The standard genetic code (SGC) is virtually universal among extant life forms. Although many deviations from the universal code exist, particularly in organelles and prokaryotes with small genomes, they are limited in scope and obviously secondary. The universality of the code likely results from the combination of a frozen accident, i.e., the deleterious effect of codon reassignment in the SGC, and the inhibitory effect of changes in the code on horizontal gene transfer. The structure of the SGC is nonrandom and ensures high robustness of the code to mutational and translational errors. However, this error minimization is most likely a by-product of the primordial code expansion driven by the diversification of the repertoire of protein amino acids, rather than a direct result of selection. Phylogenetic analysis of translation system components, in particular aminoacyl–tRNA synthetases, shows that, at a stage of evolution when the translation system had already attained high fidelity, the correspondence between amino acids and cognate codons was determined by recognition of amino acids by RNA molecules, i.e., proto-tRNAs. We propose an experimentally testable scenario for the evolution of the code that combines recognition of amino acids by unique sites on proto-tRNAs (distinct from the anticodons), expansion of the code via proto-tRNA duplication, and frozen accident.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aggarwal N, Bandhu AV, Sengupta S. 1.  2016. Finite population analysis of the effect of horizontal gene transfer on the origin of an universal and optimal genetic code. Phys. Biol. 13:036007 [Google Scholar]
  2. Allner O, Nilsson L. 2.  2011. Nucleotide modifications and tRNA anticodon–mRNA codon interactions on the ribosome. RNA 17:2177–88 [Google Scholar]
  3. Ambrogelly A, Palioura S, Soll D. 3.  2007. Natural expansion of the genetic code. Nat. Chem. Biol. 3:29–35 [Google Scholar]
  4. Anantharaman V, Koonin EV, Aravind L. 4.  2002. Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res 30:1427–64 [Google Scholar]
  5. Aravind L, Anantharaman V, Koonin EV. 5.  2002. Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: implications for protein evolution in the RNA. Proteins 48:1–14 [Google Scholar]
  6. Aravind L, Mazumder R, Vasudevan S, Koonin EV. 6.  2002. Trends in protein evolution inferred from sequence and structure analysis. Curr. Opin. Struct. Biol. 12:392–99 [Google Scholar]
  7. Archetti M. 7.  2004. Selection on codon usage for error minimization at the protein level. J. Mol. Evol. 59:400–15 [Google Scholar]
  8. Artymiuk PJ, Rice DW, Poirrette AR, Willet P. 8.  1994. A tale of two synthetases. Nat. Struct. Biol. 1:758–60 [Google Scholar]
  9. Buhrman H, van der Gulik PT, Kelk SM, Koolen WM, Stougie L. 9.  2011. Some mathematical refinements concerning error minimization in the genetic code. IEEE/ACM Trans. Comput. Biol. Bioinform. 8:1358–72 [Google Scholar]
  10. Burton AS, Stern JC, Elsila JE, Glavin DP, Dworkin JP. 10.  2012. Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chem. Soc. Rev. 41:5459–72 [Google Scholar]
  11. Chin JW. 11.  2014. Expanding and reprogramming the genetic code of cells and animals. Annu. Rev. Biochem. 83:379–408 [Google Scholar]
  12. Chumachenko NV, Novikov Y, Yarus M. 12.  2009. Rapid and simple ribozymic aminoacylation using three conserved nucleotides. J. Am. Chem. Soc. 131:5257–63 [Google Scholar]
  13. Cleaves HJ II. 13.  2010. The origin of the biologically coded amino acids. J. Theor. Biol. 263:490–98 [Google Scholar]
  14. Crick FH. 14.  1966. The genetic code—yesterday, today, and tomorrow. Cold Spring Harb. Symp. Quant. Biol. 31:3–9 [Google Scholar]
  15. Crick FH. 15.  1968. The origin of the genetic code. J. Mol. Biol. 38:367–79 [Google Scholar]
  16. Crick FH, Barnett L, Brenner S, Watts-Tobin RJ. 16.  1961. General nature of the genetic code for proteins. Nature 192:1227–32 [Google Scholar]
  17. de Oliveira LL, de Oliveira PS, Tinos R. 17.  2015. A multiobjective approach to the genetic code adaptability problem. BMC Bioinform 16:52 [Google Scholar]
  18. Di Giulio M. 18.  2005. The origin of the genetic code: theories and their relationships, a review. Biosystems 80:175–84 [Google Scholar]
  19. Di Giulio M. 19.  2008. An extension of the coevolution theory of the origin of the genetic code. Biol. Direct 3:37 [Google Scholar]
  20. Di Giulio M. 20.  2016. The lack of foundation in the mechanism on which are based the physico-chemical theories for the origin of the genetic code is counterposed to the credible and natural mechanism suggested by the coevolution theory. J. Theor. Biol. 399:134–40 [Google Scholar]
  21. Di Giulio M, Medugno M. 21.  2001. The level and landscape of optimization in the origin of the genetic code. J. Mol. Evol. 52:372–82 [Google Scholar]
  22. Firnberg E, Ostermeier M. 22.  2013. The genetic code constrains yet facilitates Darwinian evolution. Nucleic Acids Res 41:7420–28 [Google Scholar]
  23. Fitch WM, Upper K. 23.  1987. The phylogeny of tRNA sequences provides evidence for ambiguity reduction in the origin of the genetic code. Cold Spring Harb. Symp. Quant. Biol. 52:759–67 [Google Scholar]
  24. Francis BR. 24.  2013. Evolution of the genetic code by incorporation of amino acids that improved or changed protein function. J. Mol. Evol. 77:134–58 [Google Scholar]
  25. Freeland SJ, Hurst LD. 25.  1998. The genetic code is one in a million. J. Mol. Evol. 47:238–48 [Google Scholar]
  26. Gamow G. 26.  1954. Possible relation between deoxyribonucleic acid and protein structures. Nature 173:318 [Google Scholar]
  27. Goodarzi H, Nejad HA, Torabi N. 27.  2004. On the optimality of the genetic code, with the consideration of termination codons. Biosystems 77:163–73 [Google Scholar]
  28. Grosjean H, Westhof E. 28.  2016. An integrated, structure- and energy-based view of the genetic code. Nucleic Acids Res 44:8020–40 [Google Scholar]
  29. Haig D, Hurst LD. 29.  1991. A quantitative measure of error minimization in the genetic code. J. Mol. Evol. 33:412–17 [Google Scholar]
  30. Haig D, Hurst LD. 30.  1999. Erratum for “A quantitative measure of error minimization in the genetic code.”. J. Mol. Evol. 49:708 [Google Scholar]
  31. Hajnic M, Osorio JI, Zagrovic B. 31.  2014. Computational analysis of amino acids and their sidechain analogs in crowded solutions of RNA nucleobases with implications for the mRNA–protein complementarity hypothesis. Nucleic Acids Res 42:12984–94 [Google Scholar]
  32. Higgs PG. 32.  2009. A four-column theory for the origin of the genetic code: tracing the evolutionary pathways that gave rise to an optimized code. Biol. Direct 4:16 [Google Scholar]
  33. Higgs PG, Pudritz RE. 33.  2009. A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code. Astrobiology 9:483–90 [Google Scholar]
  34. Hlevnjak M, Polyansky AA, Zagrovic B. 34.  2012. Sequence signatures of direct complementarity between mRNAs and cognate proteins on multiple levels. Nucleic Acids Res 40:8874–82 [Google Scholar]
  35. Iranzo J, Puigbò P, Lobkovsky AE, Wolf YI, Koonin EV. 35.  2016. Inevitability of genetic parasites. Genome Biol. Evol. 8:2856–69 [Google Scholar]
  36. Jestin JL, Kempf A. 36.  2009. Optimization models and the structure of the genetic code. J. Mol. Evol. 69:452–57 [Google Scholar]
  37. Johnson DB, Wang L. 37.  2010. Imprints of the genetic code in the ribosome. PNAS 107:8298–303 [Google Scholar]
  38. Jordan IK, Kondrashov FA, Adzhubei IA, Wolf YI, Koonin EV. 38.  et al. 2005. A universal trend of amino acid gain and loss in protein evolution. Nature 433:633–38 [Google Scholar]
  39. Knight RD, Freeland SJ, Landweber LF. 39.  1999. Selection, history and chemistry: the three faces of the genetic code. Trends Biochem. Sci. 24:241–47 [Google Scholar]
  40. Koonin EV. 40.  2003. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nature Rev. Microbiol. 1:127–36 [Google Scholar]
  41. Koonin EV. 41.  2011. The Logic of Chance: The Nature and Origin of Biological Evolution Upper Saddle River, NJ: FT Press
  42. Koonin EV. 42.  2017. Frozen accident pushing 50: Stereochemistry, expansion, and chance in the evolution of the genetic code. Life 7:E22 [Google Scholar]
  43. Koonin EV, Martin W. 43.  2005. On the origin of genomes and cells within inorganic compartments. Trends Genet 21:647–54 [Google Scholar]
  44. Koonin EV, Novozhilov AS. 44.  2009. Origin and evolution of the genetic code: the universal enigma. IUBMB Life 61:99–111 [Google Scholar]
  45. Kumar RK, Yarus M. 45.  2001. RNA-catalyzed amino acid activation. Biochemistry 40:6998–7004 [Google Scholar]
  46. Lerat E, Daubin V, Ochman H, Moran NA. 46.  2005. Evolutionary origins of genomic repertoires in bacteria. PLOS Biol 3:e130 [Google Scholar]
  47. Ling J, O'Donoghue P, Soll D. 47.  2015. Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology. Nat. Rev. Microbiol. 13:707–21 [Google Scholar]
  48. Liu CC, Schultz PG. 48.  2010. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79:413–44 [Google Scholar]
  49. Lobanov AV, Turanov AA, Hatfield DL, Gladyshev VN. 49.  2010. Dual functions of codons in the genetic code. Crit. Rev. Biochem. Mol. Biol. 45:257–65 [Google Scholar]
  50. Massey SE. 50.  2006. A sequential “2-1-3” model of genetic code evolution that explains codon constraints. J. Mol. Evol. 62:809–10 [Google Scholar]
  51. Massey SE. 51.  2008. A neutral origin for error minimization in the genetic code. J. Mol. Evol. 67:510–16 [Google Scholar]
  52. Massey SE. 52.  2015. Genetic code evolution reveals the neutral emergence of mutational robustness, and information as an evolutionary constraint. Life 5:1301–32 [Google Scholar]
  53. Massey SE. 53.  2016. The neutral emergence of error minimized genetic codes superior to the standard genetic code. J. Theor. Biol. 408:237–42 [Google Scholar]
  54. Mathew DC, Luthey-Schulten Z. 54.  2008. On the physical basis of the amino acid polar requirement. J. Mol. Evol. 66:519–28 [Google Scholar]
  55. Mukai T, Englert M, Tripp HJ, Miller C, Ivanova NN. 55.  et al. 2016. Facile recoding of selenocysteine in nature. Angew. Chem. Int. Ed. Engl. 55:5337–41 [Google Scholar]
  56. Neumann H, Wang K, Davis L, Garcia-Alai M, Chin JW. 56.  2010. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464:441–44 [Google Scholar]
  57. Nirenberg MW. 57.  2004. Historical review: deciphering the genetic code—a personal account. Trends Biochem. Sci. 29:46–54 [Google Scholar]
  58. Nirenberg MW, Matthaei JH. 58.  1961. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. PNAS 47:1588–602 [Google Scholar]
  59. Novozhilov AS, Koonin EV. 59.  2009. Exceptional error minimization in putative primordial genetic codes. Biol. Direct 4:44 [Google Scholar]
  60. Novozhilov AS, Wolf YI, Koonin EV. 60.  2007. Evolution of the genetic code: partial optimization of a random code for robustness to translation error in a rugged fitness landscape. Biol. Direct 2:24 [Google Scholar]
  61. Pizzarello S. 61.  2006. The chemistry of life's origin: a carbonaceous meteorite perspective. Acc. Chem. Res. 39:231–37 [Google Scholar]
  62. Polyansky AA, Hlevnjak M, Zagrovic B. 62.  2013. Analogue encoding of physicochemical properties of proteins in their cognate messenger RNAs. Nat. Commun. 4:2784 [Google Scholar]
  63. Polyansky AA, Hlevnjak M, Zagrovic B. 63.  2013. Proteome-wide analysis reveals clues of complementary interactions between mRNAs and their cognate proteins as the physicochemical foundation of the genetic code. RNA Biol 10:1248–54 [Google Scholar]
  64. Polyansky AA, Zagrovic B. 64.  2013. Evidence of direct complementary interactions between messenger RNAs and their cognate proteins. Nucleic Acids Res 41:8434–43 [Google Scholar]
  65. Puigbò P, Lobkovsky AE, Kristensen DM, Wolf YI, Koonin EV. 65.  2014. Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes. BMC Biol 12:66 [Google Scholar]
  66. Puigbò P, Wolf YI, Koonin EV. 66.  2010. The tree and net components of prokaryote evolution. Genome Biol. Evol. 2:745–56 [Google Scholar]
  67. Salinas DG, Gallardo MO, Osorio MI. 67.  2016. Local conditions for global stability in the space of codons of the genetic code. Biosystems 150:73–77 [Google Scholar]
  68. Santos MA, Moura G, Massey SE, Tuite MF. 68.  2004. Driving change: the evolution of alternative genetic codes. Trends Genet 20:95–102 [Google Scholar]
  69. Sella G, Ardell DH. 69.  2006. The coevolution of genes and genetic codes: Crick's frozen accident revisited. J. Mol. Evol. 63:297–313 [Google Scholar]
  70. Sengupta S, Aggarwal N, Bandhu AV. 70.  2014. Two perspectives on the origin of the standard genetic code. Orig. Life Evol. Biosph. 44:287–91 [Google Scholar]
  71. Sengupta S, Higgs PG. 71.  2005. A unified model of codon reassignment in alternative genetic codes. Genetics 170:831–40 [Google Scholar]
  72. Sengupta S, Higgs PG. 72.  2015. Pathways of genetic code evolution in ancient and modern organisms. J. Mol. Evol. 80:229–43 [Google Scholar]
  73. Sengupta S, Yang X, Higgs PG. 73.  2007. The mechanisms of codon reassignments in mitochondrial genetic codes. J. Mol. Evol. 64:662–88 [Google Scholar]
  74. Swart EC, Serra V, Petroni G, Nowacki M. 74.  2016. Genetic codes with no dedicated stop codon: context-dependent translation termination. Cell 166:691–702 [Google Scholar]
  75. Szathmary E, Demeter L. 75.  1987. Group selection of early replicators and the origin of life. J. Theor. Biol. 128:463–86 [Google Scholar]
  76. Szathmary E, Maynard Smith J. 76.  1997. From replicators to reproducers: the first major transitions leading to life. J. Theor. Biol. 187:555–71 [Google Scholar]
  77. Takeuchi N, Kaneko K, Koonin EV. 77.  2014. Horizontal gene transfer can rescue prokaryotes from Muller's ratchet: benefit of DNA from dead cells and population subdivision. G3 4:325–39 [Google Scholar]
  78. Tlusty T. 78.  2010. A colorful origin for the genetic code: information theory, statistical mechanics and the emergence of molecular codes. Phys. Life Rev. 7:362–76 [Google Scholar]
  79. Torabi N, Goodarzi H, Shateri Najafabadi H. 79.  2007. The case for an error minimizing set of coding amino acids. J. Theor. Biol. 244:737–44 [Google Scholar]
  80. Treangen TJ, Rocha EP. 80.  2011. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLOS Genet 7:e1001284 [Google Scholar]
  81. Trifonov EN. 81.  2000. Consensus temporal order of amino acids and evolution of the triplet code. Gene 261:139–51 [Google Scholar]
  82. Trifonov EN. 82.  2004. The triplet code from first principles. J. Biomol. Struct. Dyn. 22:1–11 [Google Scholar]
  83. Vetsigian K, Woese C, Goldenfeld N. 83.  2006. Collective evolution and the genetic code. PNAS 103:10696–701 [Google Scholar]
  84. Woese CR. 84.  1967. The Genetic Code New York: Harper & Row
  85. Woese CR. 85.  1968. The fundamental nature of the genetic code: prebiotic interactions between polynucleotides and polyamino acids or their derivatives. PNAS 59:110–17 [Google Scholar]
  86. Woese CR, Olsen GJ, Ibba M, Soll D. 86.  2000. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol. Mol. Biol. Rev. 64:202–36 [Google Scholar]
  87. Wolf YI, Aravind L, Grishin NV, Koonin EV. 87.  1999. Evolution of aminoacyl-tRNA synthetases—analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res 9:689–710 [Google Scholar]
  88. Wolf YI, Koonin EV. 88.  2007. On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation, and subfunctionalization. Biol. Direct 2:14 [Google Scholar]
  89. Wong JT-F. 89.  1975. A co-evolution theory of the genetic code. PNAS 72:1909–12 [Google Scholar]
  90. Wong JT-F, Ng S-K, Mat W-K, Hu T, Xue H. 90.  2016. Coevolution theory of the genetic code at age forty: pathway to translation and synthetic life. Life 6:12 [Google Scholar]
  91. Xie J, Schultz PG. 91.  2006. A chemical toolkit for proteins—an expanded genetic code. Nat. Rev. Mol. Cell Biol. 7:775–82 [Google Scholar]
  92. Yarus M. 92.  1998. Amino acids as RNA ligands: a direct-RNA-template theory for the code's origin. J. Mol. Evol. 47:109–17 [Google Scholar]
  93. Yarus M. 93.  2000. RNA-ligand chemistry: a testable source for the genetic code. RNA 6:475–84 [Google Scholar]
  94. Yarus M. 94.  2010. Life from an RNA World: The Ancestor Within Cambridge, MA: Harvard Univ. Press
  95. Yarus M. 95.  2011. The meaning of a minuscule ribozyme. Philos. Trans. R. Soc. B 366:2902–9 [Google Scholar]
  96. Yarus M, Caporaso JG, Knight R. 96.  2005. Origins of the genetic code: the escaped triplet theory. Annu. Rev. Biochem. 74:179–98 [Google Scholar]
  97. Yarus M, Christian EL. 97.  1989. Genetic code origins. Nature 342:349–50 [Google Scholar]
  98. Yarus M, Widmann JJ, Knight R. 98.  2009. RNA–amino acid binding: a stereochemical era for the genetic code. J. Mol. Evol. 69:406–29 [Google Scholar]
  99. Yuan J, O'Donoghue P, Ambrogelly A, Gundllapalli S, Sherrer RL. 99.  et al. 2010. Distinct genetic code expansion strategies for selenocysteine and pyrrolysine are reflected in different aminoacyl-tRNA formation systems. FEBS Lett 584:342–49 [Google Scholar]
  100. Zahonova K, Kostygov AY, Sevcikova T, Yurchenko V, Elias M. 100.  2016. An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr. Biol. 26:2364–69 [Google Scholar]
  101. Zaia DA, Zaia CT, De Santana H. 101.  2008. Which amino acids should be used in prebiotic chemistry studies?. Orig. Life Evol. Biosph. 38:469–88 [Google Scholar]
  102. Zhang Y, Baranov PV, Atkins JF, Gladyshev VN. 102.  2005. Pyrrolysine and selenocysteine use dissimilar decoding strategies. J. Biol. Chem. 280:20740–51 [Google Scholar]
  103. Zhu W, Freeland S. 103.  2006. The standard genetic code enhances adaptive evolution of proteins. J. Theor. Biol. 239:63–70 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error