ring. Cell 172:465–77.e15
    [Google Scholar]
  124. 124. 
    Murayama Y, Uhlmann F. 2014. Biochemical reconstitution of topological DNA binding by the cohesin ring. Nature 505:367–71
    [Google Scholar]
  125. 125. 
    Murayama Y, Uhlmann F. 2015. DNA entry into and exit out of the cohesin ring by an interlocking gate mechanism. Cell 163:1628–40
    [Google Scholar]
  126. 126. 
    Murray AW, Szostak JW. 1985. Chromosome segregation in mitosis and meiosis. Annu. Rev. Cell Biol. 1:289–315
    [Google Scholar]
  127. 127. 
    Nasmyth K. 2001. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35:673–745
    [Google Scholar]
  128. 128. 
    Nichols MH, Corces VG. 2018. A tethered-inchworm model of SMC DNA translocation. Nat. Struct. Mol. Biol. 25:906–10
    [Google Scholar]
  129. 129. 
    Niki H, Jaffé A, Imamura R, Ogura T, Hiraga S 1991. The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli. EMBO J 10:183–93
    [Google Scholar]
  130. 130. 
    Nishiyama T, Ladurner R, Schmitz J, Kreidl E, Schleiffer A et al. 2010. Sororin mediates sister chromatid cohesion by antagonizing Wapl. Cell 143:737–49
    [Google Scholar]
  131. 131. 
    Nora EP, Goloborodko A, Valton A-L, Gibcus JH, Uebersohn A et al. 2017. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169:930–44.e22
    [Google Scholar]
  132. 132. 
    Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I et al. 2012. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485:381–85
    [Google Scholar]
  133. 133. 
    Nuebler J, Fudenberg G, Imakaev M, Abdennur N, Mirny LA 2018. Chromatin organization by an interplay of loop extrusion and compartmental segregation. PNAS 115:E6697–706
    [Google Scholar]
  134. 134. 
    Oliveira RA, Hamilton RS, Pauli A, Davis I, Nasmyth K 2010. Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei. Nat. Cell Biol. 12:185–92
    [Google Scholar]
  135. 135. 
    Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T 2003. Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115:109–21
    [Google Scholar]
  136. 136. 
    Ou HD, Phan S, Deerinck TJ, Thor A, Ellisman MH, O'Shea CC 2017. ChromEMT: visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 357:eaag0025
    [Google Scholar]
  137. 137. 
    Ouyang Z, Zheng G, Tomchick DR, Luo X, Yu H 2016. Structural basis and IP6 requirement for Pds5-dependent cohesin dynamics. Mol. Cell 62:248–59
    [Google Scholar]
  138. 138. 
    Palecek JJ. 2019. SMC5/6: multifunctional player in replication. Genes 10:7
    [Google Scholar]
  139. 139. 
    Palecek JJ, Gruber S. 2015. Kite proteins: a superfamily of SMC/kleisin partners conserved across bacteria, archaea, and eukaryotes. Structure 23:2183–90
    [Google Scholar]
  140. 140. 
    Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S et al. 2008. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132:422–33
    [Google Scholar]
  141. 141. 
    Park YB, Hohl M, Padjasek M, Jeong E, Jin KS et al. 2017. Eukaryotic Rad50 functions as a rod-shaped dimer. Nat. Struct. Mol. Biol. 24:248–57
    [Google Scholar]
  142. 142. 
    Pellegrino S, Radzimanowski J, de Sanctis D, Boeri Erba E, McSweeney S, Timmins J 2012. Structural and functional characterization of an SMC-like protein RecN: new insights into double-strand break repair. Structure 20:2076–89
    [Google Scholar]
  143. 143. 
    Petela NJ, Gligoris TG, Metson J, Lee B-G, Voulgaris M et al. 2018. Scc2 is a potent activator of cohesin's ATPase that promotes loading by binding Scc1 without Pds5. Mol. Cell 70:1134–37
    [Google Scholar]
  144. 144. 
    Petronczki M, Chwalla B, Siomos MF, Yokobayashi S, Helmhart W et al. 2004. Sister-chromatid cohesion mediated by the alternative RF-CCtf18/Dcc1/Ctf8, the helicase Chl1 and the polymerase-α-associated protein Ctf4 is essential for chromatid disjunction during meiosis II. J. Cell. Sci. 117:Part 163547–59
    [Google Scholar]
  145. 145. 
    Petrushenko ZM, She W, Rybenkov VV 2011. A new family of bacterial condensins. Mol. Microbiol. 81:881–96
    [Google Scholar]
  146. 146. 
    Piazza I, Rutkowska A, Ori A, Walczak M, Metz J et al. 2014. Association of condensin with chromosomes depends on DNA binding by its HEAT-repeat subunits. Nat. Struct. Mol. Biol. 21:560–68
    [Google Scholar]
  147. 147. 
    Pope LH, Xiong C, Marko JF 2006. Proteolysis of mitotic chromosomes induces gradual and anisotropic decondensation correlated with a reduction of elastic modulus and structural sensitivity to rarely cutting restriction enzymes. Mol. Biol. Cell 17:104–13
    [Google Scholar]
  148. 148. 
    Potts PR, Porteus MH, Yu H 2006. Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J 25:3377–88
    [Google Scholar]
  149. 149. 
    Rao SSP, Huang S-C, Glenn St Hilaire B, Engreitz JM, Perez EM et al. 2017. Cohesin loss eliminates all loop domains. Cell 171:305–24
    [Google Scholar]
  150. 150. 
    Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID et al. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–80
    [Google Scholar]
  151. 151. 
    Rhodes J, Mazza D, Nasmyth K, Uphoff S 2017. Scc2/Nipbl hops between chromosomal cohesin rings after loading. eLife 6:e30000
    [Google Scholar]
  152. 152. 
    Rhodes JDP, Haarhuis JHI, Grimm JB, Rowland BD, Lavis LD, Nasmyth KA 2017. Cohesin can remain associated with chromosomes during DNA replication. Cell Rep 20:2749–55
    [Google Scholar]
  153. 153. 
    Riggs AD. 1990. DNA methylation and late replication probably aid cell memory, and type I DNA reeling could aid chromosome folding and enhancer function. Philos. Trans. R. Soc. B 326:285–97
    [Google Scholar]
  154. 154. 
    Roig MB, Löwe J, Chan K-L, Beckouët F, Metson J, Nasmyth K 2014. Structure and function of cohesin's Scc3/SA regulatory subunit. FEBS Lett 588:3692–702
    [Google Scholar]
  155. 155. 
    Rojowska A, Lammens K, Seifert FU, Direnberger C, Feldmann H, Hopfner K-P 2014. Structure of the Rad50 DNA double-strand break repair protein in complex with DNA. EMBO J 33:2847–59
    [Google Scholar]
  156. 156. 
    Rowland BD, Roig MB, Nishino T, Kurze A, Uluocak P et al. 2009. Building sister chromatid cohesion: Smc3 acetylation counteracts an antiestablishment activity. Mol. Cell 33:763–74
    [Google Scholar]
  157. 157. 
    Sabari BR, Dall'Agnese A, Boija A, Klein IA, Coffey EL et al. 2018. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361:eaar3958
    [Google Scholar]
  158. 158. 
    Samora CP, Saksouk J, Goswami P, Wade BO, Singleton MR et al. 2016. Ctf4 links DNA replication with sister chromatid cohesion establishment by recruiting the Chl1 helicase to the replisome. Mol. Cell 63:371–84
    [Google Scholar]
  159. 159. 
    Sanborn AL, Rao SSP, Huang S-C, Durand NC, Huntley MH et al. 2015. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. PNAS 112:E6456–65
    [Google Scholar]
  160. 160. 
    Sazer S, Schiessel H. 2018. The biology and polymer physics underlying large-scale chromosome organization. Traffic 19:87–104
    [Google Scholar]
  161. 161. 
    Schalbetter SA, Fudenberg G, Baxter J, Pollard KS, Neale MJ 2018. Principles of meiotic chromosome assembly. bioRxiv 442038. https://doi.org/10.1101/442038
    [Crossref]
  162. 162. 
    Schiller CB, Seifert FU, Linke-Winnebeck C, Hopfner K-P 2014. Structural studies of DNA end detection and resection in homologous recombination. Cold Spring Harb. Perspect. Biol. 6:a017962
    [Google Scholar]
  163. 163. 
    Schleiffer A, Kaitna S, Maurer-Stroh S, Glotzer M, Nasmyth K, Eisenhaber F 2003. Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners. Mol. Cell 11:571–75
    [Google Scholar]
  164. 164. 
    Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G et al. 2017. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551:51–56
    [Google Scholar]
  165. 165. 
    Seitan VC, Hao B, Tachibana-Konwalski K, Lavagnolli T, Mira-Bontenbal H et al. 2011. A role for cohesin in T-cell-receptor rearrangement and thymocyte differentiation. Nature 476:467–71
    [Google Scholar]
  166. 166. 
    Shintomi K, Inoue F, Watanabe H, Ohsumi K, Ohsugi M, Hirano T 2017. Mitotic chromosome assembly despite nucleosome depletion in Xenopus egg extracts. Science 356:1284–87
    [Google Scholar]
  167. 167. 
    Smith-Roe SL, Patel SS, Simpson DA, Zhou YC, Rao S et al. 2011. Timeless functions independently of the Tim-Tipin complex to promote sister chromatid cohesion in normal human fibroblasts. Cell Cycle 10:1618–24
    [Google Scholar]
  168. 168. 
    Soh Y-M, Bürmann F, Shin H-C, Oda T, Jin KS et al. 2015. Molecular basis for SMC rod formation and its dissolution upon DNA binding. Mol. Cell 57:290–303
    [Google Scholar]
  169. 169. 
    Srinivasan M, Nasmyth KA, Petela NJ, Scheinost JC, Collier J et al. 2019. Scc2 counteracts a Wapl-independent mechanism that releases cohesin from chromosomes during G1 but is unnecessary during S phase for establishing cohesion. bioRxiv 513960. https://doi.org/10.1101/513960
    [Crossref]
  170. 170. 
    Srinivasan M, Scheinost JC, Petela NJ, Gligoris TG, Wissler M et al. 2018. The cohesin ring uses its hinge to organize DNA using non-topological as well as topological mechanisms. Cell 173:1508–19.e18
    [Google Scholar]
  171. 171. 
    Stigler J, Çamdere , Koshland DE, Greene EC 2016. Single-molecule imaging reveals a collapsed conformational state for DNA-bound cohesin. Cell Rep 15:988–98
    [Google Scholar]
  172. 172. 
    Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH 2017. Phase separation drives heterochromatin domain formation. Nature 547:241–45
    [Google Scholar]
  173. 173. 
    Tachibana-Konwalski K, Godwin J, van der Weyden L, Champion L, Kudo NR et al. 2010. Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes. Genes Dev 24:2505–16
    [Google Scholar]
  174. 174. 
    Taylor JH, Woods PS, Hughes WL 1957. The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium-labeled thymidine. PNAS 43:122–28
    [Google Scholar]
  175. 175. 
    Tedeschi A, Wutz G, Huet S, Jaritz M, Wuensche A et al. 2013. Wapl is an essential regulator of chromatin structure and chromosome segregation. Nature 501:564–68
    [Google Scholar]
  176. 176. 
    Terakawa T, Bisht S, Eeftens JM, Dekker C, Haering CH, Greene EC 2017. The condensin complex is a mechanochemical motor that translocates along DNA. Science 11:eaan6516
    [Google Scholar]
  177. 177. 
    Terret M-E, Sherwood R, Rahman S, Qin J, Jallepalli PV 2009. Cohesin acetylation speeds the replication fork. Nature 462:231–34
    [Google Scholar]
  178. 178. 
    Tong K, Skibbens RV. 2015. Pds5 regulators segregate cohesion and condensation pathways in Saccharomyces cerevisiae. PNAS 112:7021–26
    [Google Scholar]
  179. 179. 
    Tóth A, Ciosk R, Uhlmann F, Galova M, Schleiffer A, Nasmyth K 1999. Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev 13:320–33
    [Google Scholar]
  180. 180. 
    Tran NT, Laub MT, Le TBK 2017. SMC progressively aligns chromosomal arms in Caulobacter crescentus but is antagonized by convergent transcription. Cell Rep 20:2057–71
    [Google Scholar]
  181. 181. 
    Truebestein L, Leonard TA. 2016. Coiled-coils: the long and short of it. Bioessays 38:903–16
    [Google Scholar]
  182. 182. 
    Uhlmann F, Lottspeich F, Nasmyth K 1999. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400:37–42
    [Google Scholar]
  183. 183. 
    Umbarger MA, Toro E, Wright MA, Porreca GJ, Baù D et al. 2011. The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Mol. Cell 44:252–64
    [Google Scholar]
  184. 184. 
    Unal E, Heidinger-Pauli JM, Koshland D 2007. DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317:245–48
    [Google Scholar]
  185. 185. 
    Vazquez Nunez R, Ruiz Avila LB, Gruber S 2019. Transient DNA occupancy of the SMC interarm space in prokaryotic condensin. Mol. Cell 75:209–23
    [Google Scholar]
  186. 186. 
    Vian L, Pekowska A, Rao SSP, Kieffer-Kwon K-R, Jung S et al. 2018. The energetics and physiological impact of cohesin extrusion. Cell 175:292–94
    [Google Scholar]
  187. 187. 
    Villa F, Simon AC, Ortiz Bazan MA, Kilkenny ML, Wirthensohn D et al. 2016. Ctf4 is a hub in the eukaryotic replisome that links multiple CIP-box proteins to the CMG helicase. Mol. Cell 63:385–96
    [Google Scholar]
  188. 188. 
    Walther N, Hossain MJ, Politi AZ, Koch B, Kueblbeck M et al. 2018. A quantitative map of human condensins provides new insights into mitotic chromosome architecture. J. Cell Biol. 217:2309–28
    [Google Scholar]
  189. 189. 
    Wang X, Brandão HB, Le TBK, Laub MT, Rudner DZ 2017. Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus. Science 355:524–27
    [Google Scholar]
  190. 190. 
    Wang X, Hughes AC, Brandão HB, Walker B, Lierz C et al. 2018. In vivo evidence for ATPase-dependent DNA translocation by the Bacillus subtilis SMC condensin complex. Mol. Cell 71:841–45
    [Google Scholar]
  191. 191. 
    Wang X, Le TBK, Lajoie BR, Dekker J, Laub MT, Rudner DZ 2015. Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis. Genes Dev 29:1661–75
    [Google Scholar]
  192. 192. 
    Webb CD, Graumann PL, Kahana JA, Teleman AA, Silver PA, Losick R 1998. Use of time-lapse microscopy to visualize rapid movement of the replication origin region of the chromosome during the cell cycle in Bacillus subtilis. Mol. Microbiol 28:883–92
    [Google Scholar]
  193. 193. 
    Wells JN, Gligoris TG, Nasmyth KA, Marsh JA 2017. Evolution of condensin and cohesin complexes driven by replacement of Kite by Hawk proteins. Curr. Biol. 27:R17–18
    [Google Scholar]
  194. 194. 
    Wendt KS, Yoshida K, Itoh T, Bando M, Koch B et al. 2008. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451:796–801
    [Google Scholar]
  195. 195. 
    West AM, Rosenberg SC, Ur SN, Lehmer MK, Ye Q et al. 2019. A conserved filamentous assembly underlies the structure of the meiotic chromosome axis. eLife 8:e40372
    [Google Scholar]
  196. 196. 
    Wilhelm L, Bürmann F, Minnen A, Shin H-C, Toseland CP et al. 2015. SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis. eLife 4:e06659
    [Google Scholar]
  197. 197. 
    Woo J-S, Lim J-H, Shin H-C, Suh M-K, Ku B et al. 2009. Structural studies of a bacterial condensin complex reveal ATP-dependent disruption of intersubunit interactions. Cell 136:85–96
    [Google Scholar]
  198. 198. 
    Wutz G, Várnai C, Nagasaka K, Cisneros DA, Stocsits RR et al. 2017. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J 36:3573–99
    [Google Scholar]
  199. 199. 
    Yamashita D, Shintomi K, Ono T, Gavvovidis I, Schindler D et al. 2011. MCPH1 regulates chromosome condensation and shaping as a composite modulator of condensin II. J. Cell Biol. 194:841–54
    [Google Scholar]
  200. 200. 
    Yoshimura SH, Hizume K, Murakami A, Sutani T, Takeyasu K, Yanagida M 2002. Condensin architecture and interaction with DNA: Regulatory non-SMC subunits bind to the head of SMC heterodimer. Curr. Biol. 12:508–13
    [Google Scholar]
  201. 201. 
    Zabrady K, Adamus M, Vondrova L, Liao C, Skoupilova H et al. 2016. Chromatin association of the SMC5/6 complex is dependent on binding of its NSE3 subunit to DNA. Nucleic Acids Res 44:1064–79
    [Google Scholar]
  202. 202. 
    Zawadzka K, Zawadzki P, Baker R, Rajasekar KV, Wagner F et al. 2018. MukB ATPases are regulated independently by the N- and C-terminal domains of MukF kleisin. eLife 7:e31522
    [Google Scholar]
  203. 203. 
    Zhang W, Yeung CHL, Wu L, Yuen KWY 2017. E3 ubiquitin ligase Bre1 couples sister chromatid cohesion establishment to DNA replication in Saccharomyces cerevisiae. eLife 6:e28231
    [Google Scholar]
  204. 204. 
    Zheng G, Kanchwala M, Xing C, Yu H 2018. MCM2-7-dependent cohesin loading during S phase promotes sister-chromatid cohesion. eLife 7:e33920
    [Google Scholar]
  205. 205. 
    Zuin J, Franke V, van Ijcken WFJ, van der Sloot A, Krantz ID et al. 2014. A cohesin-independent role for NIPBL at promoters provides insights in CdLS. PLOS Genet 10:e1004153
    [Google Scholar]
/content/journals/10.1146/annurev-genet-112618-043633
Loading
/content/journals/10.1146/annurev-genet-112618-043633
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error