1932

Abstract

The rule of Mendelian inheritance is remarkably robust, but deviations from the equal transmission of alternative alleles at a locus [a.k.a. transmission ratio distortion (TRD)] are also commonly observed in genetic mapping populations. Such TRD reveals locus-specific selection acting at some point between the diploid heterozygous parents and progeny genotyping and therefore can provide novel insight into otherwise-hidden genetic and evolutionary processes. Most of the classic selfish genetic elements were discovered through their biasing of transmission, but many unselfish evolutionary and developmental processes can also generate TRD. In this review, we describe methodologies for detecting TRD in mapping populations, detail the arenas and genetic interactions that shape TRD during plant and animal reproduction, and summarize patterns of TRD from across the genetic mapping literature. Finally, we point to new experimental approaches that can accelerate both detection of TRD and characterization of the underlying genetic mechanisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-112618-043905
2019-12-03
2024-10-07
Loading full text...

Full text loading...

/deliver/fulltext/genet/53/1/annurev-genet-112618-043905.html?itemId=/content/journals/10.1146/annurev-genet-112618-043905&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Akera T, Chmátal L, Trimm E, Yang K, Aonbangkhen C et al. 2017. Spindle asymmetry drives non-Mendelian chromosome segregation. Science 358:668–72
    [Google Scholar]
  2. 2. 
    Akera T, Trimm E, Lampson M 2018. Molecular and evolutionary strategies of meiotic cheating by selfish centromeres. bioRxiv 405068. https://doi.org/10.1101/405068
    [Crossref]
  3. 3. 
    Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK et al. 2009. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461:1243–47
    [Google Scholar]
  4. 4. 
    Beavis WD. 1994. The power and deceit of QTL experiments: lessons from comparative QTL studies. Proceedings of the 49th Annual Corn and Sorghum Industry Research Conference ASTA Washington, DC:252–68
    [Google Scholar]
  5. 5. 
    Becker T, Knapp M. 2004. A powerful strategy to account for multiple testing in the context of haplotype analysis. Am. J. Hum. Genet. 75:561–70
    [Google Scholar]
  6. 6. 
    Bedinger PA, Broz AK, Tovar-Mendez A, McClure B 2017. Pollen-pistil interactions and their role in mate selection. Plant Physiol 173:79–90
    [Google Scholar]
  7. 7. 
    Beeman RW, Friesen KS, Denell RE 1992. Maternal-effect selfish genes in flour beetles. Science 256:89–92
    [Google Scholar]
  8. 8. 
    Behrouzi P, Wit EC. 2018. Detecting epistatic selection with partially observed genotype data by using copula graphical models. J. R. Stat. Soc. C 68:141–60
    [Google Scholar]
  9. 9. 
    Bernasconi G, Ashman T-L, Birkhead TR, Bishop JDD, Grossniklaus U et al. 2004. Evolutionary ecology of the prezygotic stage. Science 303:971–75
    [Google Scholar]
  10. 10. 
    Bikard D, Patel D, Le Metté C, Giorgi V, Camilleri C et al. 2009. Divergent evolution of duplicate genes leads to genetic incompatibilities within A. thaliana. Science 323:623–26
    [Google Scholar]
  11. 11. 
    Birchler JA, Dawe R, Doebley JF 2003. Marcus Rhoades, preferential segregation and meiotic drive. Genetics 164:835–41
    [Google Scholar]
  12. 12. 
    Bradshaw HD Jr., Stettler RF. 1994. Molecular genetics of growth and development in Populus. II. Segregation distortion due to genetic load. Theor. Appl. Genet. 89:551–58
    [Google Scholar]
  13. 13. 
    Brandt DYC, Aguiar VRC, Bitarello BD, Nunes K, Goudet J, Meyer D 2015. Mapping bias overestimates reference allele frequencies at the HLA genes in the 1000 Genomes Project phase I data. Genes Genom. Genet. 5:931–41
    [Google Scholar]
  14. 14. 
    Brandvain Y, Haig D. 2005. Divergent mating systems and parental conflict as a barrier to hybridization in flowering plants. Am. Nat. 166:330–38
    [Google Scholar]
  15. 15. 
    Bravo Núñez MA, Nuckolls NL, Zanders SE 2018. Genetic villains: killer meiotic drivers. Trends Genet 34:424–33
    [Google Scholar]
  16. 16. 
    Broman KW, Wu H, Sen S, Churchill GA 2003. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–90
    [Google Scholar]
  17. 17. 
    Buckler ES IV, Phelps-Durr TL, Buckler CSK, Dawe R, Doebley JF, Holtsford TP 1999. Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics 153:415–26
    [Google Scholar]
  18. 18. 
    Burkart-Waco D, Josefsson C, Dilkes B, Kozloff N, Torjek O et al. 2012. Hybrid incompatibility in Arabidopsis is determined by a multiple-locus genetic network. Plant Physiol 158:801–12
    [Google Scholar]
  19. 19. 
    Burt A, Trivers R. 1998. Selfish DNA and breeding system in flowering plants. Proc. R. Soc. B 265:141–46
    [Google Scholar]
  20. 20. 
    Burt A, Trivers R. 2006. Genes in Conflict Cambridge, MA: Belknap Press
    [Google Scholar]
  21. 21. 
    Burton RS, Pereira RJ, Barreto FS 2013. Cytonuclear genomic interactions and hybrid breakdown. Annu. Rev. Ecol. Evol. Syst. 44:281–302
    [Google Scholar]
  22. 22. 
    Case AL, Finseth FR, Barr CM, Fishman L 2016. Selfish evolution of cytonuclear hybrid incompatibility in Mimulus. Proc. R. Soc. B 283:20161493
    [Google Scholar]
  23. 23. 
    Casellas J, Gularte RJ, Farber CR, Varona L, Mehrabian M et al. 2012. Genome scans for transmission ratio distortion regions in mice. Genetics 191:247–59
    [Google Scholar]
  24. 24. 
    Casellas J, Manunza A, Mercader A, Quintanilla R, Amills M 2014. A flexible Bayesian model for testing for transmission ratio distortion. Genetics 198:1357–67
    [Google Scholar]
  25. 25. 
    Chapman MA, Hiscock SJ, Filatov DA 2016. The genomic bases of morphological divergence and reproductive isolation driven by ecological speciation in Senecio (Asteraceae). J. Evol. Biol. 29:98–113
    [Google Scholar]
  26. 26. 
    Chmátal L, Gabriel SI, Mitsainas GP, Martínez-Vargas J, Ventura J et al. 2014. Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. Curr. Biol. 24:2295–300
    [Google Scholar]
  27. 27. 
    Christiansen FB, Frydenberg O. 1973. Selection component analysis of natural polymorphisms using population samples including mother-offspring combinations. Theor. Popul. Biol. 4:425–45
    [Google Scholar]
  28. 28. 
    Colomé-Tatché M, Johannes F. 2016. Signatures of Dobzhansky–Muller incompatibilities in the genomes of recombinant inbred lines. Genetics 202:825–41
    [Google Scholar]
  29. 29. 
    Corbett-Detig R, Jacobs-Palmer E, Hartl D, Hoekstra H 2015. Direct gamete sequencing reveals no evidence for segregation distortion in house mouse hybrids. PLOS ONE 10:e0131933–13
    [Google Scholar]
  30. 30. 
    Cui Y, Wang H, Qiu X, Liu H, Yang R 2015. Bayesian analysis for genetic architectures of body weights and morphological traits using distorted markers in Japanese flounder Paralichthysolivaceus. Mar. Biotechnol 17:693–702
    [Google Scholar]
  31. 31. 
    Cutler DJ, Jensen JD. 2010. To pool, or not to pool?. Genetics 186:41–43
    [Google Scholar]
  32. 32. 
    Dawe R, Hiatt EN. 2004. Plant neocentromeres: fast, focused, and driven. Chromosome Res 12:655–69
    [Google Scholar]
  33. 33. 
    Dawe R, Lowry EG, Gent JI, Stitzer MC, Swentowsky KW et al. 2018. A kinesin-14 motor activates neocentromeres to promote meiotic drive in maize. Cell 173:839–50
    [Google Scholar]
  34. 34. 
    de Koning D-J, McIntyre LM 2017. Back to the future: Multiparent populations provide the key to unlocking the genetic basis of complex traits. Genes Genom. Genet. 7:1617–18
    [Google Scholar]
  35. 35. 
    Diaz A, MacNair MR. 1999. Pollen tube competition as a mechanism of prezygotic reproductive isolation between Mimulus nasutus and its presumed progenitor M. guttatus. New Phytol 144:471–78
    [Google Scholar]
  36. 36. 
    Didion JP, Morgan AP, Clayshulte AMF, McMullan RC, Yadgary L et al. 2015. A multi-megabase copy number gain causes maternal transmission ratio distortion on mouse chromosome 2. PLOS Genet 11:e1004850
    [Google Scholar]
  37. 37. 
    Didion JP, Morgan AP, Yadgary L, Bell TA, McMullan RC et al. 2016. R2d2 drives selfish sweeps in the house mouse. Mol. Biol. Evol. 33:1381–95
    [Google Scholar]
  38. 38. 
    Eshel I. 1985. Evolutionary genetic stability of Mendelian segregation and the role of free recombination in the chromosomal system. Am. Nat. 125:412–20
    [Google Scholar]
  39. 39. 
    Fishman L, Aagaard JE, Tuthill JC 2008. Toward the evolutionary genomics of gametophytic divergence: Patterns of transmission ratio distortion in monkeyflower (Mimulus) hybrids reveal a complex genetic basis for conspecific pollen precedence. Evolution 62:2958–70
    [Google Scholar]
  40. 40. 
    Fishman L, Kelly AJ, Morgan E, Willis JH 2001. A genetic map in the Mimulusguttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 159:1701–16
    [Google Scholar]
  41. 41. 
    Fishman L, Kelly JK. 2015. Centromere-associated meiotic drive and female fitness variation in Mimulus. Evolution 69:1208–18
    [Google Scholar]
  42. 42. 
    Fishman L, Saunders A. 2008. Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. 3221559–62
  43. 43. 
    Fishman L, Stathos A, Beardsley P, Williams CF, Hill JP 2013. Chromosomal rearrangements and the genetics of reproductive barriers in Mimulus (monkeyflowers). Evolution 67:2547–60
    [Google Scholar]
  44. 44. 
    Fishman L, Sweigart AL. 2018. When two rights make a wrong: the evolutionary genetics of plant hybrid incompatibilities. Annu. Rev. Plant Biol. 69:701–37
    [Google Scholar]
  45. 45. 
    Fishman L, Willis JH. 2005. A novel meiotic drive locus almost completely distorts segregation in Mimulus (monkeyflower) hybrids. Genetics 169:347–53
    [Google Scholar]
  46. 46. 
    Flanagan SP, Jones AG. 2017. Genome‐wide selection components analysis in a fish with male pregnancy. Evolution 71:1096–105
    [Google Scholar]
  47. 47. 
    Forster BP, Heberle-Bors E, Kasha KJ, Touraev A 2007. The resurgence of haploids in higher plants. Trends Plant Sci 12:368–75
    [Google Scholar]
  48. 48. 
    Frank SA. 1991. Divergence of meiotic drive-suppression systems as an explanation for sex-biased hybrid sterility and inviability. Evolution 45:262–67
    [Google Scholar]
  49. 49. 
    Gagnaire P-A, Normandeau E, Pavey SA, Bernatchez L 2013. Mapping phenotypic, expression and transmission ratio distortion QTL using RAD markers in the lake whitefish (Coregonusclupeaformis). Mol. Ecol. 22:3036–48
    [Google Scholar]
  50. 50. 
    Garner AG, Kenney AM, Fishman L, Sweigart AL 2016. Genetic loci with parent‐of‐origin effects cause hybrid seed lethality in crosses between Mimulus species. New Phytol 211:319–31
    [Google Scholar]
  51. 51. 
    Giesbers AKJ, den Boer E, Ulen JJWEH, van Kaauwen MPW, Visser RGF et al. 2019. Patterns of transmission ratio distortion in interspecific lettuce hybrids reveal a sex-independent gametophytic barrier. Genetics 211:263–76
    [Google Scholar]
  52. 52. 
    Gowaty PA, Anderson WW, Bluhm CK, Drickamer LC, Kim Y-K, Moore AJ 2007. The hypothesis of reproductive compensation and its assumptions about mate preferences and offspring viability. PNAS 104:15023–27
    [Google Scholar]
  53. 53. 
    Haldane JBS. 1922. Sex ratio and unisexual sterility in hybrid animals. J. Genet. 12:101–9
    [Google Scholar]
  54. 54. 
    Haldane JBS. 1932. The Causes of Evolution London: Longmans, Green and Co.
    [Google Scholar]
  55. 55. 
    Hall DW, Dawe R. 2018. Modeling the evolution of female meiotic drive in maize. Genes Genom. Genet. 8:123–30
    [Google Scholar]
  56. 56. 
    Hämälä T, Mattila TM, Leinonen PH, Kuittinen H, Savolainen O 2017. Role of seed germination in adaptation and reproductive isolation in Arabidopsislyrata. Mol. Ecol 26:3484–96
    [Google Scholar]
  57. 57. 
    Hamlin JAP, Sherman NA, Moyle LC 2017. Two loci contribute epistastically to heterospecific pollen rejection, a postmating isolating barrier between species. Genes Genom. Genet. 7:2151–59
    [Google Scholar]
  58. 58. 
    Hammond TM, Rehard DG, Xiao H, Shiu PKT 2012. Molecular dissection of Neurospora spore killer meiotic drive elements. PNAS 109:12093–98
    [Google Scholar]
  59. 59. 
    Helleu Q, Gérard PR, Montchamp-Moreau C 2014. Sex chromosome drive. Cold Spring Harb. Perspect. Biol. 7:a017616
    [Google Scholar]
  60. 60. 
    Henikoff S, Malik H. 2002. Selfish drivers. Nature 417:227
    [Google Scholar]
  61. 61. 
    Hiatt EN, Dawe R. 2003. Four loci on abnormal chromosome 10 contribute to meiotic drive in maize. Genetics 164:699–709
    [Google Scholar]
  62. 62. 
    Higashiyama T, Takeuchi H. 2015. The mechanism and key molecules involved in pollen tube guidance. Annu. Rev. Plant Biol. 66:393–413
    [Google Scholar]
  63. 63. 
    Higgins DM, Lowry EG, Kanizay LB, Becraft PW, Hall DW, Dawe R 2018. Fitness costs and variation in transmission distortion associated with the abnormal chromosome 10 meiotic drive system in maize. Genetics 208:297–305
    [Google Scholar]
  64. 64. 
    Hu W, Jiang Z-D, Suo F, Zheng J-X, He W-Z, Du L-L 2017. A large gene family in fission yeast encodes spore killers that subvert Mendel's law. eLife 6:e26057
    [Google Scholar]
  65. 65. 
    Huang LO, Labbe A, Infante-Rivard C 2013. Transmission ratio distortion: review of concept and implications for genetic association studies. Hum. Genet. 132:245–63
    [Google Scholar]
  66. 66. 
    Hurst GD, Werren JH. 2001. The role of selfish genetic elements in eukaryotic evolution. Nat. Rev. Genet. 2:597–606
    [Google Scholar]
  67. 67. 
    Hurst LD, Pomiankowski A. 1991. Causes of sex ratio bias may account for unisexual sterility in hybrids: a new explanation for Haldane's rule and related phenomena. Genetics 128:841–58
    [Google Scholar]
  68. 68. 
    Immler S, Otto SP. 2018. The evolutionary consequences of selection at the haploid gametic stage. Am. Nat. 192:241–49
    [Google Scholar]
  69. 69. 
    Iwata-Otsubo A, Dawicki-McKenna JM, Akera T, Falk SJ, Chmátal L et al. 2017. Expanded satellite repeats amplify a discrete CENP-A nucleosome assembly site on chromosomes that drive in female meiosis. Curr. Biol. 27:2365–68
    [Google Scholar]
  70. 70. 
    Jaenike J. 2001. Sex chromosome meiotic drive. Annu. Rev. Genet. 32:25–49
    [Google Scholar]
  71. 71. 
    Johnson NA. 2010. Hybrid incompatibility genes: remnants of a genomic battlefield?. Trends Genet 26:317–25
    [Google Scholar]
  72. 72. 
    Joseph SB, Kirkpatrick M. 2004. Haploid selection in animals. Trends Ecol. Evol. 19:592–97
    [Google Scholar]
  73. 73. 
    Kanizay LB, Pyhäjärvi T, Lowry EG, Hufford MB, Peterson DG et al. 2013. Diversity and abundance of the abnormal chromosome 10 meiotic drive complex in Zeamays. Heredity 110:570–77
    [Google Scholar]
  74. 74. 
    Kelly JK, Koseva B, Mojica JP 2013. The genomic signal of partial sweeps in Mimulusguttatus. Genome Biol. Evol 5:1457–69
    [Google Scholar]
  75. 75. 
    Kermicle JL. 2006. A selfish gene governing pollen-pistil compatibility confers reproductive isolation between maize relatives. Genetics 172:499–506
    [Google Scholar]
  76. 76. 
    Kerwin RE, Sweigart AL. 2017. Mechanisms of transmission ratio distortion at hybrid sterility loci within and between Mimulus species. Genes Genom. Genet. 7:3719–30
    [Google Scholar]
  77. 77. 
    Knief U, Schielzeth H, Ellegren H, Kempenaers B, Forstmeier W 2015. A prezygotic transmission distorter acting equally in female and male zebra finches Taeniopygiaguttata. Mol. Ecol 24:3846–59
    [Google Scholar]
  78. 78. 
    Koide Y, Onishi K, Nishimoto D, Baruah AR, Kanazawa A, Sano Y 2008. Sex-independent transmission ratio distortion system responsible for reproductive barriers between Asian and African rice species. New Phytol 179:888–900
    [Google Scholar]
  79. 79. 
    Koide Y, Shinya Y, Ikenaga M, Sawamura N, Matsubara K et al. 2012. Complex genetic nature of sex-independent transmission ratio distortion in Asian rice species: the involvement of unlinked modifiers and sex-specific mechanisms. Heredity 108:242–47
    [Google Scholar]
  80. 80. 
    Komen H, Thorgaard GH. 2007. Androgenesis, gynogenesis and the production of clones in fishes: a review. Aquaculture 269:150–73
    [Google Scholar]
  81. 81. 
    Kosman ET, Levitan DR. 2014. Sperm competition and the evolution of gametic compatibility in externally fertilizing taxa. Mol. Hum. Reprod. 20:1190–97
    [Google Scholar]
  82. 82. 
    Kursel LE, Malik H. 2018. The cellular mechanisms and consequences of centromere drive. Curr. Opin. Cell Biol. 52:58–65
    [Google Scholar]
  83. 83. 
    Lampson MA, Black BE. 2017. Cellular and molecular mechanisms of centromere drive. Cold Spring Harb. Symp. Quant. Biol. 82:249–57
    [Google Scholar]
  84. 84. 
    Larracuente AM, Presgraves DC. 2012. The selfish Segregation Distorter gene complex of Drosophila melanogaster. Genetics 192:33–53
    [Google Scholar]
  85. 85. 
    Larson EL, Vanderpool D, Sarver BAJ, Callahan C, Keeble S et al. 2018. The evolution of polymorphic hybrid incompatibilities in house mice. Genetics 209:845–59
    [Google Scholar]
  86. 86. 
    Lawson HA, Cheverud JM, Wolf JB 2013. Genomic imprinting and parent-of-origin effects on complex traits. Nat. Rev. Genet. 14:609–17
    [Google Scholar]
  87. 87. 
    Lee YW, Fishman L, Kelly JK, Willis JH 2016. A segregating inversion generates fitness variation in yellow monkeyflower (Mimulusguttatus). Genetics 202:1473–84
    [Google Scholar]
  88. 88. 
    Leigh EG. 1977. How does selection reconcile individual advantage with the good of the group?. PNAS 74:4542–46
    [Google Scholar]
  89. 89. 
    Levitan DR. 2018. Do sperm really compete and do eggs ever have a choice? Adult distribution and gamete mixing influence sexual selection, sexual conflict, and the evolution of gamete recognition proteins in the sea. Am. Nat. 191:88–105
    [Google Scholar]
  90. 90. 
    Li G, Serba DD, Saha MC, Bouton JH, Lanzatella CL, Tobias CM 2014. Genetic linkage mapping and transmission ratio distortion in a three-generation four-founder population of Panicumvirgatum (L.). Genes Genom. Genet. 4:913–23
    [Google Scholar]
  91. 91. 
    Lindholm AK, Dyer KA, Firman RC, Fishman L, Forstmeier W et al. 2016. The ecology and evolutionary dynamics of meiotic drive. Trends Ecol. Evol. 31:315–26
    [Google Scholar]
  92. 92. 
    Liu Y, Zhang L, Xu S, Hu L, Hurst LD, Kong X 2013. Identification of two maternal transmission ratio distortion loci in pedigrees of the Framingham Heart Study. Sci. Rep. 3:2147
    [Google Scholar]
  93. 93. 
    Lorieux M, Goffinet B, Perrier X, González de León D, Lanaud C 1995. Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Theor. Appl. Genet. 90:73–80
    [Google Scholar]
  94. 94. 
    Lyon MF. 2003. Transmission ratio distortion in mice. Annu. Rev. Genet. 37:393–408
    [Google Scholar]
  95. 95. 
    Lyttle TW. 1991. Segregation distorters. Annu. Rev. Genet. 25:511–57
    [Google Scholar]
  96. 96. 
    Magwene PM, Willis JH, Kelly JK 2011. The statistics of bulk segregant analysis using next generation sequencing. PLOS Comput. Biol. 7:e1002255
    [Google Scholar]
  97. 97. 
    Maheshwari S, Barbash DA. 2011. The genetics of hybrid incompatibilities. Annu. Rev. Genet. 45:331–55
    [Google Scholar]
  98. 98. 
    Malik H. 2005. Mimulus finds centromeres in the driver's seat. Trends Ecol. Evol. 20:151–54
    [Google Scholar]
  99. 99. 
    Malik H, Henikoff S. 2001. Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157:1293–98
    [Google Scholar]
  100. 100. 
    Malik H, Henikoff S. 2002. Conflict begets complexity: the evolution of centromeres. Curr. Opin. Genet. Dev. 12:711–18
    [Google Scholar]
  101. 101. 
    Manser A, König B, Lindholm AK 2015. Female house mice avoid fertilization by t haplotype incompatible males in a mate choice experiment. J. Evol. Biol. 28:54–64
    [Google Scholar]
  102. 102. 
    Manser A, Lindholm AK, König B, Bagheri HC 2011. Polyandry and the decrease of a selfish genetic element in a wild house mouse population. Evolution 65:2435–47
    [Google Scholar]
  103. 103. 
    Manser A, Lindholm AK, Simmons LW, Firman RC 2017. Sperm competition suppresses gene drive among experimentally evolving populations of house mice. Mol. Ecol. 26:5784–92
    [Google Scholar]
  104. 104. 
    Mazer SJ, Hove AA, Miller BS, Barbet-Massin M 2010. The joint evolution of mating system and pollen performance predictions regarding male gametophytic evolution in selfers versus outcrossers. Perspect. Plant Ecol. Evol. Syst. 12:31–41
    [Google Scholar]
  105. 105. 
    McDaniel SF, Willis JH, Shaw AJ 2007. A linkage map reveals a complex basis for segregation distortion in an interpopulation cross in the moss Ceratodonpurpureus. Genetics 176:2489–500
    [Google Scholar]
  106. 106. 
    McLaughlin RN, Malik H. 2017. Genetic conflicts: the usual suspects and beyond. J. Exp. Biol. 220: Part 1 6–17
    [Google Scholar]
  107. 107. 
    Meiklejohn CD, Tao Y. 2010. Genetic conflict and sex chromosome evolution. Trends Ecol. Evol. 25:215–23
    [Google Scholar]
  108. 108. 
    Møller AP. 1998. Sperm Competition and Sexual Selection San Diego, CA: Academic. , 1st ed..
    [Google Scholar]
  109. 109. 
    Monnahan PJ, Colicchio J, Kelly JK 2015. A genomic selection component analysis characterizes migration-selection balance within a hybrid Mimulus population. Evolution 69:1713–27
    [Google Scholar]
  110. 110. 
    Monnahan PJ, Kelly JK. 2017. The genomic architecture of flowering time varies across space and time in Mimulusguttatus. Genetics 206:1621–35
    [Google Scholar]
  111. 111. 
    Moore JC, Pannell JR. 2011. Sexual selection in plants. Curr. Biol. 21:R176–82
    [Google Scholar]
  112. 112. 
    Moyle LC. 2006. Genome-wide associations between hybrid sterility QTL and marker transmission ratio distortion. Mol. Biol. Evol. 23:973–80
    [Google Scholar]
  113. 113. 
    Moyle LC, Jewell CP, Kostyun JL 2014. Fertile approaches to dissecting mechanisms of premating and postmating prezygotic reproductive isolation. Curr. Opin. Plant Biol. 18:16–23
    [Google Scholar]
  114. 114. 
    Nadeau JH. 2017. Do gametes woo? Evidence for their nonrandom union at fertilization. Genetics 207:369–87
    [Google Scholar]
  115. 115. 
    Nelson TC, Monnahan PJ, McIntosh MK, Anderson K, MacArthur-Waltz E et al. 2019. Extreme copy number variation at a tRNA ligase gene affecting phenology and fitness in yellow monkeyflowers. Mol. Ecol. 28:1460–75
    [Google Scholar]
  116. 116. 
    Niehuis O, Judson AK, Gadau J 2008. Cytonuclear genic incompatibilities cause increased mortality in male F2 hybrids of Nasoniagiraulti and N.vitripennis. Genetics 178:413–26
    [Google Scholar]
  117. 117. 
    Nuckolls NL, Bravo Núñez MA, Eickbush MT, Young JM, Lange JJ et al. 2017. wtf genes are prolific dual poison-antidote meiotic drivers. eLife 6:2235
    [Google Scholar]
  118. 118. 
    Pannell JR, Labouche A-M. 2013. The incidence and selection of multiple mating in plants. Philos. Trans. R. Soc. B 368:20120051
    [Google Scholar]
  119. 119. 
    Pardo-Manuel de Villena F, Sapienza C 2001. Female meiosis drives karyotypic evolution in mammals. Genetics 159:1179–89
    [Google Scholar]
  120. 120. 
    Pardo-Manuel de Villena F, Sapienza C 2001. Nonrandom segregation during meiosis: the unfairness of females. Mamm. Genome 12:331–39
    [Google Scholar]
  121. 121. 
    Pease JB, Guerrero RF, Sherman NA, Hahn MW, Moyle LC 2016. Molecular mechanisms of postmating prezygotic reproductive isolation uncovered by transcriptome analysis. Mol. Ecol. 25:2592–608
    [Google Scholar]
  122. 122. 
    Plough LV. 2016. Genetic load in marine animals: a review. Curr. Zool. 62:567–79
    [Google Scholar]
  123. 123. 
    Plough LV, Hedgecock D. 2011. Quantitative trait locus analysis of stage-specific inbreeding depression in the Pacific oyster Crassostreagigas. Genetics 189:1473–86
    [Google Scholar]
  124. 124. 
    Presgraves DC. 2010. The molecular evolutionary basis of species formation. Nat. Rev. Genet. 11:175–80
    [Google Scholar]
  125. 125. 
    Pritchard VL, Dimond L, Harrison JS, Velázquez CCS, Zieba JT et al. 2011. Interpopulation hybridization results in widespread viability selection across the genome in Tigriopuscalifornicus. BMC Genet 12:54
    [Google Scholar]
  126. 126. 
    Puzey JR, Willis JH, Kelly JK 2017. Population structure and local selection yield high genomic variation in Mimulusguttatus. Mol. Ecol 26:519–35
    [Google Scholar]
  127. 127. 
    Reflinur Kim B, Jang SM, Chu S-H, Bordiya Y et al. 2014. Analysis of segregation distortion and its relationship to hybrid barriers in rice. Rice 7:3
    [Google Scholar]
  128. 128. 
    Remington DL, O'Malley DM. 2000. Whole-genome characterization of embryonic stage inbreeding depression in a selfed loblolly pine family. Genetics 155:337–48
    [Google Scholar]
  129. 129. 
    Rick CM. 1966. Abortion of male and female gametes in the tomato determined by allelic interaction. Genetics 53:85–96
    [Google Scholar]
  130. 130. 
    Robertson AW, Mountjoy C, Faulkner BE, Roberts MV, Macnair MR 1999. Bumble bee selection of Mimulusguttatus flowers: the effects of pollen quality and reward depletion. Ecology 80:2594–606
    [Google Scholar]
  131. 131. 
    Rosin LF, Mellone BG. 2017. Centromeres drive a hard bargain. Trends Genet 33:101–17
    [Google Scholar]
  132. 132. 
    Salome PA, Bomblies K, Laitinen RAE, Yant L, Mott R, Weigel D 2011. Genetic architecture of flowering-time variation in Arabidopsis thaliana. Genetics 188:421–33
    [Google Scholar]
  133. 133. 
    Sarver BAJ, Keeble S, Cosart T, Tucker PK, Dean MD, Good JM 2017. Phylogenomic insights into mouse evolution using a pseudoreference approach. Genome Biol. Evol. 9:726–39
    [Google Scholar]
  134. 134. 
    Satyaki PRV, Cuykendall TN, Wei KHC, Brideau NJ, Kwak H et al. 2014. The Hmr and Lhr hybrid incompatibility genes suppress a broad range of heterochromatic repeats. PLOS Genet 10:e1004240–22
    [Google Scholar]
  135. 135. 
    Schlötterer C, Tobler R, Kofler R, Nolte V 2014. Sequencing pools of individuals—mining genome-wide polymorphism data without big funding. Nat. Rev. Genet. 15:749–63
    [Google Scholar]
  136. 136. 
    Simon M, Durand S, Pluta N, Gobron N, Botran L et al. 2016. Genomic conflicts that cause pollen mortality and raise reproductive barriers in Arabidopsis thaliana. Genetics 203:1353–67
    [Google Scholar]
  137. 137. 
    Simon M, Loudet O, Durand S, Bérard A, Brunel D et al. 2008. Quantitative trait loci mapping in five new large recombinant inbred line populations of Arabidopsis thaliana genotyped with consensus single-nucleotide polymorphism markers. Genetics 178:2253–64
    [Google Scholar]
  138. 138. 
    Swanson R, Edlund AF, Preuss D 2004. Species specificity in pollen-pistil interactions. Annu. Rev. Genet. 38:793–818
    [Google Scholar]
  139. 139. 
    Sweigart AL, Brandvain Y, Fishman L 2019. Making a murderer: on the evolutionary framing of hybrid gamete-killers. Trends Genet 35:245–52
    [Google Scholar]
  140. 140. 
    Sweigart AL, Fishman L, Willis JH 2006. A simple genetic incompatibility causes hybrid male sterility in Mimulus. Genetics 172:2465–79
    [Google Scholar]
  141. 141. 
    Taylor DR, Ingvarsson PK. 2003. Common features of segregation distortion in plants and animals. Genetica 117:27–35
    [Google Scholar]
  142. 142. 
    Thépot S, Restoux G, Goldringer I, Hospital F, Gouache D et al. 2015. Efficiently tracking selection in a multiparental population: the case of earliness in wheat. Genetics 199:609–23
    [Google Scholar]
  143. 143. 
    Törjék O, Witucka-Wall H, Meyer RC, von Korff M, Kusterer B et al. 2006. Segregation distortion in Arabidopsis C24/Col-o and Col-o/C24 recombinant inbred line populations is due to reduced fertility caused by epistatic interaction of two loci. Theor. Appl. Genet. 113:1551–61
    [Google Scholar]
  144. 144. 
    Turelli M, Moyle LC. 2007. Asymmetric postmating isolation: Darwin's corollary to Haldane's rule. Genetics 176:1059–88
    [Google Scholar]
  145. 145. 
    Van Ooijen J. 2006. JoinMap 4.0: software for the calculation of genetic linkage maps in experimental populations Wageningen, Neth.: Kyazma B.V https://www.kyazma.nl/index.php/JoinMap/
    [Google Scholar]
  146. 146. 
    Wei KHC, Reddy HM, Rathnam C, Lee J, Lin D et al. 2017. A pooled sequencing approach identifies a candidate meiotic driver in Drosophila. Genetics 206:451–65
    [Google Scholar]
  147. 147. 
    Willis JH. 1992. Genetic analysis of inbreeding depression caused by chlorophyll-deficient lethals in Mimulusguttatus. Heredity 69:562–72
    [Google Scholar]
  148. 148. 
    Xu S. 2003. Theoretical basis of the Beavis effect. Genetics 165:2259–68
    [Google Scholar]
  149. 149. 
    Xu S. 2008. Quantitative trait locus mapping can benefit from segregation distortion. Genetics 180:2201–8
    [Google Scholar]
  150. 150. 
    Yin TM, DiFazio SP, Gunter LE, Riemenschneider D, Tuskan GA 2004. Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map. Theor. Appl. Genet. 109:451–63
    [Google Scholar]
/content/journals/10.1146/annurev-genet-112618-043905
Loading
/content/journals/10.1146/annurev-genet-112618-043905
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error