1932

Abstract

Cells utilize transcriptional and posttranscriptional mechanisms to alter gene expression in response to environmental cues. Gene-specific controls, including changing the translation of specific messenger RNAs (mRNAs), provide a rapid means to respond precisely to different conditions. Upstream open reading frames (uORFs) are known to control the translation of mRNAs. Recent studies in bacteria and eukaryotes have revealed the functions of evolutionarily conserved uORF-encoded peptides. Some of these uORF-encoded nascent peptides enable responses to specific metabolites to modulate the translation of their mRNAs by stalling ribosomes and through ribosome stalling may also modulate the level of their mRNAs. In this review, we highlight several examples of conserved uORF nascent peptides that stall ribosomes to regulate gene expression in response to specific metabolites in bacteria, fungi, mammals, and plants.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-112618-043822
2020-11-23
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/genet/54/1/annurev-genet-112618-043822.html?itemId=/content/journals/10.1146/annurev-genet-112618-043822&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Akimoto C, Sakashita E, Kasashima K, Kuroiwa K, Tominaga K et al. 2013. Translational repression of the McKusick–Kaufman syndrome transcript by unique upstream open reading frames encoding mitochondrial proteins with alternative polyadenylation sites. Biochim. Biophys. Acta Gen. Subj. 1830:2728–38
    [Google Scholar]
  2. 2. 
    Alatorre-Cobos F, Cruz-Ramírez A, Hayden CA, Perez-Torres CA, Chauvin AL et al. 2012. Translational regulation of Arabidopsis XIPOTL1 is modulated by phosphocholine levels via the phylogenetically conserved upstream open reading frame 30. J. Exp. Bot. 63:5203–21
    [Google Scholar]
  3. 3. 
    Alderete JP, Jarrahian S, Geballe AP 1999. Translational effects of mutations and polymorphisms in a repressive upstream open reading frame of the human cytomegalovirus UL4 gene. J. Virol. 73:8330–37
    [Google Scholar]
  4. 4. 
    Arenz S, Bock LV, Graf M, Innis CA, Beckmann R et al. 2016. A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest. Nat. Commun. 7:12026
    [Google Scholar]
  5. 5. 
    Ben-Zvi T, Pushkarev A, Seri H, Elgrably-Weiss M, Papenfort K, Altuvia S 2019. mRNA dynamics and alternative conformations adopted under low and high arginine concentrations control polyamine biosynthesis in Salmonella. . PLOS Genet 15:e1007646
    [Google Scholar]
  6. 6. 
    Bhushan S, Hoffmann T, Seidelt B, Frauenfeld J, Mielke T et al. 2011. SecM-stalled ribosomes adopt an altered geometry at the peptidyl transferase center. PLOS Biol 9:e1000581
    [Google Scholar]
  7. 7. 
    Bhushan S, Meyer H, Starosta AL, Becker T, Mielke T et al. 2010. Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide. Mol. Cell 40:138–46
    [Google Scholar]
  8. 8. 
    Bischoff L, Berninghausen O, Beckmann R 2014. Molecular basis for the ribosome functioning as an L-tryptophan sensor. Cell Rep 9:469–75
    [Google Scholar]
  9. 9. 
    Cao J, Geballe AP. 1995. Translational inhibition by a human cytomegalovirus upstream open reading frame despite inefficient utilization of its AUG codon. J. Virol. 69:1030–36
    [Google Scholar]
  10. 10. 
    Cao J, Geballe AP. 1996. Inhibition of nascent-peptide release at translation termination. Mol. Cell. Biol. 16:7109–14
    [Google Scholar]
  11. 11. 
    Chen J, Brunner A-D, Cogan JZ, Nuñez JK, Fields AP et al. 2020. Pervasive functional translation of noncanonical human open reading frames. Science 367:1140–46
    [Google Scholar]
  12. 12. 
    Chiba S, Ito K. 2012. Multisite ribosomal stalling: a unique mode of regulatory nascent chain action revealed for MifM. Mol. Cell 47:863–72
    [Google Scholar]
  13. 13. 
    Chiba S, Kanamori T, Ueda T, Akiyama Y, Pogliano K, Ito K 2011. Recruitment of a species-specific translational arrest module to monitor different cellular processes. PNAS 108:6073–78
    [Google Scholar]
  14. 14. 
    Chiba S, Lamsa A, Pogliano K 2009. A ribosome-nascent chain sensor of membrane protein biogenesis in Bacillus subtilis. . EMBO J 28:3461–75
    [Google Scholar]
  15. 15. 
    Cloutier P, Poitras C, Faubert D, Bouchard A, Blanchette M et al. 2020. Upstream ORF-encoded ASDURF is a novel prefoldin-like subunit of the PAQosome. J. Proteome Res. 19:18–27
    [Google Scholar]
  16. 16. 
    Cruz-Vera LR, Rajagopal S, Squires C, Yanofsky C 2005. Features of ribosome-peptidyl-tRNA interactions essential for tryptophan induction of tna operon expression. Mol. Cell 19:333–43
    [Google Scholar]
  17. 17. 
    Cruz-Vera LR, Sachs MS, Squires CL, Yanofsky C 2011. Nascent polypeptide sequences that influence ribosome function. Curr. Opin. Microbiol. 14:160–66
    [Google Scholar]
  18. 18. 
    Cruz-Vera LR, Yanofsky C. 2008. Conserved residues Asp16 and Pro24 of TnaC-tRNAPro participate in tryptophan induction of tna operon expression. J. Bacteriol. 190:4791–97
    [Google Scholar]
  19. 19. 
    Davis R. 1986. Compartmental and regulatory mechanisms in the arginine pathways of Neurospora crassa and Saccharomyces cerevisiae. Microbiol. Rev 50:280–313
    [Google Scholar]
  20. 20. 
    Degnin CR, Schleiss MR, Cao J, Geballe AP 1993. Translational inhibition mediated by a short upstream open reading frame in the human cytomegalovirus gpUL4 (gp48) transcript. J. Virol. 67:5514–21
    [Google Scholar]
  21. 21. 
    Dever TE, Ivanov IP. 2018. Roles of polyamines in translation. J. Biol. Chem. 293:18719–29
    [Google Scholar]
  22. 22. 
    Diaz de Arce AJ, Noderer WL, Wang CL 2018. Complete motif analysis of sequence requirements for translation initiation at non-AUG start codons. Nucleic Acids Res 46:985–94
    [Google Scholar]
  23. 23. 
    Dunkle JA, Xiong L, Mankin AS, Cate JH 2010. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. PNAS 107:17152–57
    [Google Scholar]
  24. 24. 
    Emmanuel JS, Sengupta A, Gordon ER, Noble JT, Cruz-Vera LR 2019. The regulatory TnaC nascent peptide preferentially inhibits release factor 2-mediated hydrolysis of peptidyl-tRNA. J. Biol. Chem. 294:19224–35
    [Google Scholar]
  25. 25. 
    Freitag M, Dighde N, Sachs MS 1996. A UV-induced mutation in Neurospora that affects translational regulation in response to arginine. Genetics 142:117–27
    [Google Scholar]
  26. 26. 
    Fujiwara K, Ito K, Chiba S 2018. MifM-instructed translation arrest involves nascent chain interactions with the exterior as well as the interior of the ribosome. Sci. Rep. 8:10311
    [Google Scholar]
  27. 27. 
    Gaba A, Jacobson A, Sachs MS 2005. Ribosome occupancy of the yeast CPA1 upstream open reading frame termination codon modulates nonsense-mediated mRNA decay. Mol. Cell 20:449–60
    [Google Scholar]
  28. 28. 
    Gaba A, Wang Z, Krishnamoorthy T, Hinnebusch AG, Sachs MS 2001. Physical evidence for distinct mechanisms of translational control by upstream open reading frames. EMBO J 20:6453–63
    [Google Scholar]
  29. 29. 
    Garza-Sanchez F, Janssen BD, Hayes CS 2006. Prolyl-tRNAPro in the A-site of SecM-arrested ribosomes inhibits the recruitment of transfer-messenger RNA. J. Biol. Chem. 281:34258–68
    [Google Scholar]
  30. 30. 
    Gong M, Cruz-Vera LR, Yanofsky C 2007. Ribosome recycling factor and release factor 3 action promotes TnaC-peptidyl-tRNA dropoff and relieves ribosome stalling during tryptophan induction of tna operon expression in Escherichia coli. J. Bacteriol 189:3147–55
    [Google Scholar]
  31. 31. 
    Gryczan TJ, Grandi G, Hahn J, Grandi R, Dubnau D 1980. Conformational alteration of mRNA structure and the posttranscriptional regulation of erythromycin-induced drug resistance. Nucleic Acids Res 8:6081–97
    [Google Scholar]
  32. 32. 
    Gumbart J, Schreiner E, Wilson DN, Beckmann R, Schulten K 2012. Mechanisms of SecM-mediated stalling in the ribosome. Biophys. J. 103:331–41
    [Google Scholar]
  33. 33. 
    Gupta P, Liu B, Klepacki D, Gupta V, Schulten K et al. 2016. Nascent peptide assists the ribosome in recognizing chemically distinct small molecules. Nat. Chem. Biol. 12:153–58
    [Google Scholar]
  34. 34. 
    Gutierrez E, Shin BS, Woolstenhulme CJ, Kim JR, Saini P et al. 2013. eIF5A promotes translation of polyproline motifs. Mol. Cell 51:35–45
    [Google Scholar]
  35. 35. 
    Hanfrey C, Elliott KA, Franceschetti M, Mayer MJ, Illingworth C, Michael AJ 2005. A dual upstream open reading frame-based autoregulatory circuit controlling polyamine-responsive translation. J. Biol. Chem. 280:39229–37
    [Google Scholar]
  36. 36. 
    Hanfrey C, Franceschetti M, Mayer MJ, Illingworth C, Michael AJ 2002. Abrogation of upstream open reading frame-mediated translational control of a plant S-adenosylmethionine decarboxylase results in polyamine disruption and growth perturbations. J. Biol. Chem. 277:44131–39
    [Google Scholar]
  37. 37. 
    Hardy S, Kostantin E, Wang SJ, Hristova T, Galicia-Vazquez G et al. 2019. Magnesium-sensitive upstream ORF controls PRL phosphatase expression to mediate energy metabolism. PNAS 116:2925–34
    [Google Scholar]
  38. 38. 
    Hayden CA, Jorgensen RA. 2007. Identification of novel conserved peptide uORF homology groups in Arabidopsis and rice reveals ancient eukaryotic origin of select groups and preferential association with transcription factor-encoding genes. BMC Biol 5:32
    [Google Scholar]
  39. 39. 
    He F, Jacobson A. 2015. Nonsense-mediated mRNA decay: Degradation of defective transcripts is only part of the story. Annu. Rev. Genet. 49:339–66
    [Google Scholar]
  40. 40. 
    Herrero Del Valle A, Seip B, Cervera-Marzal I, Sacheau G, Seefeldt AC, Innis CA 2020. Ornithine capture by a translating ribosome controls bacterial polyamine synthesis. Nat. Microbiol. 5:554–61
    [Google Scholar]
  41. 41. 
    Hill JR, Morris DR. 1993. Cell-specific translational regulation of S-adenosylmethionine decarboxylase mRNA: dependence on translation and coding capacity of the cis-acting upstream open reading frame. J. Biol. Chem. 269:726–31
    [Google Scholar]
  42. 42. 
    Hinnebusch AG. 2011. Molecular mechanism of scanning and start codon selection in eukaryotes. Microbiol. Mol. Biol. Rev. 75:434–67
    [Google Scholar]
  43. 43. 
    Hinnebusch AG. 2014. The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem. 83:779–812
    [Google Scholar]
  44. 44. 
    Hinnebusch AG, Ivanov IP, Sonenberg N 2016. Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science 352:1413–16
    [Google Scholar]
  45. 45. 
    Horinouchi S, Weisblum B. 1980. Posttranscriptional modification of mRNA conformation: mechanism that regulates erythromycin-induced resistance. PNAS 77:7079–83
    [Google Scholar]
  46. 46. 
    Imai A, Akiyama T, Kato T, Sato S, Tabata S et al. 2004. Spermine is not essential for survival of Arabidopsis. . FEBS Lett 556:148–52
    [Google Scholar]
  47. 47. 
    Imai A, Hanzawa Y, Komura M, Yamamoto KT, Komeda Y, Takahashi T 2006. The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene. Development 133:3575–85
    [Google Scholar]
  48. 48. 
    Ishii E, Chiba S, Hashimoto N, Kojima S, Homma M et al. 2015. Nascent chain-monitored remodeling of the Sec machinery for salinity adaptation of marine bacteria. PNAS 112:E5513–22
    [Google Scholar]
  49. 49. 
    Ishitsuka S, Yamamoto M, Miyamoto M, Imai A, Motose H, Takahashi T 2019. Complexity and conservation of thermospermine-responsive uORFs of SAC51 family genes in angiosperms. Front. Plant Sci. 10:564
    [Google Scholar]
  50. 50. 
    Ito K, Chiba S. 2013. Arrest peptides: cis-acting modulators of translation. Annu. Rev. Biochem. 82:171–202
    [Google Scholar]
  51. 51. 
    Ito K, Mori H, Chiba S 2018. Monitoring substrate enables real-time regulation of a protein localization pathway. FEMS Microbiol. Lett. 365:fny109
    [Google Scholar]
  52. 52. 
    Ivanov IP, Atkins JF, Michael AJ 2010. A profusion of upstream open reading frame mechanisms in polyamine-responsive translational regulation. Nucleic Acids Res 38:353–59
    [Google Scholar]
  53. 53. 
    Ivanov IP, Loughran G, Atkins JF 2008. uORFs with unusual translational start codons autoregulate expression of eukaryotic ornithine decarboxylase homologs. PNAS 105:10079–84
    [Google Scholar]
  54. 54. 
    Ivanov IP, Loughran G, Sachs MS, Atkins JF 2010. Initiation context modulates autoregulation of eukaryotic translation initiation factor 1 (eIF1). PNAS 107:18056–60
    [Google Scholar]
  55. 55. 
    Ivanov IP, Shin BS, Loughran G, Tzani I, Young-Baird SK et al. 2018. Polyamine control of translation elongation regulates start site selection on antizyme inhibitor mRNA via ribosome queuing. Mol. Cell 70:254–64
    [Google Scholar]
  56. 56. 
    Janzen DM, Frolova L, Geballe AP 2002. Inhibition of translation termination mediated by an interaction of eukaryotic release factor 1 with a nascent peptidyl-tRNA. Mol. Cell. Biol. 22:8562–70
    [Google Scholar]
  57. 57. 
    Ji Z, Song R, Regev A, Struhl K 2015. Many lncRNAs, 5′UTRs, and pseudogenes are translated and some are likely to express functional proteins. eLife 4:e08890
    [Google Scholar]
  58. 58. 
    Jorgensen RA, Dorantes-Acosta AE. 2012. Conserved peptide upstream open reading frames are associated with regulatory genes in angiosperms. Front. Plant Sci. 3:191
    [Google Scholar]
  59. 59. 
    Jousse C, Bruhat A, Carraro V, Urano F, Ferrara M et al. 2001. Inhibition of CHOP translation by a peptide encoded by an open reading frame localized in the chop 5′UTR. Nucleic Acids Res 29:4341–51
    [Google Scholar]
  60. 60. 
    Juntawong P, Girke T, Bazin J, Bailey-Serres J 2014. Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis. . PNAS 111:E203–12
    [Google Scholar]
  61. 61. 
    Kahana C. 2018. The antizyme family for regulating polyamines. J. Biol. Chem. 293:18730–35
    [Google Scholar]
  62. 62. 
    Kannan K, Kanabar P, Schryer D, Florin T, Oh E et al. 2014. The general mode of translation inhibition by macrolide antibiotics. PNAS 111:15958–63
    [Google Scholar]
  63. 63. 
    Kannan K, Vazquez-Laslop N, Mankin AS 2012. Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel. Cell 151:508–20
    [Google Scholar]
  64. 64. 
    Konan KV, Yanofsky C. 1999. Role of ribosome release in regulation of tna operon expression in Escherichia coli. J. Bacteriol 181:1530–36
    [Google Scholar]
  65. 65. 
    Kozak M. 1987. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J. Mol. Biol. 196:947–50
    [Google Scholar]
  66. 66. 
    Kozak M. 1989. Context effects and inefficient initiation at non-AUG codons in eukaryotic cell-free translation systems. Mol. Cell. Biol. 9:5073–80
    [Google Scholar]
  67. 67. 
    Kozak M. 2001. Constraints on reinitiation of translation in mammals. Nucleic Acids Res 29:5226–32
    [Google Scholar]
  68. 68. 
    Lai CJ, Weisblum B. 1971. Altered methylation of ribosomal RNA in an erythromycin-resistant strain of Staphylococcus aureus. . PNAS 68:856–60
    [Google Scholar]
  69. 69. 
    Laing WA, Martinez-Sanchez M, Wright MA, Bulley SM, Brewster D et al. 2015. An upstream open reading frame is essential for feedback regulation of ascorbate biosynthesis in Arabidopsis. . Plant Cell 27:772–86
    [Google Scholar]
  70. 70. 
    Law GL, Raney A, Heusner C, Morris DR 2001. Polyamine regulation of ribosome pausing at the upstream open reading frame of S-adenosylmethionine decarboxylase. J. Biol. Chem. 276:38036–43
    [Google Scholar]
  71. 71. 
    Lee YY, Cevallos RC, Jan E 2009. An upstream open reading frame regulates translation of GADD34 during cellular stresses that induce eIF2α phosphorylation. J. Biol. Chem. 284:6661–73
    [Google Scholar]
  72. 72. 
    Lin Y, May GE, Kready H, Nazzaro L, Mao M et al. 2019. Impacts of uORF codon identity and position on translation regulation. Nucleic Acids Res 47:9358–67
    [Google Scholar]
  73. 73. 
    Loughran G, Sachs MS, Atkins JF, Ivanov IP 2012. Stringency of start codon selection modulates autoregulation of translation initiation factor eIF5. Nucleic Acids Res 40:2898–906
    [Google Scholar]
  74. 74. 
    Luo Z, Freitag M, Sachs MS 1995. Translational regulation in response to changes in amino acid availability in Neurospora crassa. Mol. Cell. Biol 15:5235–45
    [Google Scholar]
  75. 75. 
    Luo Z, Sachs MS. 1996. Role of an upstream open reading frame in mediating arginine-specific translational control in Neurospora crassa. J. Bacteriol 178:2172–77
    [Google Scholar]
  76. 76. 
    Luukkonen BG, Tan W, Schwartz S 1995. Efficiency of reinitiation of translation on human immu-nodeficiency virus type 1 mRNAs is determined by the length of the upstream open reading frame and by intercistronic distance. J. Virol. 69:4086–94
    [Google Scholar]
  77. 77. 
    Mackowiak SD, Zauber H, Bielow C, Thiel D, Kutz K et al. 2015. Extensive identification and analysis of conserved small ORFs in animals. Genome Biol 16:179
    [Google Scholar]
  78. 78. 
    Martinez AK, Gordon E, Sengupta A, Shirole N, Klepacki D et al. 2014. Interactions of the TnaC nascent peptide with rRNA in the exit tunnel enable the ribosome to respond to free tryptophan. Nucleic Acids Res 42:1245–56
    [Google Scholar]
  79. 79. 
    Martinez AK, Shirole NH, Murakami S, Benedik MJ, Sachs MS, Cruz-Vera LR 2012. Crucial elements that maintain the interactions between the regulatory TnaC peptide and the ribosome exit tunnel responsible for Trp inhibition of ribosome function. Nucleic Acids Res 40:2247–57
    [Google Scholar]
  80. 80. 
    McGillivray P, Ault R, Pawashe M, Kitchen R, Balasubramanian S, Gerstein M 2018. A comprehensive catalog of predicted functional upstream open reading frames in humans. Nucleic Acids Res 46:3326–38
    [Google Scholar]
  81. 81. 
    Messenguy F, Vierendeels F, Pierard A, Delbecq P 2002. Role of RNA surveillance proteins Upf1/CpaR, Upf2 and Upf3 in the translational regulation of yeast CPA1 gene. Curr. Genet. 41:224–31
    [Google Scholar]
  82. 82. 
    Mize GJ, Morris DR. 2001. A mammalian sequence-dependent upstream open reading frame mediates polyamine-regulated translation in yeast. RNA 7:374–81
    [Google Scholar]
  83. 83. 
    Mize GJ, Ruan H, Low JJ, Morris DR 1998. The inhibitory upstream open reading frame from mammalian S-adenosylmethionine decarboxylase mRNA has a strict sequence specificity in critical positions. J. Biol. Chem. 273:32500–5
    [Google Scholar]
  84. 84. 
    Muto H, Nakatogawa H, Ito K 2006. Genetically encoded but nonpolypeptide prolyl-tRNA functions in the A site for SecM-mediated ribosomal stall. Mol. Cell 22:545–52
    [Google Scholar]
  85. 85. 
    Nakatogawa H, Ito K. 2001. Secretion monitor, SecM, undergoes self-translation arrest in the cytosol. Mol. Cell 7:185–92
    [Google Scholar]
  86. 86. 
    Nikonorova IA, Kornakov NV, Dmitriev SE, Vassilenko KS, Ryazanov AG 2014. Identification of a Mg2+-sensitive ORF in the 5′-leader of TRPM7 magnesium channel mRNA. Nucleic Acids Res 42:12779–88
    [Google Scholar]
  87. 87. 
    Noderer WL, Flockhart RJ, Bhaduri A, Diaz de Arce AJ, Zhang J et al. 2014. Quantitative analysis of mammalian translation initiation sites by FACS-seq. Mol. Syst. Biol. 10:748
    [Google Scholar]
  88. 88. 
    Oliver D, Norman J, Sarker S 1998. Regulation of Escherichia coli secA by cellular protein secretion proficiency requires an intact gene X signal sequence and an active translocon. J. Bacteriol. 180:5240–42
    [Google Scholar]
  89. 89. 
    Onofre C, Tome F, Barbosa C, Silva AL, Romao L 2015. Expression of human Hemojuvelin (HJV) is tightly regulated by two upstream open reading frames in HJV mRNA that respond to iron overload in hepatic cells. Mol. Cell. Biol. 35:1376–89
    [Google Scholar]
  90. 90. 
    Onouchi H, Nagami Y, Haraguchi Y, Nakamoto M, Nishimura Y et al. 2005. Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis. . Genes Dev 19:1799–810
    [Google Scholar]
  91. 91. 
    Orbach MJ, Sachs MS, Yanofsky C 1990. The Neurospora crassa arg-2 locus: structure and expression of the gene encoding the small subunit of arginine-specific carbamoyl phosphate synthetase. J. Biol. Chem. 265:10981–87
    [Google Scholar]
  92. 92. 
    Paciolla C, Fortunato S, Dipierro N, Paradiso A, De Leonardis S et al. 2019. Vitamin C in plants: from functions to biofortification. Antioxidants 8:519
    [Google Scholar]
  93. 93. 
    Palam LR, Baird TD, Wek RC 2011. Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. J. Biol. Chem. 286:10939–49
    [Google Scholar]
  94. 94. 
    Pavitt GD, Ron D. 2012. New insights into translational regulation in the endoplasmic reticulum unfolded protein response. Cold Spring Harb. Perspect. Biol. 4:a012278
    [Google Scholar]
  95. 95. 
    Pegg AE. 2006. Regulation of ornithine decarboxylase. J. Biol. Chem. 281:14529–32
    [Google Scholar]
  96. 96. 
    Pegg AE. 2016. Functions of polyamines in mammals. J. Biol. Chem. 291:14904–12
    [Google Scholar]
  97. 97. 
    Rahmani F, Hummel M, Schuurmans J, Wiese-Klinkenberg A, Smeekens S, Hanson J 2009. Sucrose control of translation mediated by an upstream open reading frame-encoded peptide. Plant Physiol 150:1356–67
    [Google Scholar]
  98. 98. 
    Rajkowitsch L, Vilela C, Berthelot K, Ramirez CV, McCarthy JE 2004. Reinitiation and recycling are distinct processes occurring downstream of translation termination in yeast. J. Mol. Biol. 335:71–85
    [Google Scholar]
  99. 99. 
    Raney A, Baron AC, Mize GJ, Law GL, Morris DR 2000. In vitro translation of the upstream open reading frame in the mammalian mRNA encoding S-adenosylmethionine decarboxylase. J. Biol. Chem. 275:24444–50
    [Google Scholar]
  100. 100. 
    Raney A, Law GL, Mize GJ, Morris DR 2002. Regulated translation termination at the upstream open reading frame in S-adenosylmethionine decarboxylase mRNA. J. Biol. Chem. 277:5988–94
    [Google Scholar]
  101. 101. 
    Rathore A, Chu Q, Tan D, Martinez TF, Donaldson CJ et al. 2018. MIEF1 microprotein regulates mitochondrial translation. Biochemistry 57:556475
    [Google Scholar]
  102. 102. 
    Rook F, Gerrits N, Kortstee A, van Kampen M, Borrias M et al. 1998. Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J 15:253–63
    [Google Scholar]
  103. 103. 
    Rook F, Weisbeek P, Smeekens S 1998. The light-regulated Arabidopsis bZIP transcription factor gene ATB2 encodes a protein with an unusually long leucine zipper domain. Plant Mol. Biol. 37:171–78
    [Google Scholar]
  104. 104. 
    Ruan H, Hill JR, Fatemie-Nainie S, Morris DR 1994. Cell-specific translational regulation of S-adenosylmethionine decarboxylase mRNA: influence of the structure of the 5′ transcript leader on regulation by the upstream open reading frame. J. Biol. Chem. 269:17905–10
    [Google Scholar]
  105. 105. 
    Ruan H, Shantz LM, Pegg AE, Morris DR 1996. The upstream open reading frame of the mRNA encoding S-adenosylmethionine decarboxylase is a polyamine-responsive translational control element. J. Biol. Chem. 271:29576–82
    [Google Scholar]
  106. 106. 
    Saito K, Green R, Buskirk AR 2020. Translational initiation in E. coli occurs at the correct sites genome-wide in the absence of mRNA-rRNA base-pairing. eLife 9:e55002
    [Google Scholar]
  107. 107. 
    Schmidt MG, Rollo EE, Grodberg J, Oliver DB 1988. Nucleotide sequence of the secA gene and secA(Ts) mutations preventing protein export in Escherichia coli. J. Bacteriol 170:3404–14
    [Google Scholar]
  108. 108. 
    Schuller AP, Green R. 2018. Roadblocks and resolutions in eukaryotic translation. Nat. Rev. Mol. Cell Biol. 19:526–41
    [Google Scholar]
  109. 109. 
    Simms CL, Thomas EN, Zaher HS 2017. Ribosome-based quality control of mRNA and nascent peptides. WIREs RNA 8:e1366
    [Google Scholar]
  110. 110. 
    Skinner R, Cundliffe E, Schmidt FJ 1983. Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J. Biol. Chem. 258:12702–6
    [Google Scholar]
  111. 111. 
    Sohmen D, Chiba S, Shimokawa-Chiba N, Innis CA, Berninghausen O et al. 2015. Structure of the Bacillus subtilis 70S ribosome reveals the basis for species-specific stalling. Nat. Commun. 6:6941
    [Google Scholar]
  112. 112. 
    Spealman P, Naik AW, May GE, Kuersten S, Freeberg L et al. 2018. Conserved non-AUG uORFs revealed by a novel regression analysis of ribosome profiling data. Genome Res 28:214–22
    [Google Scholar]
  113. 113. 
    Spevak CC, Ivanov IP, Sachs MS 2010. Sequence requirements for ribosome stalling by the arginine attenuator peptide. J. Biol. Chem. 285:40933–42
    [Google Scholar]
  114. 114. 
    Srb AM, Horowitz NH. 1944. The ornithine cycle in Neurospora and its genetic control. J. Biol. Chem. 154:129–39
    [Google Scholar]
  115. 115. 
    Steinberg R, Knupffer L, Origi A, Asti R, Koch HG 2018. Co-translational protein targeting in bacteria. FEMS Microbiol. Lett. 365:fny095
    [Google Scholar]
  116. 116. 
    Stewart V, Yanofsky C. 1985. Evidence for transcription antitermination control of tryptophanase operon expression in Escherichia coli K-12. J. Bacteriol. 164:731–40
    [Google Scholar]
  117. 117. 
    Svetlov MS, Plessa E, Chen CW, Bougas A, Krokidis MG et al. 2019. High-resolution crystal structures of ribosome-bound chloramphenicol and erythromycin provide the ultimate basis for their competition. RNA 25:600–6
    [Google Scholar]
  118. 118. 
    Takahashi H, Hayashi N, Yamashita Y, Naito S, Takahashi A et al. 2020. Comprehensive genome-wide identification of angiosperm upstream ORFs with peptide sequences conserved in various taxonomic ranges using a novel pipeline, ESUCA. BMC Genom 21:260
    [Google Scholar]
  119. 119. 
    Takahashi H, Takahashi A, Naito S, Onouchi H 2012. BAIUCAS: a novel BLAST-based algorithm for the identification of upstream open reading frames with conserved amino acid sequences and its application to the Arabidopsis thaliana genome. Bioinformatics 28:2231–41
    [Google Scholar]
  120. 120. 
    Takamatsu S, Ohashi Y, Onoue N, Tajima Y, Imamichi T et al. 2020. Reverse genetics-based biochemical studies of the ribosomal exit tunnel constriction region in eukaryotic ribosome stalling: spatial allocation of the regulatory nascent peptide at the constriction. Nucleic Acids Res 48:1985–99
    [Google Scholar]
  121. 121. 
    Tanaka M, Sotta N, Yamazumi Y, Yamashita Y, Miwa K et al. 2016. The minimum open reading frame, AUG-stop, induces boron-dependent ribosome stalling and mRNA degradation. Plant Cell 28:2830–49
    [Google Scholar]
  122. 122. 
    Thuriaux P, Ramos F, Pierard A, Grenson M, Wiame JM 1972. Regulation of the carbamoylphosphate synthetase belonging to the arginine biosynthetic pathway of Saccharomyces cerevisiae. J. Mol. Biol 67:277–87
    [Google Scholar]
  123. 123. 
    Tognetti JA, Pontis HG, Martinez-Noel GM 2013. Sucrose signaling in plants: a world yet to be explored. Plant Signal. Behav. 8:e23316
    [Google Scholar]
  124. 124. 
    Tran MK, Schultz CJ, Baumann U 2008. Conserved upstream open reading frames in higher plants. BMC Genom 9:361
    [Google Scholar]
  125. 125. 
    Uchiyama-Kadokura N, Murakami K, Takemoto M, Koyanagi N, Murota K et al. 2014. Polyamine-responsive ribosomal arrest at the stop codon of an upstream open reading frame of the AdoMetDC1 gene triggers nonsense-mediated mRNA decay in Arabidopsis thaliana. . Plant Cell Physiol 55:1556–67
    [Google Scholar]
  126. 126. 
    Ueda T, Manabe H, Tokuhiro K, Hirose M, Matsuoka Y et al. 2009. Unique alternative translation from two open reading frames on Acpin1 mRNA yields an acrosomal protein and a salivary-gland-specific protein. Int. J. Urol. 16:639–46
    [Google Scholar]
  127. 127. 
    van der Horst S, Filipovska T, Hanson J, Smeekens S 2020. Metabolite control of translation by conserved peptide uORFs: the ribosome as a metabolite multisensor. Plant Physiol 182:110–22
    [Google Scholar]
  128. 128. 
    van der Horst S, Snel B, Hanson J, Smeekens S 2018. Novel pipeline identifies new upstream ORFs and non-AUG initiating main ORFs with conserved amino acid sequences in the 5′ leader of mRNAs in Arabidopsis thaliana. . RNA 25:292–304
    [Google Scholar]
  129. 129. 
    Vazquez-Laslop N, Thum C, Mankin AS 2008. Molecular mechanism of drug-dependent ribosome stalling. Mol. Cell 30:190–202
    [Google Scholar]
  130. 130. 
    Wang T, Zheng X, Ji H, Wang TL, Xing XH, Zhang C 2019. Dynamics of transcription-translation coordination tune bacterial indole signaling. Nat. Chem. Biol. 16:440–49
    [Google Scholar]
  131. 131. 
    Wang Z, Fang P, Sachs MS 1998. The evolutionarily conserved eukaryotic arginine attenuator peptide regulates the movement of ribosomes that have translated it. Mol. Cell. Biol. 18:7528–36
    [Google Scholar]
  132. 132. 
    Wang Z, Gaba A, Sachs MS 1999. A highly conserved mechanism of regulated ribosome stalling mediated by fungal arginine attenuator peptides that appears independent of the charging status of arginyl-tRNAs. J. Biol. Chem. 274:37565–74
    [Google Scholar]
  133. 133. 
    Wang Z, Sachs MS. 1997. Arginine-specific regulation mediated by the Neurospora crassa arg-2 upstream open reading frame in a homologous, cell-free in vitro translation system. J. Biol. Chem. 272:255–61
    [Google Scholar]
  134. 134. 
    Wang Z, Sachs MS. 1997. Ribosome stalling is responsible for arginine-specific translational attenuation in Neurospora crassa. Mol. Cell. Biol 17:4904–13
    [Google Scholar]
  135. 135. 
    Wei J, Wu C, Sachs MS 2012. The arginine attenuator peptide interferes with the ribosome peptidyl transferase center. Mol. Cell. Biol. 32:2396–406
    [Google Scholar]
  136. 136. 
    Wei J, Zhang Y, Ivanov IP, Sachs MS 2013. The stringency of start codon selection in the filamentous fungus Neurospora crassa. J. Biol. Chem 288:9549–62
    [Google Scholar]
  137. 137. 
    Weisblum B. 1995. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39:577–85
    [Google Scholar]
  138. 138. 
    Weltmeier F, Rahmani F, Ehlert A, Dietrich K, Schutze K et al. 2009. Expression patterns within the Arabidopsis C/S1 bZIP transcription factor network: Availability of heterodimerization partners controls gene expression during stress response and development. Plant Mol. Biol. 69:107–19
    [Google Scholar]
  139. 139. 
    Werner M, Feller A, Messenguy F, Pierard A 1987. The leader peptide of yeast gene CPA1 is essential for the translational repression of its expression. Cell 49:805–13
    [Google Scholar]
  140. 140. 
    Wiese A, Elzinga N, Wobbes B, Smeekens S 2004. A conserved upstream open reading frame mediates sucrose-induced repression of translation. Plant Cell 16:1717–29
    [Google Scholar]
  141. 141. 
    Woolhead CA, Johnson AE, Bernstein HD 2006. Translation arrest requires two-way communication between a nascent polypeptide and the ribosome. Mol. Cell 22:587–98
    [Google Scholar]
  142. 142. 
    Wu C, Wei J, Lin PJ, Tu L, Deutsch C et al. 2012. Arginine changes the conformation of the arginine attenuator peptide relative to the ribosome tunnel. J. Mol. Biol. 416:518–33
    [Google Scholar]
  143. 143. 
    Yamashita Y, Takamatsu S, Glasbrenner M, Becker T, Naito S, Beckmann R 2017. Sucrose sensing through nascent peptide-mediated ribosome stalling at the stop codon of Arabidopsis bZIP11 uORF2. FEBS Lett 591:1266–77
    [Google Scholar]
  144. 144. 
    Yang R, Cruz-Vera LR, Yanofsky C 2009. 23S rRNA nucleotides in the peptidyl transferase center are essential for tryptophanase operon induction. J. Bacteriol. 191:3445–50
    [Google Scholar]
  145. 145. 
    Yanofsky C. 1981. Attenuation in the control of expression of bacterial operons. Nature 289:751–58
    [Google Scholar]
  146. 146. 
    Yap MN, Bernstein HD. 2009. The plasticity of a translation arrest motif yields insights into nascent polypeptide recognition inside the ribosome tunnel. Mol. Cell 34:201–11
    [Google Scholar]
  147. 147. 
    Young SK, Palam LR, Wu C, Sachs MS, Wek RC 2016. Ribosome elongation stall directs gene-specific translation in the integrated stress response. J. Biol. Chem. 291:6546–58
    [Google Scholar]
  148. 148. 
    Young SK, Wek RC. 2016. Upstream open reading frames differentially regulate gene-specific translation in the integrated stress response. J. Biol. Chem. 291:16927–35
    [Google Scholar]
  149. 149. 
    Young SK, Willy JA, Wu C, Sachs MS, Wek RC 2015. Ribosome reinitiation directs gene-specific translation and regulates the integrated stress response. J. Biol. Chem. 290:28257–71
    [Google Scholar]
  150. 150. 
    Youngman EM, Brunelle JL, Kochaniak AB, Green R 2004. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117:589–99
    [Google Scholar]
  151. 151. 
    Zhang H, Si X, Ji X, Fan R, Liu J et al. 2018. Genome editing of upstream open reading frames enables translational control in plants. Nat. Biotechnol. 36:894–98
    [Google Scholar]
  152. 152. 
    Zhang J, Pan X, Yan K, Sun S, Gao N, Sui SF 2015. Mechanisms of ribosome stalling by SecM at multiple elongation steps. eLife 4:e09684
    [Google Scholar]
  153. 153. 
    Zhang Y, Sachs MS. 2015. Control of mRNA stability in fungi by NMD, EJC and CBC factors through 3′UTR introns. Genetics 200:1133
    [Google Scholar]
/content/journals/10.1146/annurev-genet-112618-043822
Loading
/content/journals/10.1146/annurev-genet-112618-043822
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error