1932

Abstract

In life's constant battle for survival, it takes one to kill but two to conquer. Toxin-antitoxin or toxin-antidote (TA) elements are genetic dyads that cheat the laws of inheritance to guarantee their transmission to the next generation. This seemingly simple genetic arrangement—a toxin linked to its antidote—is capable of quickly spreading and persisting in natural populations. TA elements were first discovered in bacterial plasmids in the 1980s and have recently been characterized in fungi, plants, and animals, where they underlie genetic incompatibilities and sterility in crosses between wild isolates. In this review, we provide a unified view of TA elements in both prokaryotic and eukaryotic organisms and highlight their similarities and differences at the evolutionary, genetic, and molecular levels. Finally, we propose several scenarios that could explain the paradox of the evolutionary origin of TA elements and argue that these elements may be key evolutionary players and that the full scope of their roles is only beginning to be uncovered.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-112618-043659
2020-11-23
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/genet/54/1/annurev-genet-112618-043659.html?itemId=/content/journals/10.1146/annurev-genet-112618-043659&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Agulnik SI, Agulnik AI, Ruvinsky AO 1990. Meiotic drive in female mice heterozygous for the HSR inserts on chromosome 1. Genet. Res. 55:297–100
    [Google Scholar]
  2. 2. 
    Ailion M, Malik HS. 2017. Genetics: master regulator or master of disguise. ? Curr. Biol. 27:17R844–47
    [Google Scholar]
  3. 3. 
    Aizenman E, Engelberg-Kulka H, Glaser G 1996. An Escherichia coli chromosomal “addiction module” regulated by guanosine [corrected] 3′,5′-bispyrophosphate: a model for programmed bacterial cell death. PNAS 93:126059–63
    [Google Scholar]
  4. 4. 
    Akarsu H, Bordes P, Mansour M, Bigot D-J, Genevaux P, Falquet L 2019. TASmania: a bacterial Toxin-Antitoxin Systems database. PLOS Comput. Biol. 15:4e1006946
    [Google Scholar]
  5. 5. 
    Alphey L, Beard CB, Billingsley P, Coetzee M, Crisanti A et al. 2002. Malaria control with genetically manipulated insect vectors. Science 298:5591119–21
    [Google Scholar]
  6. 6. 
    Anantharaman V, Aravind L. 2003. New connections in the prokaryotic toxin-antitoxin network: relationship with the eukaryotic nonsense-mediated RNA decay system. Genome Biol 4:12R81
    [Google Scholar]
  7. 7. 
    Anantharaman V, Makarova KS, Burroughs AM, Koonin EV, Aravind L 2013. Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing. Biol. Direct 8:15
    [Google Scholar]
  8. 8. 
    Aoki SK, Pamma R, Hernday AD, Bickham JE, Braaten BA, Low DA 2005. Contact-dependent inhibition of growth in Escherichia coli. . Science 309:57381245–48
    [Google Scholar]
  9. 9. 
    Banfield MJ. 2015. Perturbation of host ubiquitin systems by plant pathogen/pest effector proteins. Cell Microbiol 17:118–25
    [Google Scholar]
  10. 10. 
    Bardaji L, Añorga M, Echeverría M, Ramos C, Murillo J 2019. The toxic guardians—multiple toxin-antitoxin systems provide stability, avoid deletions and maintain virulence genes of Pseudomonas syringae virulence plasmids. Mobile DNA 10:17
    [Google Scholar]
  11. 11. 
    Bast MSD, Mine N, Melderen LV 2008. Chromosomal toxin-antitoxin systems may act as antiaddiction modules. J. Bacteriol. 190:134603–9
    [Google Scholar]
  12. 12. 
    Beckmann JF, Bonneau M, Chen H, Hochstrasser M, Poinsot D et al. 2019. The toxin-antidote model of cytoplasmic incompatibility: genetics and evolutionary implications. Trends Genet 35:3175–85
    [Google Scholar]
  13. 13. 
    Beckmann JF, Ronau JA, Hochstrasser M 2017. A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nat. Microbiol. 2:517007
    [Google Scholar]
  14. 14. 
    Beeman RW, Friesen KS. 1999. Properties and natural occurrence of maternal-effect selfish genes (‘Medea’ factors) in the Red Flour Beetle. Tribolium castaneum. Heredity 82:5529–34
    [Google Scholar]
  15. 15. 
    Beeman RW, Friesen KS, Denell RE 1992. Maternal-effect selfish genes in flour beetles. Science 256:505389–92
    [Google Scholar]
  16. 16. 
    Ben-David E, Burga A, Kruglyak L 2017. A maternal-effect selfish genetic element in Caenorhabditis elegans. . Science 356:63421051–55
    [Google Scholar]
  17. 17. 
    Benz J, Meinhart A. 2014. Antibacterial effector/immunity systems: It's just the tip of the iceberg. Curr. Opin. Microbiol. 17:1–10
    [Google Scholar]
  18. 18. 
    Bernard P, Couturier M. 1992. Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. J. Mol. Biol. 226:3735–45
    [Google Scholar]
  19. 19. 
    Blanc L, Ciciotte SL, Gwynn B, Hildick-Smith GJ, Pierce EL et al. 2012. Critical function for the Ras-GTPase activating protein RASA3 in vertebrate erythropoiesis and megakaryopoiesis. PNAS 109:3012099–104
    [Google Scholar]
  20. 20. 
    Bravo A, de Torrontegui G, Díaz R 1987. Identification of components of a new stability system of plasmid R1, ParD, that is close to the origin of replication of this plasmid. Mol. Gen. Genet. 210:1101–10
    [Google Scholar]
  21. 21. 
    Bravo Núñez MA, Lange JJ, Zanders SE 2018. A suppressor of a wtf poison-antidote meiotic driver acts via mimicry of the driver's antidote. PLOS Genet 14:11e1007836
    [Google Scholar]
  22. 22. 
    Burga A, Ben-David E, Vergara TL, Boocock J, Kruglyak L 2019. Fast genetic mapping of complex traits in C. elegans using millions of individuals in bulk. Nat. Commun. 10:12680
    [Google Scholar]
  23. 23. 
    Burt A, Trivers R. 2006. Genes in Conflict: The Biology of Selfish Genetic Elements Cambridge, MA: Harvard Univ. Press
  24. 24. 
    Cameron DR, Moav RM. 1957. Inheritance in Nicotiana tabacum XXVII. Pollen killer, an alien genetic locus inducing abortion of microspores not carrying it. Genetics 42:3326–35
    [Google Scholar]
  25. 25. 
    Cao Z, Casabona MG, Kneuper H, Chalmers JD, Palmer T 2016. The Ess/Type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat. Microbiol. 2:16183
    [Google Scholar]
  26. 26. 
    Champer J, Buchman A, Akbari OS 2016. Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat. Rev. Genet. 17:3146–59
    [Google Scholar]
  27. 27. 
    Chen C-H, Huang H, Ward CM, Su JT, Schaeffer LV et al. 2007. A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila. . Science 316:5824597–600
    [Google Scholar]
  28. 28. 
    Chen H, Ronau JA, Beckmann JF, Hochstrasser M 2019. A Wolbachia nuclease and its binding partner provide a distinct mechanism for cytoplasmic incompatibility. PNAS 116:4422314–21
    [Google Scholar]
  29. 29. 
    Chen J, Ding J, Ouyang Y, Du H, Yang J et al. 2008. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica–japonica hybrids in rice. PNAS 105:3211436–41
    [Google Scholar]
  30. 30. 
    Chen Y-C, Chen H-J, Tseng W-C, Hsu J-M, Huang T-T et al. 2016. A C. elegans thermosensory circuit regulates longevity through crh-1/CREB-dependent flp-6 neuropeptide signaling. Dev. Cell 39:2209–23
    [Google Scholar]
  31. 31. 
    Christensen SK, Mikkelsen M, Pedersen K, Gerdes K 2001. RelE, a global inhibitor of translation, is activated during nutritional stress. PNAS 98:2514328–33
    [Google Scholar]
  32. 32. 
    Culviner PH, Laub MT. 2018. Global analysis of the E. coli toxin MazF reveals widespread cleavage of mRNA and the inhibition of rRNA maturation and ribosome biogenesis. Mol. Cell 70:5868–80.e10
    [Google Scholar]
  33. 33. 
    Dao-Thi M-H, Van Melderen L, De Genst E, Afif H, Buts L et al. 2005. Molecular basis of gyrase poisoning by the addiction toxin CcdB. J. Mol. Biol. 348:51091–102
    [Google Scholar]
  34. 34. 
    De Jonge N, Garcia-Pino A, Buts L, Haesaerts S, Charlier D et al. 2009. Rejuvenation of CcdB-poisoned gyrase by an intrinsically disordered protein domain. Mol. Cell 35:2154–63
    [Google Scholar]
  35. 35. 
    Dickinson DJ, Ward JD, Reiner DJ, Goldstein B 2013. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat. Methods 10:101028–34
    [Google Scholar]
  36. 36. 
    Doolittle WF, Sapienza C. 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284:5757601–3
    [Google Scholar]
  37. 37. 
    Engelberg-Kulka H, Glaser G. 1999. Addiction modules and programmed cell death and antideath in bacterial cultures. Annu. Rev. Microbiol. 53:43–70
    [Google Scholar]
  38. 38. 
    Engelberg-Kulka H, Hazan R, Amitai S 2005. mazEF: a chromosomal toxin-antitoxin module that triggers programmed cell death in bacteria. J. Cell Sci. 118:Pt. 194327–32
    [Google Scholar]
  39. 39. 
    Fay DS, Polley SRG, Kuang J, Kuzmanov A, Hazel JW et al. 2012. A regulatory module controlling pharyngeal development and function in Caenorhabditis elegans. . Genetics 191:3827–43
    [Google Scholar]
  40. 40. 
    Fay DS, Qiu X, Large E, Smith CP, Mango S, Johanson BL 2004. The coordinate regulation of pharyngeal development in C. elegans by lin-35/Rb. pha-1, and ubc-18. Dev. Biol 271:111–25
    [Google Scholar]
  41. 41. 
    Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS, Salmond GPC 2009. The phage abortive infection system, ToxIN, functions as a protein–RNA toxin–antitoxin pair. PNAS 106:3894–99
    [Google Scholar]
  42. 42. 
    Fraikin N, Goormaghtigh F, Melderen LV 2020. Type II toxin-antitoxin systems: evolution and revolutions. J. Bacteriol. 202:7e00763–19
    [Google Scholar]
  43. 43. 
    Frøkjær-Jensen C, Davis MW, Ailion M, Jorgensen EM 2012. Improved Mos1-mediated transgenesis in C. elegans.. Nat. Methods 9:2117–18
    [Google Scholar]
  44. 44. 
    Fujii S, Kubo K, Takayama S 2016. Non-self- and self-recognition models in plant self-incompatibility. Nat. Plants 2:916130
    [Google Scholar]
  45. 45. 
    Gerdes K 2013. Prokaryotic Toxin-Antitoxins Berlin/Heidelberg: Springer
  46. 46. 
    Gerdes K, Christensen SK, Løbner-Olesen A 2005. Prokaryotic toxin-antitoxin stress response loci. Nat. Rev. Microbiol. 3:5371–82
    [Google Scholar]
  47. 47. 
    Gerdes K, Rasmussen PB, Molin S 1986. Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. PNAS 83:103116–20
    [Google Scholar]
  48. 48. 
    Germain E, Castro-Roa D, Zenkin N, Gerdes K 2013. Molecular mechanism of bacterial persistence by HipA. Mol. Cell 52:2248–54
    [Google Scholar]
  49. 49. 
    Gilles AF, Schinko JB, Averof M 2015. Efficient CRISPR-mediated gene targeting and transgene replacement in the beetle Tribolium castaneum. . Development 142:162832–39
    [Google Scholar]
  50. 50. 
    Granato M, Schnabel H, Schnabel R 1994. Genesis of an organ: molecular analysis of the pha-1 gene. Development 120:103005–17
    [Google Scholar]
  51. 51. 
    Griffin MA, Davis JH, Strobel SA 2013. Bacterial toxin RelE: a highly efficient ribonuclease with exquisite substrate specificity using atypical catalytic residues. Biochemistry 52:488633–42
    [Google Scholar]
  52. 52. 
    Grognet P, Lalucque H, Malagnac F, Silar P 2014. Genes that bias Mendelian segregation. PLOS Genet 10:5e1004387
    [Google Scholar]
  53. 53. 
    Gucinski GC, Michalska K, Garza-Sánchez F, Eschenfeldt WH, Stols L et al. 2019. Convergent evolution of the Barnase/EndoU/Colicin/RelE (BECR) fold in antibacterial tRNase toxins. Structure 27:111660–1674.e5
    [Google Scholar]
  54. 54. 
    Guo Y, Quiroga C, Chen Q, McAnulty MJ, Benedik MJ et al. 2014. RalR (a DNase) and RalA (a small RNA) form a type I toxin-antitoxin system in Escherichia coli. . Nucleic Acids Res 42:106448–62
    [Google Scholar]
  55. 55. 
    Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C et al. 2016. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat. . Biotechnol 34:178–83
    [Google Scholar]
  56. 56. 
    Hammond TM, Rehard DG, Xiao H, Shiu PKT 2012. Molecular dissection of Neurospora Spore killer meiotic drive elements. PNAS 109:3012093–98
    [Google Scholar]
  57. 57. 
    Harms A, Brodersen DE, Mitarai N, Gerdes K 2018. Toxins, targets, and triggers: an overview of toxin-antitoxin biology. Mol. Cell 70:5768–84
    [Google Scholar]
  58. 58. 
    Harms A, Liesch M, Körner J, Québatte M, Engel P, Dehio C 2017. A bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of Bartonella. . PLOS Genet 13:10e1007077
    [Google Scholar]
  59. 59. 
    Hertig M, Wolbach SB. 1924. Studies on Rickettsia-like micro-organisms in insects. J. Med. Res. 44:3329–374.7
    [Google Scholar]
  60. 60. 
    Hu W, Jiang Z-D, Suo F, Zheng J-X, He W-Z, Du L-L 2017. A large gene family in fission yeast encodes spore killers that subvert Mendel's law. eLife 6:e26057
    [Google Scholar]
  61. 61. 
    Hurst GDD, Werren JH. 2001. The role of selfish genetic elements in eukaryotic evolution. Nat. Rev. Genet. 2:8597–606
    [Google Scholar]
  62. 62. 
    Hurst LD. 1993. scat+ is a selfish gene analogous to Medea of Tribolium castaneum. . Cell 75:3407–8
    [Google Scholar]
  63. 63. 
    Jaffé A, Ogura T, Hiraga S 1985. Effects of the ccd function of the F plasmid on bacterial growth. J. Bacteriol. 163:3841–49
    [Google Scholar]
  64. 64. 
    Jia X, Yao J, Gao Z, Liu G, Dong Y-H et al. 2018. Structure-function analyses reveal the molecular architecture and neutralization mechanism of a bacterial HEPN-MNT toxin-antitoxin system. J. Biol. Chem. 293:186812–23
    [Google Scholar]
  65. 65. 
    Johnson PM, Beck CM, Morse RP, Garza-Sánchez F, Low DA et al. 2016. Unraveling the essential role of CysK in CDI toxin activation. PNAS 113:359792–97
    [Google Scholar]
  66. 66. 
    Kamada K, Hanaoka F, Burley SK 2003. Crystal structure of the MazE/MazF complex: molecular bases of antidote-toxin recognition. Mol. Cell 11:4875–84
    [Google Scholar]
  67. 67. 
    Kim J-S, Wood TK. 2016. Persistent persister misperceptions. Front. Microbiol. 7:2134
    [Google Scholar]
  68. 68. 
    Kobayashi I. 2001. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 29:183742–56
    [Google Scholar]
  69. 69. 
    Kolodkin-Gal I, Hazan R, Gaathon A, Carmeli S, Engelberg-Kulka H 2007. A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli. . Science 318:5850652–55
    [Google Scholar]
  70. 70. 
    Koonin EV, Makarova KS. 2019. Origins and evolution of CRISPR-Cas systems. Philos. Trans. R. Soc. B 374:177220180087
    [Google Scholar]
  71. 71. 
    Kubo T, Takashi T, Ashikari M, Yoshimura A, Kurata N 2016. Two tightly linked genes at the hsa1 locus cause both F1 and F2 hybrid sterility in rice. Mol. Plant. 9:2221–32
    [Google Scholar]
  72. 72. 
    Kusano K, Naito T, Handa N, Kobayashi I 1995. Restriction-modification systems as genomic parasites in competition for specific sequences. PNAS 92:2411095–99
    [Google Scholar]
  73. 73. 
    Kuzmanov A, Yochem J, Fay DS 2014. Analysis of PHA-1 reveals a limited role in pharyngeal development and novel functions in other tissues. Genetics 198:1259–68
    [Google Scholar]
  74. 74. 
    Kwon A-R, Kim J-H, Park SJ, Lee K-Y, Min Y-H et al. 2012. Structural and biochemical characterization of HP0315 from Helicobacter pylori as a VapD protein with an endoribonuclease activity. Nucleic Acids Res 40:94216–28
    [Google Scholar]
  75. 75. 
    Lee K-Y, Lee B-J. 2016. Structure, biology, and therapeutic application of toxin-antitoxin systems in pathogenic bacteria. Toxins 8:10305
    [Google Scholar]
  76. 76. 
    Lehnherr H, Maguin E, Jafri S, Yarmolinsky MB 1993. Plasmid addiction genes of bacteriophage P1: doc, which causes cell death on curing of prophage, and phd, which prevents host death when prophage is retained. J. Mol. Biol. 233:3414–28
    [Google Scholar]
  77. 77. 
    Leplae R, Geeraerts D, Hallez R, Guglielmini J, Drèze P, Van Melderen L 2011. Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Res 39:135513–25
    [Google Scholar]
  78. 78. 
    Leppälä J, Bokma F, Savolainen O 2013. Investigating incipient speciation in Arabidopsis lyrata from patterns of transmission ratio distortion. Genetics 194:3697–708
    [Google Scholar]
  79. 79. 
    Long Y, Zhao L, Niu B, Su J, Wu H et al. 2008. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. PNAS 105:4818871–76
    [Google Scholar]
  80. 80. 
    Lorenzen MD, Gnirke A, Margolis J, Garnes J, Campbell M et al. 2008. The maternal-effect, selfish genetic element Medea is associated with a composite Tc1 transposon. PNAS 105:2910085–89
    [Google Scholar]
  81. 81. 
    Loris R, Garcia-Pino A. 2014. Disorder- and dynamics-based regulatory mechanisms in toxin–antitoxin modules. Chem. Rev. 114:136933–47
    [Google Scholar]
  82. 82. 
    Loris R, Marianovsky I, Lah J, Laeremans T, Engelberg-Kulka H et al. 2003. Crystal structure of the intrinsically flexible addiction antidote MazE. J. Biol. Chem. 278:3028252–57
    [Google Scholar]
  83. 83. 
    Lynch M, Marinov GK. 2015. The bioenergetic costs of a gene. PNAS 112:5115690–95
    [Google Scholar]
  84. 84. 
    Magnuson RD. 2007. Hypothetical functions of toxin-antitoxin systems. J. Bacteriol. 189:176089–92
    [Google Scholar]
  85. 85. 
    Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV 2006. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1:17
    [Google Scholar]
  86. 86. 
    Makarova KS, Wolf YI, Koonin EV 2009. Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol. Direct 4:19
    [Google Scholar]
  87. 87. 
    Mango SE, Lambie EJ, Kimble J 1994. The pha-4 gene is required to generate the pharyngeal primordium of Caenorhabditis elegans. . Development 120:103019–31
    [Google Scholar]
  88. 88. 
    Mani K, Fay DS. 2009. A mechanistic basis for the coordinated regulation of pharyngeal morphogenesis in Caenorhabditis elegans by LIN-35/Rb and UBC-18-ARI-1. PLOS Genet 5:6e1000510
    [Google Scholar]
  89. 89. 
    Masuda Y, Miyakawa K, Nishimura Y, Ohtsubo E 1993. chpA and chpB, Escherichia coli chromosomal homologs of the pem locus responsible for stable maintenance of plasmid R100. J. Bacteriol 175:216850–56
    [Google Scholar]
  90. 90. 
    Melderen LV, Bernard P, Couturier M 1994. Lon-dependent proteolysis of CcdA is the key control for activation of CcdB in plasmid-free segregant bacteria. Mol. Microbiol. 11:61151–57
    [Google Scholar]
  91. 91. 
    Miki T, Ae Park J, Nagao K, Murayama N, Horiuchi T 1992. Control of segregation of chromosomal DNA by sex factor F in Escherichia coli: Mutants of DNA gyrase subunit A suppress letD (ccdB) product growth inhibition. J. Mol. Biol. 225:139–52
    [Google Scholar]
  92. 92. 
    Moyed HS, Bertrand KP. 1983. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J. Bacteriol. 155:2768–75
    [Google Scholar]
  93. 93. 
    Mruk I, Kobayashi I. 2014. To be or not to be: regulation of restriction-modification systems and other toxin-antitoxin systems. Nucleic Acids Res 42:170–86
    [Google Scholar]
  94. 94. 
    Muñoz-Jiménez C, Ayuso C, Dobrzynska A, Torres-Mendéz A, Ruiz P, de la C, Askjaer P 2017. An efficient FLP-based toolkit for spatiotemporal control of gene expression in Caenorhabditis elegans. . Genetics 206:41763–78
    [Google Scholar]
  95. 95. 
    Naito T, Kusano K, Kobayashi I 1995. Selfish behavior of restriction-modification systems. Science 267:5199897–99
    [Google Scholar]
  96. 96. 
    Neubauer C, Gao Y-G, Andersen KR, Dunham CM, Kelley AC et al. 2009. The structural basis for mRNA recognition and cleavage by the ribosome-dependent endonuclease RelE. Cell 139:61084–95
    [Google Scholar]
  97. 97. 
    Nigam A, Ziv T, Oron-Gottesman A, Engelberg-Kulka H 2019. Stress-induced MazF-mediated proteins in Escherichia coli. . mBio 10:e00340–19
    [Google Scholar]
  98. 98. 
    Nordström K, Austin SJ. 1989. Mechanisms that contribute to the stable segregation of plasmids. Annu. Rev. Genet. 23:37–69
    [Google Scholar]
  99. 99. 
    Nuckolls NL, Bravo Núñez MA, Eickbush MT, Young JM, Lange JJ et al. 2017. wtf genes are prolific dual poison-antidote meiotic drivers. eLife 6:e26033
    [Google Scholar]
  100. 100. 
    Nuckolls NL, Mok AC, Lange JJ, Yi K, Kandola TS et al. 2020. The wtf4 meiotic driver utilizes controlled protein aggregation to generate selective cell death. bioRxiv 2020.02.05.935874. https://doi.org/10.1101/2020.02.05.935874
    [Crossref]
  101. 101. 
    Núñez MAB, Sabbarini IM, Eickbush MT, Liang Y, Lange JJ et al. 2020. Dramatically diverse Schizosaccharomyces pombe wtf meiotic drivers all display high gamete-killing efficiency. PLOS Genet 16:2e1008350
    [Google Scholar]
  102. 102. 
    Ogura T, Hiraga S. 1983. Mini-F plasmid genes that couple host cell division to plasmid proliferation. PNAS 80:154784–88
    [Google Scholar]
  103. 103. 
    Ogura T, Miki T, Hiraga S 1980. Copy-number mutants of the plasmid carrying the replication origin of the Escherichia coli chromosome: evidence for a control region of replication. PNAS 77:73993–97
    [Google Scholar]
  104. 104. 
    Oishi K, Okano H, Sawa H 2007. RMD-1, a novel microtubule-associated protein, functions in chromosome segregation in Caenorhabditis elegans. J. . Cell Biol 179:61149–62
    [Google Scholar]
  105. 105. 
    Oka H-I. 1957. Genic analysis for the sterility of hybrids between distantly related varieties of cultivated rice. J. Genet. 55:3397–409
    [Google Scholar]
  106. 106. 
    Orgel LE, Crick FHC. 1980. Selfish DNA: the ultimate parasite. Nature 284:5757604–7
    [Google Scholar]
  107. 107. 
    Page R, Peti W. 2016. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat. Chem. Biol. 12:4208–14
    [Google Scholar]
  108. 108. 
    Pecota DC, Wood TK. 1996. Exclusion of T4 phage by the hok/sok killer locus from plasmid R1. J. Bacteriol. 178:72044–50
    [Google Scholar]
  109. 109. 
    Pedersen K, Zavialov AV, Pavlov MY, Elf J, Gerdes K, Ehrenberg M 2003. The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell 112:1131–40
    [Google Scholar]
  110. 110. 
    Peters LL, Barker JE. 1993. Novel inheritance of the murine severe combined anemia and thrombocytopenia (scat) phenotype. Cell 74:1135–42
    [Google Scholar]
  111. 111. 
    Peters LL, McFarland-Starr EC, Wood BG, Barker JE 1990. Heritable severe combined anemia and thrombocytopenia in the mouse: description of the disease and successful therapy. Blood 76:4745–54
    [Google Scholar]
  112. 112. 
    Polley SRG, Kuzmanov A, Kuang J, Karpel J, Lažetić V et al. 2014. Implicating SCF complexes in Organogenesis in Caenorhabditis elegans. . Genetics 196:1211–23
    [Google Scholar]
  113. 113. 
    Qiu J, Sheedlo MJ, Yu K, Tan Y, Nakayasu ES et al. 2016. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature 533:7601120–24
    [Google Scholar]
  114. 114. 
    Qiu X, Fay DS. 2006. ARI-1, an RBR family ubiquitin-ligase, functions with UBC-18 to regulate pharyngeal development in C. elegans. Dev. Biol 291:2239–52
    [Google Scholar]
  115. 115. 
    Rhoades NA, Harvey AM, Samarajeewa DA, Svedberg J, Yusifov A et al. 2019. Identification of rfk-1, a meiotic driver undergoing RNA editing in Neurospora. . Genetics 212:193–110
    [Google Scholar]
  116. 116. 
    Rick CM. 1966. Abortion of male and female gametes in the tomato determined by allelic interaction. Genetics 53:185–96
    [Google Scholar]
  117. 117. 
    Rockman MV, Kruglyak L. 2008. Breeding designs for recombinant inbred advanced intercross lines. Genetics 179:21069–78
    [Google Scholar]
  118. 118. 
    Rockman MV, Kruglyak L. 2009. Recombinational landscape and population genomics of Caenorhabditis elegans. . PLOS Genet 5:3e1000419
    [Google Scholar]
  119. 119. 
    Rockman MV, Skrovanek SS, Kruglyak L 2010. Selection at linked sites shapes heritable phenotypic variation in C. elegans. . Science 330:6002372–76
    [Google Scholar]
  120. 120. 
    Schnabel H, Bauer G, Schnabel R 1991. Suppressors of the organ-specific differentiation gene pha-1 of Caenorhabditis elegans. . Genetics 129:169–77
    [Google Scholar]
  121. 121. 
    Schnabel H, Schnabel R. 1990. An organ-specific differentiation gene, pha-1, from Caenorhabditis elegans. . Science 250:4981686–88
    [Google Scholar]
  122. 122. 
    Schumacher MA, Piro KM, Xu W, Hansen S, Lewis K, Brennan RG 2009. Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Science 323:5912396–401
    [Google Scholar]
  123. 123. 
    Seidel HS, Ailion M, Li J, van Oudenaarden A, Rockman MV, Kruglyak L 2011. A novel sperm-delivered toxin causes late-stage embryo lethality and transmission ratio distortion in C. elegans. . PLOS Biol 9:7e1001115
    [Google Scholar]
  124. 124. 
    Seidel HS, Rockman MV, Kruglyak L 2008. Widespread genetic incompatibility in C. elegans maintained by balancing selection. Science 319:5863589–94
    [Google Scholar]
  125. 125. 
    Seymour DK, Chae E, Arioz BI, Koenig D, Weigel D 2019. Transmission ratio distortion is frequent in Arabidopsis thaliana controlled crosses. Heredity 122:3294–304
    [Google Scholar]
  126. 126. 
    Shao Y, Harrison EM, Bi D, Tai C, He X et al. 2011. TADB: a web-based resource for Type 2 toxin-antitoxin loci in bacteria and archaea. Nucleic Acids Res 39:D606–11
    [Google Scholar]
  127. 127. 
    Shull GH. 1948. What Is “Heterosis”. ? Genetics 33:5439–46
    [Google Scholar]
  128. 128. 
    Simanshu DK, Yamaguchi Y, Park J-H, Inouye M, Patel DJ 2013. Structural basis of mRNA recognition and cleavage by toxin MazF and its regulation by antitoxin MazE in Bacillus subtilis. Mol. Cell 52:3447–58
    [Google Scholar]
  129. 129. 
    Simon M, Durand S, Pluta N, Gobron N, Botran L et al. 2016. Genomic conflicts that cause pollen mortality and raise reproductive barriers in Arabidopsis thaliana. . Genetics 203:31353–67
    [Google Scholar]
  130. 130. 
    Song S, Wood TK. 2018. Post-segregational killing and phage inhibition are not mediated by cell death through toxin/antitoxin systems. Front. Microbiol. 9:814
    [Google Scholar]
  131. 131. 
    Svedberg J, Vogan AA, Rhoades NA, Sarmarajeewa D, Jacobson DJ et al. 2020. An introgressed gene causes meiotic drive in Neurospora sitophila. bioRxiv 2020.01.29.923946. https://doi.org/10.1101/2020.01.29.923946
    [Crossref]
  132. 132. 
    Tam JE, Kline BC. 1989. The F plasmid ccd autorepressor is a complex of CcdA and CcdB proteins. Mol. Gen. Genet. 219:126–32
    [Google Scholar]
  133. 133. 
    Temmel H, Müller C, Sauert M, Vesper O, Reiss A et al. 2017. The RNA ligase RtcB reverses MazF-induced ribosome heterogeneity in Escherichia coli. . Nucleic Acids Res 45:84708–21
    [Google Scholar]
  134. 134. 
    Tsilibaris V, Maenhaut-Michel G, Mine N, Melderen LV 2007. What is the benefit to Escherichia coli of having multiple toxin-antitoxin systems in its genome. ? J. Bacteriol. 189:176101–8
    [Google Scholar]
  135. 135. 
    Tsuchimoto S, Ohtsubo H, Ohtsubo E 1988. Two genes, pemK and pemI, responsible for stable maintenance of resistance plasmid R100. J. Bacteriol. 170:41461–66
    [Google Scholar]
  136. 136. 
    Turner BC, Perkins DD. 1979. Spore killer, a chromosomal factor in Neurospora that kills meiotic products not containing it. Genetics 93:3587–606
    [Google Scholar]
  137. 137. 
    Van Melderen L. 2010. Toxin-antitoxin systems: why so many, what for. ? Curr. Opin. Microbiol. 13:6781–85
    [Google Scholar]
  138. 138. 
    Van Melderen L, Saavedra De Bast M 2009. Bacterial toxin-antitoxin systems: more than selfish entities. ? PLOS Genet 5:3e1000437
    [Google Scholar]
  139. 139. 
    Vanden Broeck A, Lotz C, Ortiz J, Lamour V 2019. Cryo-EM structure of the complete E. coli DNA gyrase nucleoprotein complex. Nat. Commun. 10:14935
    [Google Scholar]
  140. 140. 
    Veitia RA. 2007. Exploring the molecular etiology of dominant-negative mutations. Plant Cell 19:123843–51
    [Google Scholar]
  141. 141. 
    Vesper O, Amitai S, Belitsky M, Byrgazov K, Kaberdina AC et al. 2011. Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. . Cell 147:1147–57
    [Google Scholar]
  142. 142. 
    Vogan AA, Ament-Velásquez SL, Granger-Farbos A, Svedberg J, Bastiaans E et al. 2019. Combinations of Spok genes create multiple meiotic drivers in Podospora. . eLife 8:e46454
    [Google Scholar]
  143. 143. 
    Wade JT, Laub MT. 2019. Concerns about “Stress-induced MazF-mediated proteins in Escherichia coli. .” mBio 10:3e00825–19
    [Google Scholar]
  144. 144. 
    Wade MJ, Beeman RW. 1994. The population dynamics of maternal-effect selfish genes. Genetics 138:41309–14
    [Google Scholar]
  145. 145. 
    Weichenhan D, Traut W, Kunze B, Winking H 1996. Distortion of Mendelian recovery ratio for a mouse HSR is caused by maternal and zygotic effects. Gen. Res. 68:2125–29
    [Google Scholar]
  146. 146. 
    Willett JLE, Ruhe ZC, Goulding CW, Low DA, Hayes CS 2015. Contact-dependent growth inhibition (CDI) and CdiB/CdiA two-partner secretion proteins. J. Mol. Biol. 427:233754–65
    [Google Scholar]
  147. 147. 
    Windbichler N, Menichelli M, Papathanos PA, Thyme SB, Li H et al. 2011. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature 473:7346212–15
    [Google Scholar]
  148. 148. 
    Xie Y, Niu B, Long Y, Li G, Tang J et al. 2017. Suppression or knockout of SaF/SaM overcomes the Sa-mediated hybrid male sterility in rice. J. Integr. Plant Biol. 59:9669–79
    [Google Scholar]
  149. 149. 
    Xie Y, Tang J, Xie X, Li X, Huang J et al. 2019. An asymmetric allelic interaction drives allele transmission bias in interspecific rice hybrids. Nat. Commun. 10:12501
    [Google Scholar]
  150. 150. 
    Xie Y, Wei Y, Shen Y, Li X, Zhou H et al. 2018. TADB 2.0: an updated database of bacterial type II toxin-antitoxin loci. Nucleic Acids Res 46:D1D749–53
    [Google Scholar]
  151. 151. 
    Yamaguchi Y, Inouye M. 2011. Regulation of growth and death in Escherichia coli by toxin-antitoxin systems. Nat. Rev. Microbiol. 9:11779–90
    [Google Scholar]
  152. 152. 
    Yamaguchi Y, Park J-H, Inouye M 2011. Toxin-antitoxin systems in bacteria and archaea. Annu. Rev. Genet. 45:61–79
    [Google Scholar]
  153. 153. 
    Yang J, Zhao X, Cheng K, Du H, Ouyang Y et al. 2012. A killer-protector system regulates both hybrid sterility and segregation distortion in rice. Science 337:61001336–40
    [Google Scholar]
  154. 154. 
    Yao J, Guo Y, Zeng Z, Liu X, Shi F, Wang X 2015. Identification and characterization of a HEPN-MNT family type II toxin-antitoxin in Shewanella oneidensis. Microb. Biotechnol 8:6961–73
    [Google Scholar]
  155. 155. 
    Yoshida S. 1981. Fundamentals of Rice Crop Science Laguna, Philippines: Int. Rice Res. Inst.
  156. 156. 
    Yu X, Zhao Z, Zheng X, Zhou J, Kong W et al. 2018. A selfish genetic element confers non-Mendelian inheritance in rice. Science 360:63931130–32
    [Google Scholar]
  157. 157. 
    Zhang Y, Zhang J, Hoeflich KP, Ikura M, Qing G, Inouye M 2003. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol. Cell 12:4913–23
    [Google Scholar]
/content/journals/10.1146/annurev-genet-112618-043659
Loading
/content/journals/10.1146/annurev-genet-112618-043659
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error