1932

Abstract

Cell–cell fusion is indispensable for creating life and building syncytial tissues and organs. Ever since the discovery of cell–cell fusion, how cells join together to form zygotes and multinucleated syncytia has remained a fundamental question in cell and developmental biology. In the past two decades, myoblast fusion has been used as a powerful genetic model to unravel mechanisms underlying cell–cell fusion in vivo. Many evolutionarily conserved fusion-promoting factors have been identified and so has a surprising and conserved cellular mechanism. In this review, we revisit key findings in myoblast fusion and highlight the critical roles of cellular invasion and resistance in driving cell membrane fusion.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120116-024603
2019-12-03
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/genet/53/1/annurev-genet-120116-024603.html?itemId=/content/journals/10.1146/annurev-genet-120116-024603&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abmayr SM, Pavlath GK. 2012. Myoblast fusion: lessons from flies and mice. Development 139:641–56
    [Google Scholar]
  2. 2. 
    Aguilar PS, Baylies MK, Fleissner A, Helming L, Inoue N et al. 2013. Genetic basis of cell–cell fusion mechanisms. Trends Genet 29:427–37
    [Google Scholar]
  3. 3. 
    Arias-Romero LE, Chernoff J. 2008. A tale of two Paks. Biol. Cell 100:97–108
    [Google Scholar]
  4. 4. 
    Artero R, Furlong EE, Beckett K, Scott MP, Baylies M 2003. Notch and Ras signaling pathway effector genes expressed in fusion competent and founder cells during Drosophila myogenesis. Development 130:6257–72
    [Google Scholar]
  5. 5. 
    Artero RD, Castanon I, Baylies MK 2001. The immunoglobulin-like protein Hibris functions as a dose-dependent regulator of myoblast fusion and is differentially controlled by Ras and Notch signaling. Development 128:4251–64
    [Google Scholar]
  6. 6. 
    Bach A-S, Enjalbert S, Comunale F, Bodin S, Vitale N et al. 2010. ADP-ribosylation factor 6 regulates mammalian myoblast fusion through phospholipase D1 and phosphatidylinositol 4,5-bisphosphate signaling pathways. Mol. Biol. Cell 21:2412–24
    [Google Scholar]
  7. 7. 
    Balagopalan L, Chen M-H, Geisbrecht ER, Abmayr SM 2006. The CDM superfamily protein MBC directs myoblast fusion through a mechanism that requires phosphatidylinositol 3,4,5-triphosphate binding but is independent of direct interaction with DCrk. Mol. Cell. Biol. 26:9442–55
    [Google Scholar]
  8. 8. 
    Balagopalan L, Keller CA, Abmayr SM 2001. Loss-of-function mutations reveal that the Drosophila nautilus gene is not essential for embryonic myogenesis or viability. Dev. Biol. 231:374–82
    [Google Scholar]
  9. 9. 
    Bate M. 1990. The embryonic development of larval muscles in Drosophila. Development 110:791–804
    [Google Scholar]
  10. 10. 
    Bate M, Rushton E, Frasch M 1993. A dual requirement for neurogenic genes in Drosophila myogenesis. Development 119:Suppl.149–61
    [Google Scholar]
  11. 11. 
    Bennett V, Lorenzo DN. 2013. Spectrin- and ankyrin-based membrane domains and the evolution of vertebrates. Curr. Top. Membr. 72:1–37
    [Google Scholar]
  12. 12. 
    Berger S, Schäfer G, Kesper DA, Holz A, Eriksson T et al. 2008. WASP and SCAR have distinct roles in activating the Arp2/3 complex during myoblast fusion. J. Cell Sci. 121:1303–13
    [Google Scholar]
  13. 13. 
    Bhuin T, Roy JK. 2009. Rab11 is required for myoblast fusion in Drosophila. Cell Tissue Res 336:489–99
    [Google Scholar]
  14. 14. 
    Bi P, Ramirez-Martinez A, Li H, Cannavino J, McAnally JR et al. 2017. Control of muscle formation by the fusogenic micropeptide myomixer. Science 356:323–27
    [Google Scholar]
  15. 15. 
    Bishop AL, Hall A. 2000. Rho GTPases and their effector proteins. Biochem. J. 348:241–55
    [Google Scholar]
  16. 16. 
    Bokoch GM. 2003. Biology of the p21-activated kinases. Annu. Rev. Biochem. 72:743–81
    [Google Scholar]
  17. 17. 
    Bothe I, Deng S, Baylies M 2014. PI(4,5)P2 regulates myoblast fusion through Arp2/3 regulator localization at the fusion site. Development 141:2289–301
    [Google Scholar]
  18. 18. 
    Bour BA, Chakravarti M, West JM, Abmayr SM 2000. Drosophila SNS, a member of the immunoglobulin superfamily that is essential for myoblast fusion. Genes Dev 14:1498–511
    [Google Scholar]
  19. 19. 
    Bourgouin C, Lundgren SE, Thomas JB 1992. apterous is a Drosophila LIM domain gene required for the development of a subset of embryonic muscles. Neuron 9:549–61
    [Google Scholar]
  20. 20. 
    Brinkmann K, Winterhoff M, Önel S-F, Schultz J, Faix J, Bogdan S 2016. WHAMY is a novel actin polymerase promoting myoblast fusion, macrophage cell motility and sensory organ development in Drosophila. J. Cell Sci 129:604–20
    [Google Scholar]
  21. 21. 
    Brugnera E, Haney L, Grimsley C, Lu M, Walk SF et al. 2002. Unconventional Rac–GEF activity is mediated through the Dock180–ELMO complex. Nat. Cell Biol. 4:574–82
    [Google Scholar]
  22. 22. 
    Bulchand S, Menon SD, George SE, Chia W 2010. The intracellular domain of Dumbfounded affects myoblast fusion efficiency and interacts with Rolling pebbles and Loner. PLOS ONE 5:e9374
    [Google Scholar]
  23. 23. 
    Carmena A, Bate M, Jiménez F 1995. lethalof scute, a proneural gene, participates in the specification of muscle progenitors during Drosophila embryogenesis. Genes Dev 9:2373–83
    [Google Scholar]
  24. 24. 
    Carmena A, Buff E, Halfon MS, Gisselbrecht S, Jiménez F et al. 2002. Reciprocal regulatory interactions between the Notch and Ras signaling pathways in the Drosophila embryonic mesoderm. Dev. Biol. 244:226–42
    [Google Scholar]
  25. 25. 
    Carmena A, Gisselbrecht S, Harrison J, Jiménez F, Michelson AM 1998. Combinatorial signaling codes for the progressive determination of cell fates in the Drosophila embryonic mesoderm. Genes Dev 12:3910–22
    [Google Scholar]
  26. 26. 
    Chen EH. 2011. Invasive podosomes and myoblast fusion. Curr. Top. Membr. 68:235–58
    [Google Scholar]
  27. 27. 
    Chen EH, Olson EN. 2001. Antisocial, an intracellular adaptor protein, is required for myoblast fusion in Drosophila. Dev. Cell 1:705–15
    [Google Scholar]
  28. 28. 
    Chen EH, Olson EN. 2005. Unveiling the mechanisms of cell-cell fusion. Science 308:369–73
    [Google Scholar]
  29. 29. 
    Chen EH, Pryce BA, Tzeng JA, Gonzalez GA, Olson EN 2003. Control of myoblast fusion by a guanine nucleotide exchange factor, loner, and its effector ARF6. Cell 114:751–62
    [Google Scholar]
  30. 30. 
    Ciglar L, Girardot C, Wilczyński B, Braun M, Furlong EEM et al. 2014. Coordinated repression and activation of two transcriptional programs stabilizes cell fate during myogenesis. Development 141:2633–43
    [Google Scholar]
  31. 31. 
    Crozatier M, Vincent A. 1999. Requirement for the Drosophila COE transcription factor Collier in formation of an embryonic muscle: transcriptional response to notch signalling. Development 126:1495–504
    [Google Scholar]
  32. 32. 
    D'Souza RS, Casanova JE. 2016. The BRAG/IQSec family of Arf GEFs. Small GTPases 7:257–64
    [Google Scholar]
  33. 33. 
    Deng S, Azevedo M, Baylies M 2017. Acting on identity: myoblast fusion and the formation of the syncytial muscle fiber. Semin. Cell Dev. Biol. 72:45–55
    [Google Scholar]
  34. 34. 
    Deng S, Bothe I, Baylies MK 2015. The formin Diaphanous regulates myoblast fusion through actin polymerization and Arp2/3 regulation. PLOS Genet 11:e1005381
    [Google Scholar]
  35. 35. 
    Dhanyasi N, Segal D, Shimoni E, Shinder V, Shilo B-Z et al. 2015. Surface apposition and multiple cell contacts promote myoblast fusion in Drosophila flight muscles. J. Cell Biol. 211:191–203
    [Google Scholar]
  36. 36. 
    Di Gioia SA, Connors S, Matsunami N, Cannavino J, Rose MF et al. 2017. A defect in myoblast fusion underlies Carey–Fineman–Ziter syndrome. Nat. Commun. 8:16077
    [Google Scholar]
  37. 37. 
    Dietzl G, Chen D, Schnorrer F, Su K-C, Barinova Y et al. 2007. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–56
    [Google Scholar]
  38. 38. 
    Doberstein SK, Fetter RD, Mehta AY, Goodman CS 1997. Genetic analysis of myoblast fusion: blown fuse is required for progression beyond the prefusion complex. J. Cell Biol. 136:1249–61
    [Google Scholar]
  39. 39. 
    Dobi KC, Halfon MS, Baylies MK 2014. Whole-genome analysis of muscle founder cells implicates the chromatin regulator Sin3A in muscle identity. Cell Rep 8:858–70
    [Google Scholar]
  40. 40. 
    Dobi KC, Schulman VK, Baylies MK 2015. Specification of the somatic musculature in Drosophila. Wiley Interdiscip. Rev. Dev. Biol 4:357–75
    [Google Scholar]
  41. 41. 
    Dohrmann C, Azpiazu N, Frasch M 1990. A new Drosophila homeo box gene is expressed in mesodermal precursor cells of distinct muscles during embryogenesis. Genes Dev 4:2098–111
    [Google Scholar]
  42. 42. 
    Dottermusch-Heidel C, Groth V, Beck L, Önel S-F 2012. The Arf-GEF Schizo/Loner regulates N-cadherin to induce fusion competence of Drosophila myoblasts. Dev. Biol. 368:18–27
    [Google Scholar]
  43. 43. 
    Duan H, Skeath JB, Nguyen HT 2001. Drosophila Lame duck, a novel member of the Gli superfamily, acts as a key regulator of myogenesis by controlling fusion-competent myoblast development. Development 128:4489–500
    [Google Scholar]
  44. 44. 
    Duan R, Jin P, Luo F, Zhang G, Anderson N, Chen EH 2012. Group I PAKs function downstream of Rac to promote podosome invasion during myoblast fusion in vivo. J. Cell Biol. 199:169–85
    [Google Scholar]
  45. 45. 
    Duan R, Kim JH, Shilagardi K, Schiffhauer E, Lee D et al. 2018. Spectrin is a mechanoresponsive protein shaping fusogenic synapse architecture during myoblast fusion. Nat. Cell Biol. 20:688–98
    [Google Scholar]
  46. 46. 
    Dutta D, Anant S, Ruiz-Gomez M, Bate M, VijayRaghavan K 2004. Founder myoblasts and fibre number during adult myogenesis in Drosophila. Development 131:3761–72
    [Google Scholar]
  47. 47. 
    Dutta D, Shaw S, Maqbool T, Pandya H, VijayRaghavan K 2005. Drosophila Heartless acts with Heartbroken/Dof in muscle founder differentiation. PLOS Biol 3:e337
    [Google Scholar]
  48. 48. 
    Dworak HA, Charles MA, Pellerano LB, Sink H 2001. Characterization of Drosophila hibris, a gene related to human nephrin. Development 128:4265–76
    [Google Scholar]
  49. 49. 
    Dyer N, Rebollo E, Domínguez P, Elkhatib N, Chavrier P et al. 2007. Spermatocyte cytokinesis requires rapid membrane addition mediated by ARF6 on central spindle recycling endosomes. Development 134:4437–47
    [Google Scholar]
  50. 50. 
    Erickson MRS, Galletta BJ, Abmayr SM 1997. Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure, and cytoskeletal organization. J. Cell Biol. 138:589–603
    [Google Scholar]
  51. 51. 
    Estrada B, Maeland AD, Gisselbrecht SS, Bloor JW, Brown NH, Michelson AM 2007. The MARVEL domain protein, Singles Bar, is required for progression past the pre-fusion complex stage of myoblast fusion. Dev. Biol. 307:328–39
    [Google Scholar]
  52. 52. 
    Fernandes J, Bate M, Vijayraghavan K 1991. Development of the indirect flight muscles of Drosophila. Development 113:67–77
    [Google Scholar]
  53. 53. 
    Fernandes JJ, Atreya KB, Desai KM, Hall RE, Patel MD et al. 2005. A dominant negative form of Rac1 affects myogenesis of adult thoracic muscles in Drosophila. Dev. Biol 285:11–27
    [Google Scholar]
  54. 54. 
    Fernandes JJ, Keshishian H. 1996. Patterning the dorsal longitudinal flight muscles (DLM) of Drosophila: insights from the ablation of larval scaffolds. Development 122:3755–63
    [Google Scholar]
  55. 55. 
    Figeac N, Jagla T, Aradhya R, Da Ponte JP, Jagla K 2010. Drosophila adult muscle precursors form a network of interconnected cells and are specified by the rhomboid-triggered EGF pathway. Development 137:1965–73
    [Google Scholar]
  56. 56. 
    Galletta BJ, Chakravarti M, Banerjee R, Abmayr SM 2004. SNS: adhesive properties, localization requirements and ectodomain dependence in S2 cells and embryonic myoblasts. Mech. Dev. 121:1455–68
    [Google Scholar]
  57. 57. 
    García E, Jones GE, Machesky LM, Antón IM 2012. WIP: WASP-interacting proteins at invadopodia and podosomes. Eur. J. Cell Biol. 91:869–77
    [Google Scholar]
  58. 58. 
    Geisbrecht ER, Haralalka S, Swanson SK, Florens L, Washburn MP, Abmayr SM 2008. Drosophila ELMO/CED-12 interacts with Myoblast city to direct myoblast fusion and ommatidial organization. Dev. Biol. 314:137–49
    [Google Scholar]
  59. 59. 
    Gildor B, Massarwa R, Shilo B-Z, Schejter ED 2009. The SCAR and WASp nucleation-promoting factors act sequentially to mediate Drosophila myoblast fusion. EMBO Rep 10:1043–50
    [Google Scholar]
  60. 60. 
    Gildor B, Schejter ED, Shilo B-Z 2012. Bidirectional Notch activation represses fusion competence in swarming adult Drosophila myoblasts. Development 139:4040–50
    [Google Scholar]
  61. 61. 
    Goode BL, Eck MJ. 2007. Mechanism and function of formins in the control of actin assembly. Annu. Rev. Biochem. 76:593–627
    [Google Scholar]
  62. 62. 
    Gunage RD, Dhanyasi N, Reichert H, VijayRaghavan K 2017. Drosophila adult muscle development and regeneration. Semin. Cell Dev. Biol. 72:56–66
    [Google Scholar]
  63. 63. 
    Hakeda-Suzuki S, Ng J, Tzu J, Dietzl G, Sun Y et al. 2002. Rac function and regulation during Drosophila development. Nature 416:438–42
    [Google Scholar]
  64. 64. 
    Hamoud N, Tran V, Croteau L-P, Kania A, Côté J-F 2014. G-protein coupled receptor BAI3 promotes myoblast fusion in vertebrates. PNAS 111:3745–50
    [Google Scholar]
  65. 65. 
    Hamp J, Löwer A, Dottermusch-Heidel C, Beck L, Moussian B et al. 2016. Drosophila Kette coordinates myoblast junction dissolution and the ratio of Scar-to-WASp during myoblast fusion. J. Cell Sci. 129:3426–36
    [Google Scholar]
  66. 66. 
    Haralalka S, Shelton C, Cartwright HN, Katzfey E, Janzen E, Abmayr SM 2011. Asymmetric Mbc, active Rac1 and F-actin foci in the fusion-competent myoblasts during myoblast fusion in Drosophila. Development 138:1551–62
    [Google Scholar]
  67. 67. 
    Hasegawa H, Kiyokawa E, Tanaka S, Nagashima K, Gotoh N et al. 1996. DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol. Cell. Biol. 16:1770–76
    [Google Scholar]
  68. 68. 
    Hernández JM, Podbilewicz B. 2017. The hallmarks of cell–cell fusion. Development 144:4481–95
    [Google Scholar]
  69. 69. 
    Hochreiter-Hufford AE, Lee CS, Kinchen JM, Sokolowski JD, Arandjelovic S et al. 2013. Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature 497:263–67
    [Google Scholar]
  70. 70. 
    Huang J, Zhou W, Dong W, Watson AM, Hong Y 2009. Directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering. PNAS 106:8284–89
    [Google Scholar]
  71. 71. 
    Jagla T, Bellard F, Lutz Y, Dretzen G, Bellard M, Jagla K 1998. ladybird determines cell fate decisions during diversification of Drosophila somatic muscles. Development 125:3699–708
    [Google Scholar]
  72. 72. 
    Jeong J, Conboy IM. 2011. Phosphatidylserine directly and positively regulates fusion of myoblasts into myotubes. Biochem. Biophys. Res. Commun. 414:9–13
    [Google Scholar]
  73. 73. 
    Jin P, Duan R, Luo F, Zhang G, Hong SN, Chen EH 2011. Competition between Blown fuse and WASP for WIP binding regulates the dynamics of WASP-dependent actin polymerization in vivo. Dev. Cell 20:623–38
    [Google Scholar]
  74. 74. 
    Kaipa BR, Shao H, Schäfer G, Trinkewitz T, Groth V et al. 2013. Dock mediates Scar- and WASp-dependent actin polymerization through interaction with cell adhesion molecules in founder cells and fusion-competent myoblasts. J. Cell Sci. 126:360–72
    [Google Scholar]
  75. 75. 
    Kaplan D, Zimmerberg J, Puri A, Sarkar DP, Blumenthal R 1991. Single cell fusion events induced by influenza hemagglutinin: studies with rapid-flow, quantitative fluorescence microscopy. Exp. Cell Res. 195:137–44
    [Google Scholar]
  76. 76. 
    Kesper DA, Stute C, Buttgereit D, Kreisköther N, Vishnu S et al. 2007. Myoblast fusion in Drosophila melanogaster is mediated through a fusion-restricted myogenic-adhesive structure (FuRMAS). Dev. Dyn. 236:404–15
    [Google Scholar]
  77. 77. 
    Kim JH, Jin P, Duan R, Chen EH 2015a. Mechanisms of myoblast fusion during muscle development. Curr. Opin. Genet. Dev. 32:162–70
    [Google Scholar]
  78. 78. 
    Kim JH, Ren Y, Ng WP, Li S, Son S et al. 2015b. Mechanical tension drives cell membrane fusion. Dev. Cell 32:561–73
    [Google Scholar]
  79. 79. 
    Kim S, Shilagardi K, Zhang S, Hong SN, Sens KL et al. 2007. A critical function for the actin cytoskeleton in targeted exocytosis of prefusion vesicles during myoblast fusion. Dev. Cell 12:571–86
    [Google Scholar]
  80. 80. 
    Landemaine A, Rescan PY, Gabillard JC 2014. Myomaker mediates fusion of fast myocytes in zebrafish embryos. Biochem. Biophys. Res. Commun. 451:480–84
    [Google Scholar]
  81. 81. 
    Leikina E, Melikov K, Sanyal S, Verma SK, Eun B et al. 2013. Extracellular annexins and dynamin are important for sequential steps in myoblast fusion. J. Cell Biol. 200:109–23
    [Google Scholar]
  82. 82. 
    Luo L, Liao YJ, Jan LY, Jan YN 1994. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev 8:1787–802
    [Google Scholar]
  83. 83. 
    Machado C, Andrew DJ. 2000. D-Titin: a giant protein with dual roles in chromosomes and muscles. J. Cell Biol. 151:639–52
    [Google Scholar]
  84. 84. 
    Massarwa R, Carmon S, Shilo B-Z, Schejter ED 2007. WIP/WASp-based actin-polymerization machinery is essential for myoblast fusion in Drosophila. Dev. Cell 12:557–69
    [Google Scholar]
  85. 85. 
    Menon SD, Chia W. 2001. Drosophila Rolling pebbles: a multidomain protein required for myoblast fusion that recruits D-Titin in response to the myoblast attractant Dumbfounded. Dev. Cell 1:691–703
    [Google Scholar]
  86. 86. 
    Menon SD, Osman Z, Chenchill K, Chia W 2005. A positive feedback loop between Dumbfounded and Rolling pebbles leads to myotube enlargement in Drosophila. J. Cell Biol 169:909–20
    [Google Scholar]
  87. 87. 
    Millay DP, O'Rourke JR, Sutherland LB, Bezprozvannaya S, Shelton JM et al. 2013. Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature 499:301–5
    [Google Scholar]
  88. 88. 
    Mukherjee P, Gildor B, Shilo B-Z, VijayRaghavan K, Schejter ED 2011. The actin nucleator WASp is required for myoblast fusion during adult Drosophila myogenesis. Development 138:2347–57
    [Google Scholar]
  89. 89. 
    Ni J-Q, Zhou R, Czech B, Liu L-P, Holderbaum L et al. 2011. A genome-scale shRNA resource for transgenic RNAi in Drosophila.Nat. Methods 8:405–7
    [Google Scholar]
  90. 90. 
    Önel SF, Rust MB, Jacob R, Renkawitz-Pohl R 2014. Tethering membrane fusion: common and different players in myoblasts and at the synapse. J. Neurogenet. 28:302–15
    [Google Scholar]
  91. 91. 
    Özkan E, Chia PH, Wang RR, Goriatcheva N, Borek D et al. 2014. Extracellular architecture of the SYG-1/SYG-2 adhesion complex instructs synaptogenesis. Cell 156:482–94
    [Google Scholar]
  92. 92. 
    Park S-Y, Yun Y, Lim J-S, Kim M-J, Kim S-Y et al. 2016. Stabilin-2 modulates the efficiency of myoblast fusion during myogenic differentiation and muscle regeneration. Nat. Commun. 7:10871
    [Google Scholar]
  93. 93. 
    Plonsky I, Cho M-S, Oomens AGP, Blissard G, Zimmerberg J 1999. An analysis of the role of the target membrane on the Gp64-induced fusion pore. Virology 253:65–76
    [Google Scholar]
  94. 94. 
    Plonsky I, Zimmerberg J. 1996. The initial fusion pore induced by baculovirus GP64 is large and forms quickly. J. Cell Biol. 135:1831–39
    [Google Scholar]
  95. 95. 
    Pollard TD, Cooper JA. 2009. Actin, a central player in cell shape and movement. Science 326:1208–12
    [Google Scholar]
  96. 96. 
    Pollitt AY, Insall RH. 2009. WASP and SCAR/WAVE proteins: the drivers of actin assembly. J. Cell Sci. 122:2575–78
    [Google Scholar]
  97. 97. 
    Quinn ME, Goh Q, Kurosaka M, Gamage DG, Petrany MJ et al. 2017. Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development. Nat. Commun. 8:15665
    [Google Scholar]
  98. 98. 
    Randrianarison-Huetz V, Papaefthymiou A, Herledan G, Noviello C, Faradova U et al. 2018. Srf controls satellite cell fusion through the maintenance of actin architecture. J. Cell Biol. 217:685–700
    [Google Scholar]
  99. 99. 
    Rau A, Buttgereit D, Holz A, Fetter R, Doberstein SK et al. 2001. rollingpebbles (rols) is required in Drosophila muscle precursors for recruitment of myoblasts for fusion. Development 128:5061–73
    [Google Scholar]
  100. 100. 
    Richardson BE, Beckett K, Nowak SJ, Baylies MK 2007. SCAR/WAVE and Arp2/3 are crucial for cytoskeletal remodeling at the site of myoblast fusion. Development 134:4357–67
    [Google Scholar]
  101. 101. 
    Rottner K, Hänisch J, Campellone KG 2010. WASH, WHAMM and JMY: regulation of Arp2/3 complex and beyond. Trends Cell Biol 20:650–61
    [Google Scholar]
  102. 102. 
    Roy S, VijayRaghavan K. 1998. Patterning muscles using organizers: Larval muscle templates and adult myoblasts actively interact to pattern the dorsal longitudinal flight muscles of Drosophila. J. Cell Biol 141:1135–45
    [Google Scholar]
  103. 103. 
    Ruiz-Gómez M, Bate M. 1997. Segregation of myogenic lineages in Drosophila requires Numb. Development 124:4857–66
    [Google Scholar]
  104. 104. 
    Ruiz-Gómez M, Coutts N, Price A, Taylor MV, Bate M 2000. Drosophila dumbfounded: a myoblast attractant essential for fusion. Cell 102:189–98
    [Google Scholar]
  105. 105. 
    Ruiz-Gómez M, Romani S, Hartmann C, Jäckle H, Bate M 1997. Specific muscle identities are regulated by Krüppel during Drosophila embryogenesis. Development 124:3407–14
    [Google Scholar]
  106. 106. 
    Rushton E, Drysdale R, Abmayr SM, Michelson AM, Bate M 1995. Mutations in a novel gene, myoblast city, provide evidence in support of the founder cell hypothesis for Drosophila muscle development. Development 121:1979–88
    [Google Scholar]
  107. 107. 
    Sánchez-Pulido L, Martín-Belmonte F, Valencia A, Alonso MA 2002. MARVEL: a conserved domain involved in membrane apposition events. Trends Biochem. Sci. 27:599–601
    [Google Scholar]
  108. 108. 
    Schäfer G, Weber S, Holz A, Bogdan S, Schumacher S et al. 2007. The Wiskott-Aldrich syndrome protein (WASP) is essential for myoblast fusion in Drosophila. Dev. Biol 304:664–74
    [Google Scholar]
  109. 109. 
    Schejter ED. 2016. Myoblast fusion: experimental systems and cellular mechanisms. Semin. Cell Dev. Biol. 60:112–20
    [Google Scholar]
  110. 110. 
    Schnorrer F, Schönbauer C, Langer CCH, Dietzl G, Novatchkova M et al. 2010. Systematic genetic analysis of muscle morphogenesis and function in Drosophila. Nature 464:287–91
    [Google Scholar]
  111. 111. 
    Schröter RH, Lier S, Holz A, Bogdan S, Klämbt C et al. 2004. kette and blown fuse interact genetically during the second fusion step of myogenesis in Drosophila. Development 131:4501–9
    [Google Scholar]
  112. 112. 
    Schulman VK, Dobi KC, Baylies MK 2015. Morphogenesis of the somatic musculature in Drosophila melanogaster.Wiley Interdiscip. Rev. Dev. Biol 4:313–34
    [Google Scholar]
  113. 113. 
    Segal D, Dhanyasi N, Schejter ED, Shilo B-Z 2016. Adhesion and fusion of muscle cells are promoted by filopodia. Dev. Cell 38:291–304
    [Google Scholar]
  114. 114. 
    Sens KL, Zhang S, Jin P, Duan R, Zhang G et al. 2010. An invasive podosome-like structure promotes fusion pore formation during myoblast fusion. J. Cell Biol. 191:1013–27
    [Google Scholar]
  115. 115. 
    Shafiq SA. 1963. Electron microscopic studies on the indirect flight muscles of Drosophila melanogaster. II. Differentiation of myofibrils. J. Cell Biol. 17:363–73
    [Google Scholar]
  116. 116. 
    Shelton C, Kocherlakota KS, Zhuang S, Abmayr SM 2009. The immunoglobulin superfamily member Hbs functions redundantly with Sns in interactions between founder and fusion-competent myoblasts. Development 136:1159–68
    [Google Scholar]
  117. 117. 
    Shi J, Bi P, Pei J, Li H, Grishin NV et al. 2017. Requirement of the fusogenic micropeptide myomixer for muscle formation in zebrafish. PNAS 114:11950–55
    [Google Scholar]
  118. 118. 
    Shilagardi K, Li S, Luo F, Marikar F, Duan R et al. 2013. Actin-propelled invasive membrane protrusions promote fusogenic protein engagement during cell–cell fusion. Science 340:359–63
    [Google Scholar]
  119. 119. 
    Shin N-Y, Choi H, Neff L, Wu Y, Saito H et al. 2014. Dynamin and endocytosis are required for the fusion of osteoclasts and myoblasts. J. Cell Biol. 207:73–89
    [Google Scholar]
  120. 120. 
    Stradal TE, Scita G. 2006. Protein complexes regulating Arp2/3-mediated actin assembly. Curr. Opin. Cell Biol. 18:4–10
    [Google Scholar]
  121. 121. 
    Strünkelnberg M, Bonengel B, Moda LM, Hertenstein A, de Couet HG et al. 2001. rst and its paralogue kirre act redundantly during embryonic muscle development in Drosophila. Development 128:4229–39
    [Google Scholar]
  122. 122. 
    Su M-T, Fujioka M, Goto T, Bodmer R 1999. The Drosophila homeobox genes zfh-1 and even-skipped are required for cardiac-specific differentiation of a numb-dependent lineage decision. Development 126:3241–51
    [Google Scholar]
  123. 123. 
    Tixier V, Bataillé L, Jagla K 2010. Diversification of muscle types: recent insights from Drosophila. Exp. Cell Res 316:3019–27
    [Google Scholar]
  124. 124. 
    Tskhovrebova L, Trinick J. 2010. Roles of titin in the structure and elasticity of the sarcomere. J. Biomed. Biotechnol. 2010:1–7
    [Google Scholar]
  125. 125. 
    Van Vactor D, Sink H, Fambrough D, Tsoo R, Goodman CS 1993. Genes that control neuromuscular specificity in Drosophila. Cell 73:1137–53
    [Google Scholar]
  126. 126. 
    Willkomm L, Bloch W. 2015. State of the art in cell–cell fusion. Cell Fusion K Pfannkuche 1–19 Methods Mol. Biol. 1313 Clifton, NJ: Humana
    [Google Scholar]
  127. 127. 
    Yang Y, Zhang Y, Li WJ, Jiang Y, Zhu Z et al. 2017. Spectraplakin induces positive feedback between fusogens and the actin cytoskeleton to promote cell-cell fusion. Dev. Cell 41:107–20.e4
    [Google Scholar]
  128. 128. 
    Zhang Q, Vashisht AA, O'Rourke J, Corbel SY, Moran R et al. 2017. The microprotein Minion controls cell fusion and muscle formation. Nat. Commun. 8:15664
    [Google Scholar]
  129. 129. 
    Zhang R, Zhang CY, Zhao Q, Li DH 2013. Spectrin: structure, function and disease. Sci. China Life Sci. 56:1076–85
    [Google Scholar]
  130. 130. 
    Zhang W, Roy S. 2017. Myomaker is required for the fusion of fast-twitch myocytes in the zebrafish embryo. Dev. Biol. 423:24–33
    [Google Scholar]
  131. 131. 
    Zhang Y, Featherstone D, Davis W, Rushton E, Broadie K 2000. Drosophila D-Titin is required for myoblast fusion and skeletal muscle striation. J. Cell Sci. 113:3103–15
    [Google Scholar]
/content/journals/10.1146/annurev-genet-120116-024603
Loading
/content/journals/10.1146/annurev-genet-120116-024603
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error