Bacteria use diffusible chemical messengers, termed pheromones, to coordinate gene expression and behavior among cells in a community by a process known as quorum sensing. Pheromones of many gram-positive bacteria, such as and , are small, linear peptides secreted from cells and subsequently detected by sensory receptors such as those belonging to the large family of RRNPP proteins. These proteins are cytoplasmic pheromone receptors sharing a structurally similar pheromone-binding domain that functions allosterically to regulate receptor activity. X-ray crystal structures of prototypical RRNPP members have provided atomic-level insights into their mechanism and regulation by pheromones. This review provides an overview of RRNPP prototype signaling; describes the structure–function of this protein family, which is spread widely among gram-positive bacteria; and suggests approaches to target RRNPP systems in order to manipulate beneficial and harmful bacterial behaviors.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aceves-Diez AE, Robles-Burgueño R, de la Torre M. 1.  2007. SKPDT is a signaling peptide that stimulates sporulation and cry1Aa expression in Bacillus thuringiensis but not in Bacillus subtilis. Appl. Microbiol. Biotechnol. 76:203–9 [Google Scholar]
  2. Agaisse H, Gominet M, Økstad OA, Kolstø AB, Lereclus D. 2.  1999. PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol. Microbiol. 32:1043–53 [Google Scholar]
  3. Aggarwal C, Jimenez JC, Lee H, Chlipala GE, Ratia K, Federle MJ. 3.  2015. Identification of quorum-sensing inhibitors disrupting signaling between Rgg and short hydrophobic peptides in streptococci. mBio 6:e00393–15 [Google Scholar]
  4. Aggarwal C, Jimenez JC, Nanavati D, Federle MJ. 4.  2014. Multiple length peptide–pheromone variants produced by Streptococcus pyogenes directly bind Rgg proteins to confer transcriptional regulation. J. Biol. Chem. 289:22427–36 [Google Scholar]
  5. An FY, Sulavik MC, Clewell DB. 5.  1999. Identification and characterization of a determinant (eep) on the Enterococcus faecalis chromosome that is involved in production of the peptide sex pheromone cAD1. J. Bacteriol. 181:5915–21 [Google Scholar]
  6. Antiporta MH, Dunny GM. 6.  2002. ccfA, the genetic determinant for the cCF10 peptide pheromone in Enterococcus faecalis OG1RF. J. Bacteriol. 184:1155–62 [Google Scholar]
  7. Auchtung JM, Lee CA, Garrison KL, Grossman AD. 7.  2007. Identification and characterization of the immunity repressor (ImmR) that controls the mobile genetic element ICEBs1 of Bacillus subtilis. Mol. Microbiol. 64:1515–28 [Google Scholar]
  8. Auchtung JM, Lee CA, Grossman AD. 8.  2006. Modulation of the ComA-dependent quorum response in Bacillus subtilis by multiple Rap proteins and Phr peptides. J. Bacteriol. 188:5273–85 [Google Scholar]
  9. Auchtung JM, Lee CA, Monson RE, Lehman AP, Grossman AD. 9.  2005. Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response. PNAS 102:12554–59 [Google Scholar]
  10. Bae T, Kozlowicz B, Dunny GM. 10.  2002. Two targets in pCF10 DNA for PrgX binding: their role in production of Qa and prgX mRNA and in regulation of pheromone-inducible conjugation. J. Mol. Biol. 315:995–1007 [Google Scholar]
  11. Bakelar J, Buchanan SK, Noinaj N. 11.  2016. The structure of the β-barrel assembly machinery complex. Science 351:180–86 [Google Scholar]
  12. Baker MD, Neiditch MB. 12.  2011. Structural basis of response regulator inhibition by a bacterial anti-activator protein. PLOS Biol 9:e1001226 [Google Scholar]
  13. Bensing BA, Manias DA, Dunny GM. 13.  1997. Pheromone cCF10 and plasmid pCF10-encoded regulatory molecules act post-transcriptionally to activate expression of downstream conjugation functions. Mol. Microbiol. 24:285–94 [Google Scholar]
  14. Blatch GL, Lassle M. 14.  1999. The tetratricopeptide repeat: a structural motif mediating protein–protein interactions. BioEssays 21:932–39 [Google Scholar]
  15. Boguslawski KM, Hill PA, Griffith KL. 15.  2015. Novel mechanisms of controlling the activities of the transcription factors Spo0A and ComA by the plasmid-encoded quorum sensing regulators Rap60-Phr60 in Bacillus subtilis. Mol. Microbiol. 96:325–48 [Google Scholar]
  16. Bongiorni C, Ishikawa S, Stephenson S, Ogasawara N, Perego M. 16.  2005. Synergistic regulation of competence development in Bacillus subtilis by two Rap–Phr systems. J. Bacteriol. 187:4353–61 [Google Scholar]
  17. Boratyn GM, Schäffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL. 17.  2012. Domain enhanced lookup time accelerated BLAST. Biol. Direct 7:12 [Google Scholar]
  18. Borel JF, Feurer C, Gubler HU, Stähelin H. 18.  1976. Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Actions 6:468–75 [Google Scholar]
  19. Bortoni ME, Terra VS, Hinds J, Andrew PW, Yesilkaya H. 19.  2009. The pneumococcal response to oxidative stress includes a role for Rgg. Microbiology 155:4123–34 [Google Scholar]
  20. Bose B, Auchtung JM, Lee CA, Grossman AD. 20.  2008. A conserved anti-repressor controls horizontal gene transfer by proteolysis. Mol. Microbiol. 70:570–82 [Google Scholar]
  21. Bose B, Grossman AD. 21.  2011. Regulation of horizontal gene transfer in Bacillus subtilis by activation of a conserved site-specific protease. J. Bacteriol. 193:22–29 [Google Scholar]
  22. Bouillaut L, Perchat S, Arold S, Zorrilla S, Slamti L. 22.  et al. 2008. Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides. Nucleic Acids Res 36:3791–801 [Google Scholar]
  23. Burbulys D, Trach KA, Hoch JA. 23.  1991. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64:545–52 [Google Scholar]
  24. Cabrera R, Rocha J, Flores V, Vázquez-Moreno L, Guarneros G. 24.  et al. 2014. Regulation of sporulation initiation by NprR and its signaling peptide NprRB: molecular recognition and conformational changes. Appl. Microbiol. Biotechnol. 98:9399–412 [Google Scholar]
  25. Cabrera R, Rodríguez-Romero A, Guarneros G, de la Torre M. 25.  2016. New insights into the interaction between the quorum-sensing receptor NprR and its DNA target, or the response regulator Spo0F. FEBS Lett 590:3243–53 [Google Scholar]
  26. Caserta E, Haemig HA, Manias DA, Tomsic J, Grundy FJ. 26.  et al. 2012. In vivo and in vitro analyses of regulation of the pheromone-responsive prgQ promoter by the PrgX pheromone receptor protein. J. Bacteriol. 194:3386–94 [Google Scholar]
  27. Cerveny L, Straskova A, Dankova V, Hartlova A, Ceckova M. 27.  et al. 2013. Tetratricopeptide repeat motifs in the world of bacterial pathogens: role in virulence mechanisms. Infect. Immun. 81:629–35 [Google Scholar]
  28. Chandler JR, Dunny GM. 28.  2008. Characterization of the sequence specificity determinants required for processing and control of sex pheromone by the intramembrane protease Eep and the plasmid-encoded protein PrgY. J. Bacteriol. 190:1172–83 [Google Scholar]
  29. Chang JC, Federle MJ. 29.  2016. PptAB exports Rgg quorum-sensing peptides in Streptococcus. PLOS ONE 11:e0168461 [Google Scholar]
  30. Chang JC, Jimenez JC, Federle MJ. 30.  2015. Induction of a quorum sensing pathway by environmental signals enhances group A streptococcal resistance to lysozyme. Mol. Microbiol. 97:1097–113 [Google Scholar]
  31. Chang JC, LaSarre B, Jimenez JC, Aggarwal C, Federle MJ. 31.  2011. Two group A streptococcal peptide pheromones act through opposing Rgg regulators to control biofilm development. PLOS Pathog 7:e1002190 [Google Scholar]
  32. Chatterjee A, Johnson CM, Shu CC, Kaznessis YN, Ramkrishna D. 32.  et al. 2011. Convergent transcription confers a bistable switch in Enterococcus faecalis conjugation. PNAS 108:9721–26 [Google Scholar]
  33. Clewell DB, Pontius LT, An FY, Ike Y, Suzuki A, Nakayama J. 33.  1990. Nucleotide sequence of the sex pheromone inhibitor (iAD1) determinant of Enterococcus faecalis conjugative plasmid pAD1. Plasmid 24:156–61 [Google Scholar]
  34. Cook LC, Federle MJ. 34.  2014. Peptide pheromone signaling in Streptococcus and Enterococcus. FEMS Microbiol. Rev. 38:473–92 [Google Scholar]
  35. Cook LC, LaSarre B, Federle MJ. 35.  2013. Interspecies communication among commensal and pathogenic streptococci. mBio 4:e00382–13 [Google Scholar]
  36. Core L, Perego M. 36.  2003. TPR-mediated interaction of RapC with ComA inhibits response regulator-DNA binding for competence development in Bacillus subtilis. Mol. Microbiol. 49:1509–22 [Google Scholar]
  37. Declerck N, Bouillaut L, Chaix D, Rugani N, Slamti L. 37.  et al. 2007. Structure of PlcR: insights into virulence regulation and evolution of quorum sensing in Gram-positive bacteria. PNAS 104:18490–95 [Google Scholar]
  38. Diaz AR, Core LJ, Jiang M, Morelli M, Chiang CH. 38.  et al. 2012. Bacillus subtilis RapA phosphatase domain interaction with its substrate, phosphorylated Spo0F, and its inhibitor, the PhrA peptide. J. Bacteriol. 194:1378–88 [Google Scholar]
  39. Do H, Kumaraswami M. 39.  2016. Structural mechanisms of peptide recognition and allosteric modulation of gene regulation by the RRNPP family of quorum-sensing regulators. J. Mol. Biol. 428:2793–804 [Google Scholar]
  40. Dubois T, Faegri K, Perchat S, Lemy C, Buisson C. 40.  et al. 2012. Necrotrophism is a quorum-sensing–regulated lifestyle in Bacillus thuringiensis. PLOS Pathog 8:e1002629 [Google Scholar]
  41. Dunny GM, Berntsson RP. 41.  2016. Enterococcal sex pheromones: evolutionary pathways to complex, two-signal systems. J. Bacteriol. 198:1556–62 [Google Scholar]
  42. Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A. 42.  et al. 2017. Communication between viruses guides lysis–lysogeny decisions. Nature 541:488–93 [Google Scholar]
  43. Even-Tov E, Bendori SO, Pollak S, Eldar A. 43.  2016. Transient duplication-dependent divergence and horizontal transfer underlie the evolutionary dynamics of bacterial cell–cell signaling. PLOS Biol 14:e2000330 [Google Scholar]
  44. Fleuchot B, Gitton C, Guillot A, Vidic J, Nicolas P. 44.  et al. 2011. Rgg proteins associated with internalized small hydrophobic peptides: a new quorum-sensing mechanism in streptococci. Mol. Microbiol. 80:1102–19 [Google Scholar]
  45. Fleuchot B, Guillot A, Mézange C, Besset C, Chambellon E. 45.  et al. 2013. Rgg-associated SHP signaling peptides mediate cross-talk in streptococci. PLOS ONE 8:e66042 [Google Scholar]
  46. Fontaine L, Boutry C, de Frahan MH, Delplace B, Fremaux C. 46.  et al. 2010. A novel pheromone quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius. J. Bacteriol. 192:1444–54 [Google Scholar]
  47. Fontaine L, Wahl A, Flechard M, Mignolet J, Hols P. 47.  2015. Regulation of competence for natural transformation in streptococci. Infect. Genet. Evol. 33:343–60 [Google Scholar]
  48. Fujita M, González-Pastor JE, Losick R. 48.  2005. High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J. Bacteriol. 187:1357–68 [Google Scholar]
  49. Gallego del Sol F, Marina A. 49.  2013. Structural basis of Rap phosphatase inhibition by Phr peptides. PLOS Biol 11:e1001511 [Google Scholar]
  50. Grenha R, Slamti L, Nicaise M, Refes Y, Lereclus D, Nessler S. 50.  2013. Structural basis for the activation mechanism of the PlcR virulence regulator by the quorum-sensing signal peptide PapR. PNAS 110:1047–52 [Google Scholar]
  51. Griffith KL, Grossman AD. 51.  2008. A degenerate tripartite DNA-binding site required for activation of ComA-dependent quorum response gene expression in Bacillus subtilis. J. Mol. Biol. 381:261–75 [Google Scholar]
  52. Grossman AD. 52.  1995. Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu. Rev. Genet. 29:477–508 [Google Scholar]
  53. Hahn J, Kong L, Dubnau D. 53.  1994. The regulation of competence transcription factor synthesis constitutes a critical control point in the regulation of competence in Bacillus subtilis. J. Bacteriol. 176:5753–61 [Google Scholar]
  54. Hayashi K, Kensuke T, Kobayashi K, Ogasawara N, Ogura M. 54.  2006. Bacillus subtilis RghR (YvaN) represses rapG and rapH, which encode inhibitors of expression of the srfA operon. Mol. Microbiol. 59:1714–29 [Google Scholar]
  55. Hedberg PJ, Leonard BA, Ruhfel RE, Dunny GM. 55.  1996. Identification and characterization of the genes of Enterococcus faecalis plasmid pCF10 involved in replication and in negative control of pheromone-inducible conjugation. Plasmid 35:46–57 [Google Scholar]
  56. Hollands A, Aziz RK, Kansal R, Kotb M, Nizet V, Walker MJ. 56.  2008. A naturally occurring mutation in ropB suppresses SpeB expression and reduces M1T1 group A streptococcal systemic virulence. PLOS ONE 3:e4102 [Google Scholar]
  57. Ibrahim M, Nicolas P, Bessieres P, Bolotin A, Monnet V, Gardan R. 57.  2007. A genome-wide survey of short coding sequences in streptococci. Microbiology 153:3631–44 [Google Scholar]
  58. Jiang M, Grau R, Perego M. 58.  2000. Differential processing of propeptide inhibitors of Rap phosphatases in Bacillus subtilis. J. Bacteriol. 182:303–10 [Google Scholar]
  59. Kao SM, Olmsted SB, Viksnins AS, Gallo JC, Dunny GM. 59.  1991. Molecular and genetic analysis of a region of plasmid pCF10 containing positive control genes and structural genes encoding surface proteins involved in pheromone-inducible conjugation in Enterococcus faecalis. J. Bacteriol. 173:7650–64 [Google Scholar]
  60. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. 60.  2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10:845–58 [Google Scholar]
  61. Khan R, Rukke H, Høvik H, Åmdal H, Chen T. 61.  et al. 2016. Comprehensive transcriptome profiles of Streptococcus mutans UA159 map core streptococcal competence genes. mSystems 1:e00038–15 [Google Scholar]
  62. Koetje EJ, Hajdo-Milasinovic A, Kiewiet R, Bron S, Tjalsma H. 62.  2003. A plasmid-borne Rap–Phr system of Bacillus subtilis can mediate cell-density controlled production of extracellular proteases. Microbiology 149:19–28 [Google Scholar]
  63. Kolodkin-Gal I, Elsholz AK, Muth C, Girguis PR, Kolter R, Losick R. 63.  2013. Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase. Genes Dev 27:887–99 [Google Scholar]
  64. Kozlowicz BK, Bae T, Dunny GM. 64.  2004. Enterococcus faecalis pheromone-responsive protein PrgX: genetic separation of positive autoregulatory functions from those involved in negative regulation of conjugative plasmid transfer. Mol. Microbiol. 54:520–32 [Google Scholar]
  65. Kozlowicz BK, Shi K, Gu ZY, Ohlendorf DH, Earhart CA, Dunny GM. 65.  2006. Molecular basis for control of conjugation by bacterial pheromone and inhibitor peptides. Mol. Microbiol. 62:958–69 [Google Scholar]
  66. Lanigan-Gerdes S, Briceno G, Dooley AN, Faull KF, Lazazzera BA. 66.  2008. Identification of residues important for cleavage of the extracellular signaling peptide CSF of Bacillus subtilis from its precursor protein. J. Bacteriol. 190:6668–75 [Google Scholar]
  67. LaSarre B, Aggarwal C, Federle MJ. 67.  2013. Antagonistic Rgg regulators mediate quorum sensing via competitive DNA binding in Streptococcus pyogenes. mBio 3:e00333–12 [Google Scholar]
  68. Leonard BA, Podbielski A, Hedberg PJ, Dunny GM. 68.  1996. Enterococcus faecalis pheromone binding protein, PrgZ, recruits a chromosomal oligopeptide permease system to import sex pheromone cCF10 for induction of conjugation. PNAS 93:260–64 [Google Scholar]
  69. López D, Fischbach MA, Chu F, Losick R, Kolter R. 69.  2009. Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. PNAS 106:280–85 [Google Scholar]
  70. Lyon WR, Gibson CM, Caparon MG. 70.  1998. A role for Trigger Factor and an Rgg-like regulator in the transcription, secretion and processing of the cysteine proteinase of Streptococcus pyogenes. EMBO J 17:6263–75 [Google Scholar]
  71. Magnuson R, Solomon J, Grossman AD. 71.  1994. Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell 77:207–16 [Google Scholar]
  72. Makthal N, Gavagan M, Do H, Olsen RJ, Musser JM, Kumaraswami M. 72.  2016. Structural and functional analysis of RopB: a major virulence regulator in Streptococcus pyogenes. Mol. Microbiol. 99:1119–33 [Google Scholar]
  73. Mashburn-Warren L, Morrison DA, Federle MJ. 73.  2010. A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol. Microbiol. 78:589–606 [Google Scholar]
  74. Mirouze N, Desai Y, Raj A, Dubnau D. 74.  2012. Spo0A∼P imposes a temporal gate for the bimodal expression of competence in Bacillus subtilis. PLOS Genet 8:e1002586 [Google Scholar]
  75. Mirouze N, Parashar V, Baker MD, Dubnau DA, Neiditch MB. 75.  2011. An atypical Phr peptide regulates the developmental switch protein RapH. J. Bacteriol. 193:6197–206 [Google Scholar]
  76. Molle V, Fujita M, Jensen ST, Eichenberger P, González-Pastor JE. 76.  et al. 2003. The Spo0A regulon of Bacillus subtilis. Mol. Microbiol. 50:1683–701 [Google Scholar]
  77. Morrison DA, Guédon E, Renault P. 77.  2013. Competence for natural genetic transformation in the Streptococcus bovis group streptococci S. infantarius and S. macedonicus. J. Bacteriol. 195:2612–20 [Google Scholar]
  78. Mukai K, Kawata M, Tanaka T. 78.  1990. Isolation and phosphorylation of the Bacillus subtilis degS and degU gene products. J. Biol. Chem. 265:20000–6 [Google Scholar]
  79. Nakano MM, Zuber P. 79.  1989. Cloning and characterization of srfB, a regulatory gene involved in surfactin production and competence in Bacillus subtilis. J. Bacteriol. 171:5347–53 [Google Scholar]
  80. Nakayama J, Ruhfel RE, Dunny GM, Isogai A, Suzuki A. 80.  1994. The prgQ gene of the Enterococcus faecalis tetracycline resistance plasmid pCF10 encodes a peptide inhibitor, iCF10. J. Bacteriol. 176:7405–8 [Google Scholar]
  81. Nielsen H, Engelbrecht J, Brunak S, von Heijne G. 81.  1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6 [Google Scholar]
  82. Novick RP, Geisinger E. 82.  2008. Quorum sensing in staphylococci. Annu. Rev. Genet. 42:541–64 [Google Scholar]
  83. Ogura M, Fujita Y. 83.  2007. Bacillus subtilis rapD, a direct target of transcription repression by RghR, negatively regulates srfA expression. FEMS Microbiol. Lett. 268:73–80 [Google Scholar]
  84. Ogura M, Shimane K, Asai K, Ogasawara N, Tanaka T. 84.  2003. Binding of response regulator DegU to the aprE promoter is inhibited by RapG, which is counteracted by extracellular PhrG in Bacillus subtilis. Mol. Microbiol. 49:1685–97 [Google Scholar]
  85. Omer Bendori S, Pollak S, Hizi D, Eldar A. 85.  2015. The RapP-PhrP quorum-sensing system of Bacillus subtilis strain NCIB3610 affects biofilm formation through multiple targets, due to an atypical signal-insensitive allele of RapP. J. Bacteriol. 197:592–602 [Google Scholar]
  86. Parashar V, Aggarwal C, Federle MJ, Neiditch MB. 86.  2015. Rgg protein structure–function and inhibition by cyclic peptide compounds. PNAS 112:5177–82 [Google Scholar]
  87. Parashar V, Jeffrey PD, Neiditch MB. 87.  2013. Conformational change-induced repeat domain expansion regulates Rap phosphatase quorum-sensing signal receptors. PLOS Biol 11:e1001512 [Google Scholar]
  88. Parashar V, Konkol MA, Kearns DB, Neiditch MB. 88.  2013. A plasmid-encoded phosphatase regulates Bacillus subtilis biofilm architecture, sporulation, and genetic competence. J. Bacteriol. 195:2437–48 [Google Scholar]
  89. Parashar V, Mirouze N, Dubnau DA, Neiditch MB. 89.  2011. Structural basis of response regulator dephosphorylation by Rap phosphatases. PLOS Biol 9:e1000589 [Google Scholar]
  90. Perchat S, Dubois T, Zouhir S, Gominet M, Poncet S. 90.  et al. 2011. A cell–cell communication system regulates protease production during sporulation in bacteria of the Bacillus cereus group. Mol. Microbiol. 82:619–33 [Google Scholar]
  91. Perchat S, Talagas A, Poncet S, Lazar N, Li de la Sierra-Gallay I. 91.  et al. 2016. How quorum sensing connects sporulation to necrotrophism in Bacillus thuringiensis. PLOS Pathog 12:e1005779 [Google Scholar]
  92. Perego M. 92.  1997. A peptide export–import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay. PNAS 94:8612–17 [Google Scholar]
  93. Perego M, Glaser P, Hoch JA. 93.  1996. Aspartyl-phosphate phosphatases deactivate the response regulator components of the sporulation signal transduction system in Bacillus subtilis. Mol. Microbiol. 19:1151–57 [Google Scholar]
  94. Perego M, Hanstein C, Welsh KM, Djavakhishvili T, Glaser P, Hoch JA. 94.  1994. Multiple protein-aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in B. subtilis. Cell 79:1047–55 [Google Scholar]
  95. Perego M, Higgins CF, Pearce SR, Gallagher MP, Hoch JA. 95.  1991. The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol. Microbiol. 5:173–85 [Google Scholar]
  96. Perego M, Hoch JA. 96.  1996. Cell–cell communication regulates the effects of protein aspartate phosphatases on the phosphorelay controlling development in Bacillus subtilis. PNAS 93:1549–53 [Google Scholar]
  97. Pérez-Pascual D, Gaudu P, Fleuchot B, Besset C, Rosinski-Chupin I. 97.  et al. 2015. RovS and its associated signaling peptide form a cell-to-cell communication system required for Streptococcus agalactiae pathogenesis. mBio 6:e02306–14 [Google Scholar]
  98. Pomerantsev AP, Pomerantseva OM, Camp AS, Mukkamala R, Goldman S, Leppla SH. 98.  2009. PapR peptide maturation: role of the NprB protease in Bacillus cereus 569 PlcR/PapR global gene regulation. FEMS Immunol. Med. Microbiol 55361–77 [Google Scholar]
  99. Pottathil M, Lazazzera BA. 99.  2003. The extracellular Phr peptide-Rap phosphatase signaling circuit of Bacillus subtilis. Front. Biosci. 8:d32–45 [Google Scholar]
  100. Rocha J, Flores V, Cabrera R, Soto-Guzmán A, Granados G. 100.  et al. 2012. Evolution and some functions of the NprR–NprRB quorum-sensing system in the Bacillus cereus group. Appl. Microbiol. Biotechnol. 94:1069–78 [Google Scholar]
  101. Rudner DZ, LeDeaux JR, Ireton K, Grossman AD. 101.  1991. The spo0K locus of Bacillus subtilis is homologous to the oligopeptide permease locus and is required for sporulation and competence. J. Bacteriol. 173:1388–98 [Google Scholar]
  102. Schramma KR, Bushin LB, Seyedsayamdost MR. 102.  2015. Structure and biosynthesis of a macrocyclic peptide containing an unprecedented lysine-to-tryptophan crosslink. Nat. Chem. 7:431–37 [Google Scholar]
  103. Schramma KR, Seyedsayamdost MR. 103.  2017. Lysine-tryptophan-crosslinked peptides produced by radical SAM enzymes in pathogenic streptococci. ACS Chem. Biol. 12:922–27 [Google Scholar]
  104. Shanker E, Morrison DA, Talagas A, Nessler S, Federle MJ, Prehna G. 104.  2016. Pheromone recognition and selectivity by ComR proteins among Streptococcus species. PLOS Pathog 12:e1005979 [Google Scholar]
  105. Shi K, Brown CK, Gu ZY, Kozlowicz BK, Dunny GM. 105.  et al. 2005. Structure of peptide sex pheromone receptor PrgX and PrgX/pheromone complexes and regulation of conjugation in Enterococcus faecalis. PNAS 102:18596–601 [Google Scholar]
  106. Slamti L, Lereclus D. 106.  2002. A cell–cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. EMBO J 21:4550–59 [Google Scholar]
  107. Smits WK, Bongiorni C, Veening JW, Hamoen LW, Kuipers OP, Perego M. 107.  2007. Temporal separation of distinct differentiation pathways by a dual specificity Rap–Phr system in Bacillus subtilis. Mol. Microbiol. 65:103–20 [Google Scholar]
  108. Solomon JM, Lazazzera BA, Grossman AD. 108.  1996. Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis. Genes Dev 10:2014–24 [Google Scholar]
  109. Stephenson S, Mueller C, Jiang M, Perego M. 109.  2003. Molecular analysis of Phr peptide processing in Bacillus subtilis. J. Bacteriol. 185:4861–71 [Google Scholar]
  110. Stragier P, Losick R. 110.  1996. Molecular genetics of sporulation in Bacillus subtilis. Annu. Rev. Genet. 30:297–341 [Google Scholar]
  111. Sulavik MC, Tardif G, Clewell DB. 111.  1992. Identification of a gene, rgg, which regulates expression of glucosyltransferase and influences the Spp phenotype of Streptococcus gordonii Challis. J. Bacteriol. 174:3577–86 [Google Scholar]
  112. Talagas A, Fontaine L, Ledesma-Garca L, Mignolet J, Li de la Sierra-Gallay I. 112.  et al. 2016. Structural insights into streptococcal competence regulation by the cell-to-cell communication system ComRS. PLOS Pathog 12:e1005980 [Google Scholar]
  113. Tzeng YL, Hoch JA. 113.  1997. Molecular recognition in signal transduction: the interaction surfaces of the Spo0F response regulator with its cognate phosphorelay proteins revealed by alanine scanning mutagenesis. J. Mol. Biol. 272:200–12 [Google Scholar]
  114. Varahan S, Harms N, Gilmore MS, Tomich JM, Hancock LE. 114.  2014. An ABC transporter is required for secretion of peptide sex pheromones in Enterococcus faecalis. mBio 5:e01726–14 [Google Scholar]
  115. Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R. 115.  2013. Sticking together: building a biofilm the Bacillus subtilis way. Nat. Rev. Microbiol. 11:157–68 [Google Scholar]
  116. Wilkening RV, Chang JC, Federle MJ. 116.  2016. PepO, a CovRS-controlled endopeptidase, disrupts Streptococcus pyogenes quorum sensing. Mol. Microbiol. 99:71–87 [Google Scholar]
  117. Wolf D, Rippa V, Mobarec JC, Sauer P, Adlung L. 117.  et al. 2016. The quorum-sensing regulator ComA from Bacillus subtilis activates transcription using topologically distinct DNA motifs. Nucleic Acids Res 44:2160–72 [Google Scholar]
  118. Xayarath B, Alonzo F III, Freitag NE. 118.  2015. Identification of a peptide-pheromone that enhances Listeria monocytogenes escape from host cell vacuoles. PLOS Pathog 11:e1004707 [Google Scholar]
  119. Yang H, Sikavi C, Tran K, McGillivray SM, Nizet V. 119.  et al. 2011. Papillation in Bacillus anthracis colonies: a tool for finding new mutators. Mol. Microbiol. 79:1276–93 [Google Scholar]
  120. Zeytuni N, Zarivach R. 120.  2012. Structural and functional discussion of the tetra-trico-peptide repeat, a protein interaction module. Structure 20:397–405 [Google Scholar]
  121. Zouhir S, Perchat S, Nicaise M, Perez J, Guimaraes B. 121.  et al. 2013. Peptide-binding dependent conformational changes regulate the transcriptional activity of the quorum-sensor NprR. Nucleic Acids Res 41:7920–33 [Google Scholar]
  122. Zutkis AA, Anbalagan S, Chaussee MS, Dmitriev AV. 122.  2014. Inactivation of the Rgg2 transcriptional regulator ablates the virulence of Streptococcus pyogenes. PLOS ONE 9:e114784 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error