1932

Abstract

Nearly half of the human genome consists of endogenous retroelements (EREs) and their genetic remnants, a small fraction of which carry the potential to propagate in the host genome, posing a threat to genome integrity and cell/organismal survival. The largest family of transcription factors in tetrapods, the Krüppel-associated box domain zinc finger proteins (KRAB-ZFPs), binds to specific EREs and represses their transcription. Since their first appearance over 400 million years ago, KRAB-ZFPs have undergone dramatic expansion and diversification in mammals, correlating with the invasions of new EREs. In this article we review our current understanding of the structure, function, and evolution of KRAB-ZFPs and discuss growing evidence that the arms race between KRAB-ZFPs and the EREs they target is a major driving force for the evolution of new traits in mammals, often accompanied by domestication of EREs themselves.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-112618-043717
2019-12-03
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/genet/53/1/annurev-genet-112618-043717.html?itemId=/content/journals/10.1146/annurev-genet-112618-043717&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Altemose N, Noor N, Bitoun E, Tumian A, Imbeault M et al. 2017. A map of human PRDM9 binding provides evidence for novel behaviors of PRDM9 and other zinc-finger proteins in meiosis. eLife 6:e28383
    [Google Scholar]
  2. 2. 
    Audano PA, Sulovari A, Graves-Lindsay TA, Cantsilieris S, Sorensen M et al. 2019. Characterizing the major structural variant alleles of the human genome. Cell 176:663–75.e19
    [Google Scholar]
  3. 3. 
    Bailey SD, Zhang X, Desai K, Aid M, Corradin O et al. 2015. ZNF143 provides sequence specificity to secure chromatin interactions at gene promoters. Nat. Commun. 2:6186
    [Google Scholar]
  4. 4. 
    Baker CL, Walker M, Arat S, Ananda G, Petkova P et al. 2019. Tissue-specific trans regulation of the mouse epigenome. Genetics 211:831–45
    [Google Scholar]
  5. 5. 
    Baker Z, Schumer M, Haba Y, Bashkirova L, Holland C et al. 2017. Repeated losses of PRDM9-directed recombination despite the conservation of PRDM9 across vertebrates. eLife 6:e24133
    [Google Scholar]
  6. 6. 
    Barde I, Laurenti E, Verp S, Groner AC, Towne C et al. 2009. Regulation of episomal gene expression by KRAB/KAP1-mediated histone modifications. J. Virol. 83:5574–80
    [Google Scholar]
  7. 7. 
    Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C et al. 2010. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327:836–40
    [Google Scholar]
  8. 8. 
    Bellefroid EJ, Lecocq PJ, Benhida A, Poncelet DA, Belayew A, Martial JA 1989. The human genome contains hundreds of genes coding for finger proteins of the Krüppel type. DNA 8:377–87
    [Google Scholar]
  9. 9. 
    Bellefroid EJ, Marine JC, Ried T, Lecocq PJ, Riviere M et al. 1993. Clustered organization of homologous KRAB zinc-finger genes with enhanced expression in human T lymphoid cells. EMBO J 12:1363–74
    [Google Scholar]
  10. 10. 
    Bellefroid EJ, Poncelet DA, Lecocq PJ, Revelant O, Martial JA 1991. The evolutionarily conserved Krüppel-associated box domain defines a subfamily of eukaryotic multifingered proteins. PNAS 88:3608–12
    [Google Scholar]
  11. 11. 
    Bhaya D, Davison M, Barrangou R 2011. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu. Rev. Genet. 45:273–97
    [Google Scholar]
  12. 12. 
    Birtle Z, Ponting CP. 2006. Meisetz and the birth of the KRAB motif. Bioinformatics 22:2841–45
    [Google Scholar]
  13. 13. 
    Boonen SE, Mackay DJ, Hahnemann JM, Docherty L, Gronskov K et al. 2013. Transient neonatal diabetes, ZFP57, and hypomethylation of multiple imprinted loci: a detailed follow-up. Diabetes Care 36:505–12
    [Google Scholar]
  14. 14. 
    Brayer KJ, Segal DJ. 2008. Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains. Cell Biochem. Biophys. 50:111–31
    [Google Scholar]
  15. 15. 
    Brick K, Smagulova F, Khil P, Camerini-Otero RD, Petukhova GV 2012. Genetic recombination is directed away from functional genomic elements in mice. Nature 485:642–45
    [Google Scholar]
  16. 16. 
    Brind'Amour J, Kobayashi H, Richard Albert J, Shirane K, Sakashita A et al. 2018. LTR retrotransposons transcribed in oocytes drive species-specific and heritable changes in DNA methylation. Nat. Commun. 9:3331
    [Google Scholar]
  17. 17. 
    Brown RS. 2005. Zinc finger proteins: getting a grip on RNA. Curr. Opin. Struct. Biol. 15:94–98
    [Google Scholar]
  18. 18. 
    Casademunt E, Carter BD, Benzel I, Frade JM, Dechant G, Barde YA 1999. The zinc finger protein NRIF interacts with the neurotrophin receptor p75(NTR) and participates in programmed cell death. EMBO J 18:6050–61
    [Google Scholar]
  19. 19. 
    Choo Y, Klug A. 1993. A role in DNA binding for the linker sequences of the first three zinc fingers of TFIIIA. Nucleic Acids Res 21:3341–46
    [Google Scholar]
  20. 20. 
    Chuong EB, Elde NC, Feschotte C 2017. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18:71–86
    [Google Scholar]
  21. 21. 
    Collins T, Stone JR, Williams AJ 2001. All in the family: the BTB/POZ, KRAB, and SCAN domains. Mol. Cell. Biol. 21:3609–15
    [Google Scholar]
  22. 22. 
    Coluccio A, Ecco G, Duc J, Offner S, Turelli P, Trono D 2018. Individual retrotransposon integrants are differentially controlled by KZFP/KAP1-dependent histone methylation, DNA methylation and TET-mediated hydroxymethylation in naive embryonic stem cells. Epigenet. Chromatin 11:7
    [Google Scholar]
  23. 23. 
    Constancia M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A et al. 2002. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417:945–48
    [Google Scholar]
  24. 24. 
    Coop G, Myers SR. 2007. Live hot, die young: transmission distortion in recombination hotspots. PLOS Genet 3:e35
    [Google Scholar]
  25. 25. 
    Cornelis G, Funk M, Vernochet C, Leal F, Tarazona OA et al. 2017. An endogenous retroviral envelope syncytin and its cognate receptor identified in the viviparous placental Mabuya lizard. PNAS 114:E10991–1000
    [Google Scholar]
  26. 26. 
    Corsinotti A, Kapopoulou A, Gubelmann C, Imbeault M, Santoni de Sio FR et al. 2013. Global and stage specific patterns of Krüppel-associated-box zinc finger protein gene expression in murine early embryonic cells. PLOS ONE 8:e56721
    [Google Scholar]
  27. 27. 
    Deniz Ö, de la Rica L, Cheng KCL, Spensberger D, Branco MR 2018. SETDB1 prevents TET2-dependent activation of IAP retroelements in naïve embryonic stem cells. Genome Biol 19:6
    [Google Scholar]
  28. 28. 
    Dupressoir A, Lavialle C, Heidmann T 2012. From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta 33:663–71
    [Google Scholar]
  29. 29. 
    Ecco G, Cassano M, Kauzlaric A, Duc J, Coluccio A et al. 2016. Transposable elements and their KRAB-ZFP controllers regulate gene expression in adult tissues. Dev. Cell 36:611–23
    [Google Scholar]
  30. 30. 
    Emerson RO, Thomas JH. 2009. Adaptive evolution in zinc finger transcription factors. PLOS Genet 5:e1000325
    [Google Scholar]
  31. 31. 
    Emerson RO, Thomas JH. 2011. Gypsy and the birth of the SCAN domain. J. Virol. 85:12043–52
    [Google Scholar]
  32. 32. 
    Fernandes JD, Haeussler M, Armstrong J, Tigyi K, Gu J et al. 2018. KRAB zinc finger proteins coordinate across evolutionary time scales to battle retroelements. bioRxiv 429563. https://doi.org/10.1101/429563
    [Crossref]
  33. 33. 
    Fonti G, Marcaida M, Bryan L, Traeger S, Kalantzi A et al. 2019. KAP1 is an antiparallel dimer with a natively functional asymmetry. bioRxiv 553511. https://doi.org/10.1101/553511
    [Crossref]
  34. 34. 
    Friedli M, Trono D. 2015. The developmental control of transposable elements and the evolution of higher species. Annu. Rev. Cell Dev. Biol. 31:429–51
    [Google Scholar]
  35. 35. 
    Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang XP et al. 1996. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev 10:2067–78
    [Google Scholar]
  36. 36. 
    Frietze S, O'Geen H, Blahnik KR, Jin VX, Farnham PJ 2010. ZNF274 recruits the histone methyltransferase SETDB1 to the 3′ ends of ZNF genes. PLOS ONE 5:e15082
    [Google Scholar]
  37. 36a. 
    García-García MJ, Shibata M, Anderson KV 2008. Chato, a KRAB zinc-finger protein, regulates convergent extension in the mouse embryo. Development 135:18305362
    [Google Scholar]
  38. 37. 
    Hahn MA, Wu X, Li AX, Hahn T, Pfeifer GP 2011. Relationship between gene body DNA methylation and intragenic H3K9me3 and H3K36me3 chromatin marks. PLOS ONE 6:e18844
    [Google Scholar]
  39. 38. 
    Hayashi K, Yoshida K, Matsui Y 2005. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 438:374–78
    [Google Scholar]
  40. 39. 
    Hong S, Kim D. 2017. Computational characterization of chromatin domain boundary-associated genomic elements. Nucleic Acids Res 45:10403–14
    [Google Scholar]
  41. 40. 
    Huntley S, Baggott DM, Hamilton AT, Tran-Gyamfi M, Yang S et al. 2006. A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors. Genome Res 16:669–77
    [Google Scholar]
  42. 41. 
    Imai Y, Baudat F, Taillepierre M, Stanzione M, Toth A, de Massy B 2017. The PRDM9 KRAB domain is required for meiosis and involved in protein interactions. Chromosoma 126:681–95
    [Google Scholar]
  43. 42. 
    Imbeault M, Helleboid PY, Trono D 2017. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature 543:550–54
    [Google Scholar]
  44. 43. 
    Ivanov AV, Peng H, Yurchenko V, Yap KL, Negorev DG et al. 2007. PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol. Cell 28:823–37
    [Google Scholar]
  45. 44. 
    Ivanov D, Stone JR, Maki JL, Collins T, Wagner G 2005. Mammalian SCAN domain dimer is a domain-swapped homolog of the HIV capsid C-terminal domain. Mol. Cell 17:137–43
    [Google Scholar]
  46. 45. 
    Iyengar S, Ivanov AV, Jin VX, Rauscher FJ 3rd, Farnham PJ 2011. Functional analysis of KAP1 genomic recruitment. Mol. Cell. Biol. 31:1833–47
    [Google Scholar]
  47. 46. 
    Jacobs FM, Greenberg D, Nguyen N, Haeussler M, Ewing AD et al. 2014. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516:242–45
    [Google Scholar]
  48. 47. 
    Johnson WE, Coffin JM. 1999. Constructing primate phylogenies from ancient retrovirus sequences. PNAS 96:10254–60
    [Google Scholar]
  49. 48. 
    Jones PA, Ohtani H, Chakravarthy A, De Carvalho DD 2019. Epigenetic therapy in immune-oncology. Nat. Rev. Cancer 19:151–61
    [Google Scholar]
  50. 49. 
    Juriloff DM, Harris MJ, Dewell SL, Brown CJ, Mager DL et al. 2005. Investigations of the genomic region that contains the clf1 mutation, a causal gene in multifactorial cleft lip and palate in mice. Birth Defects Res. A Clin. Mol. Teratol. 73:103–13
    [Google Scholar]
  51. 50. 
    Kano H, Kurahashi H, Toda T 2007. Genetically regulated epigenetic transcriptional activation of retrotransposon insertion confers mouse dactylaplasia phenotype. PNAS 104:19034–39
    [Google Scholar]
  52. 51. 
    Kapitonov VV, Jurka J. 2008. A universal classification of eukaryotic transposable elements implemented in Repbase. Nat. Rev. Genet. 9:411–12
    [Google Scholar]
  53. 52. 
    Kapopoulou A, Mathew L, Wong A, Trono D, Jensen JD 2016. The evolution of gene expression and binding specificity of the largest transcription factor family in primates. Evolution 70:167–80
    [Google Scholar]
  54. 53. 
    Kauzlaric A, Ecco G, Cassano M, Duc J, Imbeault M, Trono D 2017. The mouse genome displays highly dynamic populations of KRAB-zinc finger protein genes and related genetic units. PLOS ONE 12:e0173746
    [Google Scholar]
  55. 54. 
    Kazazian HH Jr, Moran JV. 2017. Mobile DNA in health and disease. N. Engl. J. Med. 377:361–70
    [Google Scholar]
  56. 55. 
    Kim MS, Kini AG. 2017. Engineering and application of zinc finger proteins and TALEs for biomedical research. Mol. Cells 40:533–41
    [Google Scholar]
  57. 56. 
    Kim SS, Chen YM, O'Leary E, Witzgall R, Vidal M, Bonventre JV 1996. A novel member of the RING finger family, KRIP-1, associates with the KRAB-A transcriptional repressor domain of zinc finger proteins. PNAS 93:15299–304
    [Google Scholar]
  58. 57. 
    Klug A. 2010. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu. Rev. Biochem. 79:213–31
    [Google Scholar]
  59. 58. 
    Krebs CJ, Larkins LK, Khan SM, Robins DM 2005. Expansion and diversification of KRAB zinc-finger genes within a cluster including Regulator of sex-limitation 1 and 2. Genomics 85:752–61
    [Google Scholar]
  60. 59. 
    Krebs CJ, Larkins LK, Price R, Tullis KM, Miller RD, Robins DM 2003. Regulator of sex-limitation (Rsl) encodes a pair of KRAB zinc-finger genes that control sexually dimorphic liver gene expression. Genes Dev 17:2664–74
    [Google Scholar]
  61. 60. 
    Krebs CJ, Robins DM. 2010. A pair of mouse KRAB zinc finger proteins modulates multiple indicators of female reproduction. Biol. Reprod. 82:662–68
    [Google Scholar]
  62. 60a. 
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MCet al. 2001. Initial sequencing and analysis of the human genome. Nature 409:6822860921Erratum. 2001.Nature 412:56566
    [Google Scholar]
  63. 61. 
    Li X, Burton EM, Koganti S, Zhi J, Doyle F et al. 2018. KRAB-ZFP repressors enforce quiescence of oncogenic human herpesviruses. J. Virol. 92:e00298–18
    [Google Scholar]
  64. 62. 
    Li X, Ito M, Zhou F, Youngson N, Zuo X et al. 2008. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev. Cell 15:547–57
    [Google Scholar]
  65. 63. 
    Liao G, Huang J, Fixman ED, Hayward SD 2005. The Epstein-Barr virus replication protein BBLF2/3 provides an origin-tethering function through interaction with the zinc finger DNA binding protein ZBRK1 and the KAP-1 corepressor. J. Virol. 79:245–56
    [Google Scholar]
  66. 64. 
    Lilue J, Doran AG, Fiddes IT, Abrudan M, Armstrong J et al. 2018. Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci. Nat. Genet. 50:1574–83
    [Google Scholar]
  67. 65. 
    Liu Y, Olanrewaju YO, Zhang X, Cheng X 2013. DNA recognition of 5-carboxylcytosine by a Zfp57 mutant at an atomic resolution of 0.97 Å. Biochemistry 52:9310–17
    [Google Scholar]
  68. 66. 
    Liu Y, Toh H, Sasaki H, Zhang X, Cheng X 2012. An atomic model of Zfp57 recognition of CpG methylation within a specific DNA sequence. Genes Dev 26:2374–79
    [Google Scholar]
  69. 67. 
    Looman C, Hellman L, Abrink M 2004. A novel Krüppel-Associated Box identified in a panel of mammalian zinc finger proteins. Mamm. Genome 15:35–40
    [Google Scholar]
  70. 68. 
    Lukic S, Nicolas J-C, Levine AJ 2014. The diversity of zinc-finger genes on human chromosome 19 provides an evolutionary mechanism for defense against inherited endogenous retroviruses. Cell Death Differ 21:381–87
    [Google Scholar]
  71. 69. 
    Ma X, Yang T, Luo Y, Wu L, Jiang Y et al. 2019. TRIM28 promotes HIV-1 latency by SUMOylating CDK9 and inhibiting P-TEFb. eLife 8:e42426
    [Google Scholar]
  72. 70. 
    Macfarlan TS, Gifford WD, Driscoll S, Lettieri K, Rowe HM et al. 2012. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487:57–63
    [Google Scholar]
  73. 71. 
    Mackay DJ, Callaway JL, Marks SM, White HE, Acerini CL et al. 2008. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat. Genet. 40:949–51
    [Google Scholar]
  74. 72. 
    Mager DL, Stoye JP. 2015. Mammalian endogenous retroviruses. Microbiol. Spectr. 3:MDNA3-0009–2014
    [Google Scholar]
  75. 73. 
    Margolin JF, Friedman JR, Meyer WK, Vissing H, Thiesen HJ, Rauscher FJ 3rd 1994. Krüppel-associated boxes are potent transcriptional repression domains. PNAS 91:4509–13
    [Google Scholar]
  76. 74. 
    Mark C, Abrink M, Hellman L 1999. Comparative analysis of KRAB zinc finger proteins in rodents and man: evidence for several evolutionarily distinct subfamilies of KRAB zinc finger genes. DNA Cell Biol 18:381–96
    [Google Scholar]
  77. 75. 
    Marraffini LA, Sontheimer EJ. 2010. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet. 11:181–90
    [Google Scholar]
  78. 76. 
    Matsui T, Leung D, Miyashita H, Maksakova IA, Miyachi H et al. 2010. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464:927–31
    [Google Scholar]
  79. 77. 
    McNamara RP, Reeder JE, McMillan EA, Bacon CW, McCann JL, D'Orso I 2016. KAP1 recruitment of the 7SK snRNP complex to promoters enables transcription elongation by RNA polymerase II. Mol. Cell 61:39–53
    [Google Scholar]
  80. 78. 
    Miller J, McLachlan AD, Klug A 1985. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4:1609–14
    [Google Scholar]
  81. 79. 
    Molparia B, Goyal K, Sarkar A, Kumar S, Sundar D 2010. ZiF-Predict: a web tool for predicting DNA-binding specificity in C2H2 zinc finger proteins. Genom. Proteom. Bioinform. 8:122–26
    [Google Scholar]
  82. 80. 
    Moosmann P, Georgiev O, Le Douarin B, Bourquin JP, Schaffner W 1996. Transcriptional repression by RING finger protein TIF1β that interacts with the KRAB repressor domain of KOX1. Nucleic Acids Res 24:4859–67
    [Google Scholar]
  83. 81. 
    Myers S, Bowden R, Tumian A, Bontrop RE, Freeman C et al. 2010. Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science 327:876–79
    [Google Scholar]
  84. 82. 
    Najafabadi HS, Albu M, Hughes TR 2015. Identification of C2H2-ZF binding preferences from ChIP-seq data using RCADE. Bioinformatics 31:2879–81
    [Google Scholar]
  85. 83. 
    Najafabadi HS, Garton M, Weirauch MT, Mnaimneh S, Yang A et al. 2017. Non-base-contacting residues enable kaleidoscopic evolution of metazoan C2H2 zinc finger DNA binding. Genome Biol 18:167
    [Google Scholar]
  86. 84. 
    Najafabadi HS, Mnaimneh S, Schmitges FW, Garton M, Lam KN et al. 2015. C2H2 zinc finger proteins greatly expand the human regulatory lexicon. Nat. Biotechnol. 33:555–62
    [Google Scholar]
  87. 85. 
    Nellaker C, Keane TM, Yalcin B, Wong K, Agam A et al. 2012. The genomic landscape shaped by selection on transposable elements across 18 mouse strains. Genome Biol 13:R45
    [Google Scholar]
  88. 86. 
    Ngondo-Mbongo RP, Myslinski E, Aster JC, Carbon P 2013. Modulation of gene expression via overlapping binding sites exerted by ZNF143, Notch1 and THAP11. Nucleic Acids Res 41:4000–14
    [Google Scholar]
  89. 87. 
    Nielsen AL, Ortiz JA, You J, Oulad-Abdelghani M, Khechumian R et al. 1999. Interaction with members of the heterochromatin protein 1 (HP1) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family. EMBO J 18:6385–95
    [Google Scholar]
  90. 88. 
    Nishitsuji H, Sawada L, Sugiyama R, Takaku H 2015. ZNF10 inhibits HIV-1 LTR activity through interaction with NF-κB and Sp1 binding motifs. FEBS Lett 589:2019–25
    [Google Scholar]
  91. 89. 
    Oliver PL, Goodstadt L, Bayes JJ, Birtle Z, Roach KC et al. 2009. Accelerated evolution of the Prdm9 speciation gene across diverse metazoan taxa. PLOS Genet 5:e1000753
    [Google Scholar]
  92. 90. 
    Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD 2019. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20:89–108
    [Google Scholar]
  93. 91. 
    Pastuzyn ED, Day CE, Kearns RB, Kyrke-Smith M, Taibi AV et al. 2018. The neuronal gene Arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer. Cell 172:275–88.e18
    [Google Scholar]
  94. 92. 
    Patel A, Yang P, Tinkham M, Pradhan M, Sun MA et al. 2018. DNA conformation induces adaptable binding by tandem zinc finger proteins. Cell 173:221–33.e12
    [Google Scholar]
  95. 93. 
    Pavletich NP, Pabo CO. 1991. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å. Science 252:809–17
    [Google Scholar]
  96. 94. 
    Pavletich NP, Pabo CO. 1993. Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science 261:1701–7
    [Google Scholar]
  97. 95. 
    Peng H, Begg GE, Harper SL, Friedman JR, Speicher DW, Rauscher FJ 3rd 2000. Biochemical analysis of the Krüppel-associated box (KRAB) transcriptional repression domain. J. Biol. Chem. 275:18000–10
    [Google Scholar]
  98. 96. 
    Pengue G, Calabro V, Bartoli PC, Pagliuca A, Lania L 1994. Repression of transcriptional activity at a distance by the evolutionarily conserved KRAB domain present in a subfamily of zinc finger proteins. Nucleic Acids Res 22:2908–14
    [Google Scholar]
  99. 97. 
    Plamondon JA, Harris MJ, Mager DL, Gagnier L, Juriloff DM 2011. The clf2 gene has an epigenetic role in the multifactorial etiology of cleft lip and palate in the A/WySn mouse strain. Birth Defects Res. A Clin. Mol. Teratol. 91:716–27
    [Google Scholar]
  100. 98. 
    Pontis J, Planet E, Offner S, Turelli P, Duc J et al. 2019. Hominoid-specific transposable elements and KZFPs facilitate human embryonic genome activation and control transcription in naive human ESCs. Cell Stem Cell 24:724–35
    [Google Scholar]
  101. 99. 
    Powers NR, Parvanov ED, Baker CL, Walker M, Petkov PM, Paigen K 2016. The meiotic recombination activator PRDM9 trimethylates both H3K36 and H3K4 at recombination hotspots in vivo. PLOS Genet 12:e1006146
    [Google Scholar]
  102. 100. 
    Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J et al. 2011. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol. Cell 44:361–72
    [Google Scholar]
  103. 101. 
    Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID et al. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–80
    [Google Scholar]
  104. 101a. 
    Ratnam S, Engler P, Bozek G, Mao L, Podlutsky Aet al. 2014. Identification of Ssm1b, a novel modifier of DNA methylation, and its expression during mouse embryogenesis. Development 141:10202434
    [Google Scholar]
  105. 102. 
    Reynolds L, Ullman C, Moore M, Isalan M, West MJ et al. 2003. Repression of the HIV-1 5′ LTR promoter and inhibition of HIV-1 replication by using engineered zinc-finger transcription factors. PNAS 100:1615–20
    [Google Scholar]
  106. 103. 
    Rowe HM, Jakobsson J, Mesnard D, Rougemont J, Reynard S et al. 2010. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463:237–40
    [Google Scholar]
  107. 104. 
    Rowe HM, Kapopoulou A, Corsinotti A, Fasching L, Macfarlan TS et al. 2013. TRIM28 repression of retrotransposon-based enhancers is necessary to preserve transcriptional dynamics in embryonic stem cells. Genome Res 23:452–61
    [Google Scholar]
  108. 105. 
    Ryan RF, Schultz DC, Ayyanathan K, Singh PB, Friedman JR et al. 1999. KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Krüppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing. Mol. Cell. Biol. 19:4366–78
    [Google Scholar]
  109. 106. 
    Schmitges FW, Radovani E, Najafabadi HS, Barazandeh M, Campitelli LF et al. 2016. Multiparameter functional diversity of human C2H2 zinc finger proteins. Genome Res 26:1742–52
    [Google Scholar]
  110. 107. 
    Schuh R, Aicher W, Gaul U, Côté S, Preiss A et al. 1986. A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Krüppel, a Drosophila segmentation gene. Cell 47:1025–32
    [Google Scholar]
  111. 108. 
    Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ 3rd 2002. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 16:919–32
    [Google Scholar]
  112. 109. 
    Schultz DC, Friedman JR, Rauscher FJ 3rd 2001. Targeting histone deacetylase complexes via KRAB-zinc finger proteins: The PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2α subunit of NuRD. Genes Dev 15:428–43
    [Google Scholar]
  113. 110. 
    Seberg O, Petersen G. 2009. A unified classification system for eukaryotic transposable elements should reflect their phylogeny. Nat. Rev. Genet. 10:276
    [Google Scholar]
  114. 110a. 
    Shibata M, García-García MJ 2011. The mouse KRAB zinc-finger protein CHATO is required in embryonic-derived tissues to control yolk sac and placenta morphogenesis. Dev. Biol 349:233141
    [Google Scholar]
  115. 111. 
    Tadepally HD, Burger G, Aubry M 2008. Evolution of C2H2-zinc finger genes and subfamilies in mammals: species-specific duplication and loss of clusters, genes and effector domains. BMC Evol. Biol. 8:176
    [Google Scholar]
  116. 112. 
    Takahashi N, Coluccio A, Thorball CW, Planet E, Shi H et al. 2019. ZNF445 is a primary regulator of genomic imprinting. Genes Dev 33:49–54
    [Google Scholar]
  117. 113. 
    Thomas JH, Emerson RO, Shendure J 2009. Extraordinary molecular evolution in the PRDM9 fertility gene. PLOS ONE 4:e8505
    [Google Scholar]
  118. 114. 
    Thomas JH, Schneider S. 2011. Coevolution of retroelements and tandem zinc finger genes. Genome Res 21:1800–12
    [Google Scholar]
  119. 115. 
    Thompson PJ, Macfarlan TS, Lorincz MC 2016. Long terminal repeats: from parasitic elements to building blocks of the transcriptional regulatory repertoire. Mol. Cell 62:766–76
    [Google Scholar]
  120. 116. 
    Treger RS, Pope SD, Kong Y, Tokuyama M, Taura M, Iwasaki A 2019. The lupus susceptibility locus Sgp3 encodes the suppressor of endogenous retrovirus expression SNERV. Immunity 50:334–47.e9
    [Google Scholar]
  121. 117. 
    Trono D. 2015. Transposable elements, polydactyl proteins, and the genesis of human-specific transcription networks. Cold Spring Harb. Symp. Quant. Biol. 80:281–88
    [Google Scholar]
  122. 118. 
    Tucci V, Isles AR, Kelsey G, Ferguson-Smith AC 2019. Genomic imprinting and physiological processes in mammals. Cell 176:952–65
    [Google Scholar]
  123. 119. 
    Turelli P, Castro-Diaz N, Marzetta F, Kapopoulou A, Raclot C et al. 2014. Interplay of TRIM28 and DNA methylation in controlling human endogenous retroelements. Genome Res 24:1260–70
    [Google Scholar]
  124. 120. 
    Urrutia R. 2003. KRAB-containing zinc-finger repressor proteins. Genome Biol 4:231
    [Google Scholar]
  125. 121. 
    Valle-García D, Qadeer ZA, McHugh DS, Ghiraldini FG, Chowdhury AH et al. 2016. ATRX binds to atypical chromatin domains at the 3′ exons of zinc finger genes to preserve H3K9me3 enrichment. Epigenetics 11:398–414
    [Google Scholar]
  126. 121a. 
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJet al. 2001. The sequence of the human genome. Science 291:5507130451
    [Google Scholar]
  127. 122. 
    Volkman HE, Stetson DB. 2014. The enemy within: endogenous retroelements and autoimmune disease. Nat. Immunol. 15:415–22
    [Google Scholar]
  128. 123. 
    Wang J, Wang J, Tian CY 2016. Evolution of KRAB-containing zinc finger proteins and their roles in species evolution. Yi Chuan 38:971–78
    [Google Scholar]
  129. 123a. 
    Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JFet al. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature 420:691552062
    [Google Scholar]
  130. 124. 
    Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P et al. 2007. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8:973–82
    [Google Scholar]
  131. 125. 
    Witzgall R, O'Leary E, Leaf A, Onaldi D, Bonventre JV 1994. The Krüppel-associated box-A (KRAB-A) domain of zinc finger proteins mediates transcriptional repression. PNAS 91:4514–18
    [Google Scholar]
  132. 126. 
    Wiznerowicz M, Jakobsson J, Szulc J, Liao S, Quazzola A et al. 2007. The Krüppel-associated box repressor domain can trigger de novo promoter methylation during mouse early embryogenesis. J. Biol. Chem. 282:34535–41
    [Google Scholar]
  133. 127. 
    Wolf D, Goff SP. 2007. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell 131:46–57
    [Google Scholar]
  134. 128. 
    Wolf D, Goff SP. 2009. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature 458:1201–4
    [Google Scholar]
  135. 129. 
    Wolf G, Yang P, Fuchtbauer AC, Fuchtbauer EM, Silva AM et al. 2015. The KRAB zinc finger protein ZFP809 is required to initiate epigenetic silencing of endogenous retroviruses. Genes Dev 29:538–54
    [Google Scholar]
  136. 130. 
    Wolfe SA, Nekludova L, Pabo CO 2000. DNA recognition by Cys2His2 zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 29:183–212
    [Google Scholar]
  137. 131. 
    Yang P, Wang Y, Hoang D, Tinkham M, Patel A et al. 2017. A placental growth factor is silenced in mouse embryos by the zinc finger protein ZFP568. Science 356:757–59
    [Google Scholar]
  138. 132. 
    Yano K, Ueki N, Oda T, Seki N, Masuho Y, Muramatsu M 2000. Identification and characterization of human ZNF274 cDNA, which encodes a novel Krüppel-type zinc-finger protein having nucleolar targeting ability. Genomics 65:75–80
    [Google Scholar]
  139. 133. 
    Zuo X, Sheng J, Lau HT, McDonald CM, Andrade M et al. 2012. Zinc finger protein ZFP57 requires its co-factor to recruit DNA methyltransferases and maintains DNA methylation imprint in embryonic stem cells via its transcriptional repression domain. J. Biol. Chem. 287:2107–18
    [Google Scholar]
/content/journals/10.1146/annurev-genet-112618-043717
Loading
/content/journals/10.1146/annurev-genet-112618-043717
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error