1932

Abstract

Understanding the quantitative genetics of crops has been and will continue to be central to maintaining and improving global food security. We outline four stages that plant breeding either has already achieved or will probably soon achieve. Top-of-the-line breeding programs are currently in Breeding 3.0, where inexpensive, genome-wide data coupled with powerful algorithms allow us to start breeding on predicted instead of measured phenotypes. We focus on three major questions that must be answered to move from current Breeding 3.0 practices to Breeding 4.0: () How do we adapt crops to better fit agricultural environments? () What is the nature of the diversity upon which breeding can act? () How do we deal with deleterious variants? Answering these questions and then translating them to actual gains for farmers will be a significant part of achieving global food security in the twenty-first century.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120116-024846
2018-11-23
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/genet/52/1/annurev-genet-120116-024846.html?itemId=/content/journals/10.1146/annurev-genet-120116-024846&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 3,000 Rice Genomes Project. 2014. The 3,000 rice genomes project. Gigascience 3:7
    [Google Scholar]
  2. 2.  Afkhami ME, Stinchcombe JR 2016. Multiple mutualist effects on genomewide expression in the tripartite association between Medicago truncatula, nitrogen-fixing bacteria and mycorrhizal fungi. Mol. Ecol. 25:194946–62
    [Google Scholar]
  3. 3.  Agler MT, Ruhe J, Kroll S, Morhenn C, Kim S-T et al. 2016. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLOS Biol 14:1e1002352
    [Google Scholar]
  4. 4.  Romero Navarro JA, Wilcox M, Burgueño J, Romay C, Swarts K et al. 2017. A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat. Genet. 49:476–80
    [Google Scholar]
  5. 5.  Álvarez-Pérez JM, González-García S, Cobos R, Olego , Ibañez A et al. 2017. Use of endophytic and rhizosphere actinobacteria from grapevine plants to reduce nursery fungal graft infections that lead to young grapevine decline. Appl. Environ. Microbiol. 83:24e01564–17
    [Google Scholar]
  6. 6.  Anderson LK, Lai A, Stack SM, Rizzon C, Gaut BS 2006. Uneven distribution of expressed sequence tag loci on maize pachytene chromosomes. Genome Res 16:1115–22
    [Google Scholar]
  7. 7.  Beissinger TM, Wang L, Crosby K, Durvasula A, Hufford MB, Ross-Ibarra J 2016. Recent demography drives changes in linked selection across the maize genome. Nat. Plants 2:16084
    [Google Scholar]
  8. 8.  Bennett MD, Leitch IJ 2012. Angiosperm DNA C-values database (release 8.0, Dec. 2012). Kew R. Bot. Gard. http://data.kew.org/cvalues/
    [Google Scholar]
  9. 9.  Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J et al. 2012. Reference genome sequence of the model plant Setaria. Nat. Biotechnol. 30:6555–61
    [Google Scholar]
  10. 10.  Beyene Y, Semagn K, Mugo S, Tarekegne A, Babu R et al. 2015. Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop. Sci. 55:154–63
    [Google Scholar]
  11. 11.  Biscarini F, Cozzi P, Casella L, Riccardi P, Vattari A et al. 2016. Genome-wide association study for traits related to plant and grain morphology, and root architecture in temperate rice accessions. PLOS ONE 11:5e0155425
    [Google Scholar]
  12. 12.  Bokulich NA, Thorngate JH, Richardson PM, Mills DA 2014. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. PNAS 111:1E139–48
    [Google Scholar]
  13. 13.  Brewer MT, Moyseenko JB, Monforte AJ, van der Knaap E 2007. Morphological variation in tomato: a comprehensive study of quantitative trait loci controlling fruit shape and development. J. Exp. Bot. 58:61339–49
    [Google Scholar]
  14. 14.  Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ et al. 2009. The genetic architecture of maize flowering time. Science 325:5941714–18
    [Google Scholar]
  15. 15.  Bukowski R, Guo X, Lu Y, Zou C, He B et al. 2015. Construction of the third generation Zea mays haplotype map. GigaScience 7:4gix134
    [Google Scholar]
  16. 16.  Burridge J, Jochua CN, Bucksch A, Lynch JP 2016. Legume shovelomics: high-throughput phenotyping of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata subsp, unguiculata) root architecture in the field. Field Crops. Res. 192:21–32
    [Google Scholar]
  17. 17.  Cai W, Borlace S, Lengaigne M, van Rensch P, Collins M et al. 2014. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Chang. 4:2111–16
    [Google Scholar]
  18. 18.  Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S et al. 2013. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. PNAS 110:208057–62
    [Google Scholar]
  19. 19.  Chaparro JM, Badri DV, Vivanco JM 2014. Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:4790–803
    [Google Scholar]
  20. 20.  Chapman MA, Pashley CH, Wenzler J, Hvala J, Tang S et al. 2008. A genomic scan for selection reveals candidates for genes involved in the evolution of cultivated sunflower (Helianthus annuus). Plant Cell 20:112931–45
    [Google Scholar]
  21. 21.  Cheng F, Wu J, Liu B, Wang X 2015. Genome evolution after whole genome triplication: the subgenome dominance in Brassica rapa. The Brassica rapa Genome X Wang, D Kole 107–14 Berlin/Heidelberg: Springer
    [Google Scholar]
  22. 22.  Chia J-M, Song C, Bradbury PJ, Costich D, de Leon N et al. 2012. Maize HapMap2 identifies extant variation from a genome in flux. Nat. Genet. 44:7803–7
    [Google Scholar]
  23. 23.  Clark RM, Tavaré S, Doebley J 2005. Estimating a nucleotide substitution rate for maize from polymorphism at a major domestication locus. Mol. Biol. Evol. 22:112304–12
    [Google Scholar]
  24. 24.  Clark RM, Wagler TN, Quijada P, Doebley J 2006. A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat. Genet. 38:5594–97
    [Google Scholar]
  25. 25.  Cook BI, Smerdon JE, Seager R, Coats S 2014. Global warming and 21st century drying. Clim. Dyn. 43:9–102607–27
    [Google Scholar]
  26. 26.  Correns CE 1900. G. Mendel's Regel über das Verhalten der Nachkommenschaft der Rassenbastarde. Ber. Dtsch. Bot. Ges. 18:158–67
    [Google Scholar]
  27. 27.  Coumou D, Robinson A 2013. Historic and future increase in the global land area affected by monthly heat extremes. Environ. Res. Lett. 8:3034018
    [Google Scholar]
  28. 28.  Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D et al. 2017. Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22:11961–75
    [Google Scholar]
  29. 29.  Curtin SJ, Tiffin P, Guhlin J, Trujillo DI, Burghardt LT et al. 2017. Validating genome-wide association candidates controlling quantitative variation in nodulation. Plant Physiol 173:2921–31
    [Google Scholar]
  30. 30.  Daniel R 2005. The metagenomics of soil. Nat. Rev. Microbiol. 3:6470–78
    [Google Scholar]
  31. 31.  Darwin C 1868. The Variation of Animals and Plants Under Domestication London: Murray
    [Google Scholar]
  32. 32.  Darwin C 1876. The Effects of Cross and Self-Fertilisation in the Vegetable Kingdom London: Murray
    [Google Scholar]
  33. 33.  de Quadros PD, Zhalnina K, Davis-Richardson A, Fagen JR, Drew J et al. 2012. The effect of tillage system and crop rotation on soil microbial diversity and composition in a subtropical Acrisol. Diversity 4:4375–95
    [Google Scholar]
  34. 34.  De Vries H 1900. Sur la loi de disjonction des hybrides. Comptes Rendus Acad. Sci. 130:845–47
    [Google Scholar]
  35. 35.  Denison RF 2015. Evolutionary tradeoffs as opportunities to improve yield potential. Field Crops. Res. 182:3–8
    [Google Scholar]
  36. 36.  Doebley JF, Gaut BS, Smith BD 2006. The molecular genetics of crop domestication. Cell 127:71309–21
    [Google Scholar]
  37. 37.  Duvick DN 2005. The contribution of breeding to yield advances in maize (Zea mays L.). Adv. Agron. 86:83–145
    [Google Scholar]
  38. 38.  Dvorak J, Yang Z-L, You FM, Luo M-C 2004. Deletion polymorphism in wheat chromosome regions with contrasting recombination rates. Genetics 168:31665–75
    [Google Scholar]
  39. 39.  Edger PP, Smith R, McKain MR, Cooley AM, Vallejo-Marin M et al. 2017. Subgenome dominance in an interspecific hybrid, synthetic allopolyploid, and a 140-year-old naturally established neo-allopolyploid monkeyflower. Plant Cell 29:92150–67
    [Google Scholar]
  40. 40.  Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK et al. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. PNAS 112:8E911–20
    [Google Scholar]
  41. 41.  Fasoula VA 2013. Prognostic breeding: a new paradigm for crop improvement. Plant Breeding Reviews J Janick 297–347 Hoboken, NJ: Wiley
    [Google Scholar]
  42. 42.  Felsenstein J 1974. The evolutionary advantage of recombination. Genetics 78:2737–56
    [Google Scholar]
  43. 43.  Fisher RA 1919. XV.—The correlation between relatives on the supposition of Mendelian inheritance. Earth Environ. Sci. Trans. R. Soc. Edinb. 52:2399–433
    [Google Scholar]
  44. 44.  Fleischmann A, Michael TP, Rivadavia F, Sousa A, Wang W et al. 2014. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Ann. Bot. 114:81651–63
    [Google Scholar]
  45. 45.  Fort A, Tuteja R, Braud M, McKeown PC, Spillane C 2017. Parental-genome dosage effects on the transcriptome of F1 hybrid triploid embryos of Arabidopsis thaliana. Plant J 92:61044–58
    [Google Scholar]
  46. 46.  Fu H, Dooner HK 2002. Intraspecific violation of genetic colinearity and its implications in maize. PNAS 99:149573–78
    [Google Scholar]
  47. 47.  Galton F 1886. Regression towards mediocrity in hereditary stature. J. Anthropol. Inst. Great Br. Ireland 15:246–63
    [Google Scholar]
  48. 48.  Gardner CO, Lonnquist JH 1959. Linkage and the degree of dominance of genes controlling quantitative characters in maize. Agron. J. 51:9524–28
    [Google Scholar]
  49. 49.  Gdanetz K, Trail F 2017. The wheat microbiome under four management strategies, and potential for endophytes in disease protection. Phytobiomes 1:3158–68
    [Google Scholar]
  50. 50.  Gerland P, Raftery AE, Ševciková H, Li N, Gu D et al. 2014. World population stabilization unlikely this century. Science 346:6206234–37
    [Google Scholar]
  51. 51.  Gianola D 2013. Priors in whole-genome regression: The Bayesian alphabet returns. Genetics 194:3573–96
    [Google Scholar]
  52. 52.  Glémin S 2010. Surprising fitness consequences of GC-biased gene conversion: I. Mutation load and inbreeding depression. Genetics 185:3939–59
    [Google Scholar]
  53. 53.  Graham GI, Wolff DW, Stuber CW 1997. Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping. Crop. Sci. 37:1601–10
    [Google Scholar]
  54. 54.  Hanasaki N, Fujimori S, Yamamoto T, Yoshikawa S, Masaki Y et al. 2013. A global water scarcity assessment under shared socio-economic pathways—Part 2: Water availability and scarcity. Hydrol. Earth Syst. Sci. 17:2393–413
    [Google Scholar]
  55. 55.  Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB et al. 2011. Adaptation to climate across the Arabidopsis thaliana genome. Science 334:605283–86
    [Google Scholar]
  56. 56.  Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB et al. 2008. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:5861330–33
    [Google Scholar]
  57. 57.  Hartman K, van der Heijden MGA, Wittwer RA, Banerjee S, Walser J-C, Schlaeppi K 2018. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6:114
    [Google Scholar]
  58. 58.  Hartmann M, Frey B, Mayer J, Mäder P, Widmer F 2015. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9:51177–94
    [Google Scholar]
  59. 59.  He Z, Zhai W, Wen H, Tang T, Wang Y et al. 2011. Two evolutionary histories in the genome of rice: the roles of domestication genes. PLOS Genet 7:6e1002100
    [Google Scholar]
  60. 60.  Hedden P 2003. The genes of the Green Revolution. Trends Genet 19:15–9
    [Google Scholar]
  61. 61.  Heffner EL, Lorenz AJ, Jannink J-L, Sorrells ME 2010. Plant breeding with genomic selection: gain per unit time and cost. Crop. Sci. 50:51681–90
    [Google Scholar]
  62. 62.  Heslot N, Yang H-P, Sorrells ME, Jannink J-L 2012. Genomic selection in plant breeding: a comparison of models. Crop. Sci. 52:1146–60
    [Google Scholar]
  63. 63.  Hickey JM, Chiurugwi T, Mackay I, Powell W, et al. (Implementing Genomic Selection in CGIAR Breed. Programs Workshop Particip.). 2017. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nat. Genet. 49:91297–303
    [Google Scholar]
  64. 64.  Hill WG 2014. Applications of population genetics to animal breeding, from Wright, Fisher and Lush to genomic prediction. Genetics 196:11–16
    [Google Scholar]
  65. 65.  Hill WG, Robertson A 1966. The effect of linkage on limits to artificial selection. Genet. Res. 8:3269–94
    [Google Scholar]
  66. 66.  Hirakawa H, Okada Y, Tabuchi H, Shirasawa K, Watanabe A et al. 2015. Survey of genome sequences in a wild sweet potato, Ipomoea trifida (H.B.K.) G. Don. DNA Res 22:2171–79
    [Google Scholar]
  67. 67.  Hirakawa H, Shirasawa K, Kosugi S, Tashiro K, Nakayama S et al. 2014. Dissection of the octoploid strawberry genome by deep sequencing of the genomes of Fragaria species. DNA Res 21:2169–81
    [Google Scholar]
  68. 68.  Hirsch CN, Hirsch CD, Brohammer AB, Bowman MJ, Soifer I et al. 2016. Draft assembly of elite inbred line PH207 provides insights into genomic and transcriptome diversity in maize. Plant Cell 28:112700–14
    [Google Scholar]
  69. 69.  Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS 2003. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:2655–64
    [Google Scholar]
  70. 70.  Huang X, Yang S, Gong J, Zhao Y, Feng Q et al. 2015. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat. Commun. 6:6258
    [Google Scholar]
  71. 71.  Huang Y-F, Poland JA, Wight CP, Jackson EW, Tinker NA 2014. Using genotyping-by-sequencing (GBS) for genomic discovery in cultivated oat. PLOS ONE 9:7e102448
    [Google Scholar]
  72. 72.  Hufford MB, Xu X, van Heerwaarden J, Pyhäjärvi T, Chia J-M et al. 2012. Comparative population genomics of maize domestication and improvement. Nat. Genet. 44:7808–11
    [Google Scholar]
  73. 73.  Hung H-Y, Shannon LM, Tian F, Bradbury PJ, Chen C et al. 2012. ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. PNAS 109:28E1913–21
    [Google Scholar]
  74. 74.  Innan H, Kim Y 2004. Pattern of polymorphism after strong artificial selection in a domestication event. PNAS 101:2910667–72
    [Google Scholar]
  75. 75. Int. Rice Genome Seq. Proj. 2005. The map-based sequence of the rice genome. Nature 436:7052793–800
    [Google Scholar]
  76. 76.  Jacobson A, Lian L, Zhong S, Bernardo R 2014. General combining ability model for genomewide selection in a biparental cross. Crop. Sci. 54:895–905
    [Google Scholar]
  77. 77.  Jiang Y, Li S, Li R, Zhang J, Liu Y et al. 2017. Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biol. Biochem. 109:145–55
    [Google Scholar]
  78. 78.  Jiang Y, Schmidt RH, Zhao Y, Reif JC 2017. A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nat. Genet. 49:121741–46
    [Google Scholar]
  79. 79.  Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473:734597–100
    [Google Scholar]
  80. 80.  Kamfwa K, Cichy KA, Kelly JD 2015. Genome-wide association analysis of symbiotic nitrogen fixation in common bean. Theor. Appl. Genet. 128:101999–2017
    [Google Scholar]
  81. 81.  Khoshbakht K, Hammer K 2008. How many plant species are cultivated?. Genet. Resour. Crop Evol. 55:7925–28
    [Google Scholar]
  82. 82.  Khoury CK, Achicanoy HA, Bjorkman AD, Navarro-Racines C, Guarino L et al. 2016. Origins of food crops connect countries worldwide. Proc. R. Soc. B. 283:183220160792
    [Google Scholar]
  83. 83.  Kirkpatrick M, Jarne P 2000. The effects of a bottleneck on inbreeding depression and the genetic load. Am. Nat. 155:2154–67
    [Google Scholar]
  84. 84.  Koenig D, Jiménez-Gómez JM, Kimura S, Fulop D, Chitwood DH et al. 2013. Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. PNAS 110:28E2655–62
    [Google Scholar]
  85. 85.  Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H et al. 2007. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. PNAS 104:41424–29
    [Google Scholar]
  86. 86.  Kovach MJ, Calingacion MN, Fitzgerald MA, McCouch SR 2009. The origin and evolution of fragrance in rice (Oryza sativa L.). PNAS 106:3414444–49
    [Google Scholar]
  87. 87.  Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM et al. 2009. A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLOS Genet 5:7e1000551
    [Google Scholar]
  88. 88.  Krasileva KV, Vasquez-Gross HA, Howell T, Bailey P, Paraiso F et al. 2017. Uncovering hidden variation in polyploid wheat. PNAS 114:6E913–21
    [Google Scholar]
  89. 89.  Krchov L-M, Bernardo R 2015. Relative efficiency of genomewide selection for testcross performance of doubled haploid lines in a maize breeding program. Crop. Sci. 55:2091–99
    [Google Scholar]
  90. 90.  Lake L, Li Y, Casal JJ, Sadras VO 2016. Negative association between chickpea response to competition and crop yield: phenotypic and genetic analysis. Field Crops. Res. 196:409–17
    [Google Scholar]
  91. 91.  Lander ES, Botstein D 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:1185–99
    [Google Scholar]
  92. 92.  Larièpe A, Mangin B, Jasson S, Combes V, Dumas F et al. 2011. The genetic basis of heterosis: multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.). Genetics 190:2795–811
    [Google Scholar]
  93. 93.  Lasky JR, Des Marais DL, Lowry DB, Povolotskaya I, McKay JK et al. 2014. Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana. Mol. Biol. Evol. 31:92283–96
    [Google Scholar]
  94. 94.  Lasky JR, Upadhyaya HD, Ramu P, Deshpande S, Hash CT et al. 2015. Genome-environment associations in sorghum landraces predict adaptive traits. Sci. Adv. 1:6e1400218
    [Google Scholar]
  95. 95.  Leiser WL, Olatoye MO, Rattunde HFW, Neumann G, Weltzien E, Haussmann BIG 2016. No need to breed for enhanced colonization by arbuscular mycorrhizal fungi to improve low-P adaptation of West African sorghums. Plant Soil 401:1–251–64
    [Google Scholar]
  96. 96.  Li C, Sun B, Li Y, Liu C, Wu X et al. 2016. Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. BMC Genomics 17:1894
    [Google Scholar]
  97. 97.  Lian L, Jacobson A, Zhong S, Bernardo R 2014. Genomewide prediction accuracy within 969 maize biparental populations. Crop. Sci. 54:1514–22
    [Google Scholar]
  98. 98.  Li X, Li X, Fridman E, Tesso TT, Yu J 2015. Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis. PNAS 112:3811823–28
    [Google Scholar]
  99. 99.  Li Y, Xiao J, Wu J, Duan J, Liu Y et al. 2012. A tandem segmental duplication (TSD) in green revolution gene Rht-D1b region underlies plant height variation. New Phytol 196:1282–91
    [Google Scholar]
  100. 100.  Li Y-H, Zhao S-C, Ma J-X, Li D, Yan L et al. 2013. Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. BMC Genomics 14:579
    [Google Scholar]
  101. 101.  Li Z, Coffey L, Garfin J, Miller ND, White MR et al. 2018. Genotype-by-environment interactions affecting heterosis in maize. PLOS ONE 13:1e0191321
    [Google Scholar]
  102. 102.  Lin T, Zhu G, Zhang J, Xu X, Yu Q et al. 2014. Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 46:111220–26
    [Google Scholar]
  103. 103.  Lin Z, Li X, Shannon LM, Yeh C-T, Wang ML et al. 2012. Parallel domestication of the Shattering1 genes in cereals. Nat. Genet. 44:6720–24
    [Google Scholar]
  104. 104.  Lu F, Romay MC, Glaubitz JC, Bradbury PJ, Elshire RJ et al. 2015. High-resolution genetic mapping of maize pan-genome sequence anchors. Nat. Commun. 6:6914
    [Google Scholar]
  105. 105.  Lu J, Tang T, Tang H, Huang J, Shi S, Wu C-I 2006. The accumulation of deleterious mutations in rice genomes: a hypothesis on the cost of domestication. Trends Genet. 22:3126–31
    [Google Scholar]
  106. 106.  Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J et al. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488:740986–90
    [Google Scholar]
  107. 107.  Mace ES, Hunt CH, Jordan DR 2013. Supermodels: sorghum and maize provide mutual insight into the genetics of flowering time. Theor. Appl. Genet. 126:51377–95
    [Google Scholar]
  108. 108.  Madlung A 2013. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110:299–104
    [Google Scholar]
  109. 109.  Maron LG, Guimarães CT, Kirst M, Albert PS, Birchler JA et al. 2013. Aluminum tolerance in maize is associated with higher MATE1 gene copy number. PNAS 110:135241–46
    [Google Scholar]
  110. 110.  Marsden CD, Ortega-Del Vecchyo D, O'Brien DP, Taylor JF, Ramirez O et al. 2016. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. PNAS 113:1152–57
    [Google Scholar]
  111. 111.  Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW et al. 1993. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:51381432–36
    [Google Scholar]
  112. 112.  Martinez Barrio A, Lamichhaney S, Fan G, Rafati N, Pettersson M et al. 2016. The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing. eLife 5:e12081
    [Google Scholar]
  113. 113.  Mathew RP, Feng Y, Githinji L, Ankumah R, Balkcom KS 2012. Impact of no-tillage and conventional tillage systems on soil microbial communities. Appl. Environ. Soil Sci. 2012:548620
    [Google Scholar]
  114. 114.  Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R et al. 2015. Modelling the genetic architecture of flowering time control in barley through nested association mapping. BMC Genomics 16:290
    [Google Scholar]
  115. 115.  Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS et al. 2011. Recently formed polyploid plants diversify at lower rates. Science 333:60471257
    [Google Scholar]
  116. 116.  McCouch SR, Wright MH, Tung C-W, Maron LG, McNally KL et al. 2016. Open access resources for genome-wide association mapping in rice. Nat. Commun. 7:10532
    [Google Scholar]
  117. 117.  McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H et al. 2009. Genetic properties of the maize nested association mapping population. Science 325:5941737–40
    [Google Scholar]
  118. 118.  Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M et al. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:60331097–100
    [Google Scholar]
  119. 119.  Meuwissen TH, Hayes BJ, Goddard ME 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:41819–29
    [Google Scholar]
  120. 120.  Meyer RS, DuVal AE, Jensen HR 2012. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 196:129–48
    [Google Scholar]
  121. 121.  Moll RH, Lindsey MF, Robinson HF 1964. Estimates of genetic variances and level of dominance in maize. Genetics 49:3411–23
    [Google Scholar]
  122. 122.  Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T et al. 2013. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. PNAS 110:2453–58
    [Google Scholar]
  123. 123.  Motamayor JC, Mockaitis K, Schmutz J, Haiminen N, Livingstone D3rd et al. 2013. The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biol 14:6r53
    [Google Scholar]
  124. 124.  Müller NA, Wijnen CL, Srinivasan A, Ryngajllo M, Ofner I et al. 2016. Domestication selected for deceleration of the circadian clock in cultivated tomato. Nat. Genet. 48:189–93
    [Google Scholar]
  125. 125.  Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS 2003. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302:564281–84
    [Google Scholar]
  126. 126.  Nabholz B, Sarah G, Sabot F, Ruiz M, Adam H et al. 2014. Transcriptome population genomics reveals severe bottleneck and domestication cost in the African rice (Oryza glaberrima). Mol. Ecol. 23:92210–27
    [Google Scholar]
  127. 127.  Nasseer AM, Martin JM, Heo HY, Blake NK, Sherman JD et al. 2016. Impact of a quantitative trait locus for tiller number on plasticity of agronomic traits in spring wheat. Crop. Sci. 56:595–602
    [Google Scholar]
  128. 128.  Orellana LH, Chee-Sanford JC, Sanford RA, Löffler FE, Konstantinidis KT 2017. Year-round shotgun metagenomes reveal stable microbial communities in agricultural soils and novel ammonia oxidizers responding to fertilization. Appl. Environ. Microbiol. 84:e01646–17
    [Google Scholar]
  129. 129.  Orr HA 1998. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52:4935–49
    [Google Scholar]
  130. 130.  Orr HA 2000. Adaptation and the cost of complexity. Evolution 54:113–20
    [Google Scholar]
  131. 131.  Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM et al. 2010. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:596192–94
    [Google Scholar]
  132. 132.  Panke-Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J 2015. Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9:980–89
    [Google Scholar]
  133. 133.  Pascual L, Desplat N, Huang BE, Desgroux A, Bruguier L et al. 2015. Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnol. J. 13:4565–77
    [Google Scholar]
  134. 134.  Peiffer JA, Romay MC, Gore MA, Flint-Garcia SA, Zhang Z et al. 2014. The genetic architecture of maize height. Genetics 196:41337–56
    [Google Scholar]
  135. 135.  Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG et al. 2013. Diversity and heritability of the maize rhizosphere microbiome under field conditions. PNAS 110:166548–53
    [Google Scholar]
  136. 136.  Pellicer J, Fay MF, Leitch IJ 2010. The largest eukaryotic genome of them all?. Bot. J. Linn. Soc. 164:110–15
    [Google Scholar]
  137. 137.  Price AL, Zaitlen NA, Reich D, Patterson N 2010. New approaches to population stratification in genome-wide association studies. Nat. Rev. Genet. 11:7459–63
    [Google Scholar]
  138. 138.  Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C et al. 2012. The cassava genome: current progress, future directions. Trop. Plant Biol. 5:188–94
    [Google Scholar]
  139. 139.  Purugganan MD, Boyles AL, Suddith JI 2000. Variation and selection at the CAULIFLOWER floral homeotic gene accompanying the evolution of domesticated Brassica oleracea. Genetics 155:2855–62
    [Google Scholar]
  140. 140.  Ralph PL, Coop G 2015. Convergent evolution during local adaptation to patchy landscapes. PLOS Genet 11:11e1005630
    [Google Scholar]
  141. 141.  Ramu P, Esuma W, Kawuki R, Rabbi IY, Egesi C et al. 2016. Cassava HapMap: Masking deleterious mutations in a clonal crop species. BioRxiv 077123. https://doi.org/10.1101/077123
    [Crossref]
  142. 142.  Ray DK, Mueller ND, West PC, Foley JA 2013. Yield trends are insufficient to double global crop production by 2050. PLOS ONE 8:6e66428
    [Google Scholar]
  143. 143.  Reams AB, Roth JR 2015. Mechanisms of gene duplication and amplification. Cold Spring Harb. Perspect. Biol. 7:2a016592
    [Google Scholar]
  144. 144.  Renaut S, Rieseberg LH 2015. The accumulation of deleterious mutations as a consequence of domestication and improvement in sunflowers and other Compositae crops. Mol. Biol. Evol. 32:92273–83
    [Google Scholar]
  145. 145.  Renny-Byfield S, Rodgers-Melnick E, Ross-Ibarra J 2016. Gene fractionation and function in the ancient subgenomes of maize. Mol. Biol. Evol. 34:81825–32
    [Google Scholar]
  146. 146.  Riedelsheimer C, Melchinger AE 2013. Optimizing the allocation of resources for genomic selection in one breeding cycle. Theor. Appl. Genet. 126:112835–48
    [Google Scholar]
  147. 147.  Risch N, Merikangas K 1996. The future of genetic studies of complex human diseases. Science 273:52811516–17
    [Google Scholar]
  148. 148.  Rodgers-Melnick E, Bradbury PJ, Elshire RJ, Glaubitz JC, Acharya CB et al. 2015. Recombination in diverse maize is stable, predictable, and associated with genetic load. PNAS 112:123823–28
    [Google Scholar]
  149. 149.  Rodgers-Melnick E, Vera DL, Bass HW, Buckler ES 2016. Open chromatin reveals the functional maize genome. PNAS 113:22E3177–84
    [Google Scholar]
  150. 150.  Saade S, Maurer A, Shahid M, Oakey H, Schmöckel SM et al. 2016. Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Sci. Rep. 6:32586
    [Google Scholar]
  151. 151.  Sadras VO, Lawson C, Montoro A 2012. Photosynthetic traits in Australian wheat varieties released between 1958 and 2007. Field Crops. Res. 134:19–29
    [Google Scholar]
  152. 152.  Sallam A, Martsch R 2015. Association mapping for frost tolerance using multi-parent advanced generation inter-cross (MAGIC) population in faba bean (Vicia faba L.). Genetica 143:4501–14
    [Google Scholar]
  153. 153.  Salvi S, Sponza G, Morgante M, Tomes D, Niu X et al. 2007. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. PNAS 104:2711376–81
    [Google Scholar]
  154. 154.  SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL 1998. The paleontology of intergene retrotransposons of maize. Nat. Genet. 20:143–45
    [Google Scholar]
  155. 155.  Sannemann W, Huang BE, Mathew B, Léon J 2015. Multi-parent advanced generation inter-cross in barley: high-resolution quantitative trait locus mapping for flowering time as a proof of concept. Mol. Breed. 35:86
    [Google Scholar]
  156. 156.  Schnable JC, Springer NM, Freeling M 2011. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. PNAS 108:104069–74
    [Google Scholar]
  157. 157.  Schnable PS, Springer NM 2013. Progress toward understanding heterosis in crop plants. Annu. Rev. Plant Biol. 64:71–88
    [Google Scholar]
  158. 158.  Schön CC, Dhillon BS, Utz HF, Melchinger AE 2009. High congruency of QTL positions for heterosis of grain yield in three crosses of maize. Theor. Appl. Genet. 120:2321–32
    [Google Scholar]
  159. 159.  Schubert M, Jónsson H, Chang D, Der Sarkissian C, Ermini L et al. 2014. Prehistoric genomes reveal the genetic foundation and cost of horse domestication. PNAS 111:52E5661–69
    [Google Scholar]
  160. 160.  Sexton JP, Hangartner SB, Hoffmann AA 2014. Genetic isolation by environment or distance: Which pattern of gene flow is most common?. Evolution 68:11–15
    [Google Scholar]
  161. 161.  Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O et al. 2011. The genome of woodland strawberry (Fragaria vesca). Nat. Genet. 43:2109–16
    [Google Scholar]
  162. 162.  Soman C, Li D, Wander MM, Kent AD 2016. Long-term fertilizer and crop-rotation treatments differentially affect soil bacterial community structure. Plant Soil 413:1–2145–59
    [Google Scholar]
  163. 163.  Song WY, Wang GL, Chen LL, Kim HS, Pi LY et al. 1995. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:52431804–6
    [Google Scholar]
  164. 164.  Stanton-Geddes J, Paape T, Epstein B, Briskine R, Yoder J et al. 2013. Candidate genes and genetic architecture of symbiotic and agronomic traits revealed by whole-genome, sequence-based association genetics in Medicago truncatula. PLOS ONE 8:5e65688
    [Google Scholar]
  165. 165.  Studer AJ, Doebley JF 2011. Do large effect QTL fractionate? A case study at the maize domestication QTL teosinte branched1. Genetics 188:3673–81
    [Google Scholar]
  166. 166.  Sukumaran S, Reynolds MP, Lopes MS, Crossa J 2015. Genome-wide association study for adaptation to agronomic plant density: a component of high yield potential in spring wheat. Crop. Sci. 55:2609–19
    [Google Scholar]
  167. 167.  Taketa S, Amano S, Tsujino Y, Sato T, Saisho D et al. 2008. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. PNAS 105:104062–67
    [Google Scholar]
  168. 168.  Tan B-C, Guan J-C, Ding S, Wu S, Saunders JW et al. 2017. Structure and origin of the White Cap locus and its role in evolution of grain color in maize. Genetics 206:1135–50
    [Google Scholar]
  169. 169.  Technow F, Schrag TA, Schipprack W, Bauer E, Simianer H, Melchinger AE 2014. Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize. Genetics 197:41343–55
    [Google Scholar]
  170. 170.  Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J et al. 2017. A communal catalogue reveals Earth's multiscale microbial diversity. Nature 551:457–63
    [Google Scholar]
  171. 171.  Tilman D, Clark M 2014. Global diets link environmental sustainability and human health. Nature 515:7528518–22
    [Google Scholar]
  172. 172.  Tracy WF, Whitt SR, Buckler ES 2006. Recurrent mutation and genome evolution: example of and the origin of sweet maize. Crop. Sci. 46:Suppl. 1S49–54
    [Google Scholar]
  173. 173.  Tschermak E 1900. Ueber künstsliche Kreuzung bei Pisum sativum. Berichte der Deutsche Botanischen Gessellschaft232–39 Berlin: Gebrüder Borntræger
    [Google Scholar]
  174. 174.  Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M et al. 2013. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7:122248–58
    [Google Scholar]
  175. 175.  Upadhyaya HD, Vetriventhan M, Deshpande SP, Sivasubramani S, Wallace JG et al. 2015. Population genetics and structure of a global foxtail millet germplasm collection. Plant Genome 8:3
    [Google Scholar]
  176. 176.  Varshney RK, Roorkiwal M, Sorrells ME, eds. 2017. Genomic Selection for Crop Improvement: New Molecular Breeding Strategies for Crop Improvement Cham, Switz.: Springer
    [Google Scholar]
  177. 177.  Varshney RK, Shi C, Thudi M, Mariac C, Wallace J et al. 2017. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat. Biotechnol. 35:10969–76
    [Google Scholar]
  178. 178.  Venuprasad R, Bool ME, Quiatchon L, Sta Cruz MT, Amante M, Atlin GN 2012. A large-effect QTL for rice grain yield under upland drought stress on chromosome 1. Mol. Breed. 30:1535–47
    [Google Scholar]
  179. 179.  Walker V, Bertrand C, Bellvert F, Moënne-Loccoz Y, Bally R, Comte G 2011. Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum. New Phytol 189:2494–506
    [Google Scholar]
  180. 180.  Wallace JG, Bradbury PJ, Zhang N, Gibon Y, Stitt M, Buckler ES 2014. Association mapping across numerous traits reveals patterns of functional variation in maize. PLOS Genet 10:12e1004845
    [Google Scholar]
  181. 181.  Wallace JG, Upadhyaya HD, Vetriventhan M, Buckler ES, Hash CT, Ramu P 2015. The genetic makeup of a global barnyard millet germplasm collection. Plant Genome 8:1
    [Google Scholar]
  182. 182.  Walley JW, Sartor RC, Shen Z, Schmitz RJ, Wu KJ et al. 2016. Integration of omic networks in a developmental atlas of maize. Science 353:6301814–18
    [Google Scholar]
  183. 183.  Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y et al. 2005. The origin of the naked grains of maize. Nature 436:7051714–19
    [Google Scholar]
  184. 184.  Wang Z, Liu L, Chen Q, Wen X, Liao Y 2016. Conservation tillage increases soil bacterial diversity in the dryland of northern China. Agron. Sustain. Dev. 36:228
    [Google Scholar]
  185. 185.  Weber B, Zicola J, Oka R, Stam M 2016. Plant enhancers: a call for discovery. Trends Plant Sci 21:11974–87
    [Google Scholar]
  186. 186.  Wendel JF 2015. The wondrous cycles of polyploidy in plants. Am. J. Bot. 102:111753–56
    [Google Scholar]
  187. 187. World Bank. 2016. World development indicators 2016. World Bank Group http://documents.worldbank.org/curated/en/805371467990952829/World-development-indicators-2016
    [Google Scholar]
  188. 188.  Wright S 1921. Systems of mating. I. The biometric relations between parent and offspring. Genetics 6:2111–23
    [Google Scholar]
  189. 189.  Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R et al. 2006. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:7103705–8
    [Google Scholar]
  190. 190.  Xu X, Liu X, Ge S, Jensen JD, Hu F et al. 2011. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat. Biotechnol. 30:1105–11
    [Google Scholar]
  191. 191.  Yahiaoui N, Srichumpa P, Dudler R, Keller B 2004. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:4528–38
    [Google Scholar]
  192. 192.  Yan J, Kandianis CB, Harjes CE, Bai L, Kim E-H et al. 2010. Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nat. Genet. 42:4322–27
    [Google Scholar]
  193. 193.  Yang J, Mezmouk S, Baumgarten A, Buckler ES, Guill KE et al. 2017. Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize. PLOS Genet 13:9e1007019
    [Google Scholar]
  194. 194.  Yao H, Dogra Gray A, Auger DL, Birchler JA 2013. Genomic dosage effects on heterosis in triploid maize. PNAS 110:72665–69
    [Google Scholar]
  195. 195.  Yeaman S, Hodgins KA, Lotterhos KE, Suren H, Nadeau S et al. 2016. Convergent local adaptation to climate in distantly related conifers. Science 353:63061431–33
    [Google Scholar]
  196. 196.  York LM, Galindo-Castañeda T, Schussler JR, Lynch JP 2015. Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress. J. Exp. Bot. 66:82347–58
    [Google Scholar]
  197. 197.  York LM, Lynch JP 2015. Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition. J. Exp. Bot. 66:185493–505
    [Google Scholar]
  198. 198.  Zabel F, Putzenlechner B, Mauser W 2014. Global agricultural land resources–a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLOS ONE 9:9e107522
    [Google Scholar]
  199. 199.  Zhang W, Wu Y, Schnable JC, Zeng Z, Freeling M et al. 2012. High-resolution mapping of open chromatin in the rice genome. Genome Res 22:1151–62
    [Google Scholar]
  200. 200.  Zhang Y, Liu Z, Khan AA, Lin Q, Han Y et al. 2016. Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat (Triticum aestivum L.). Sci. Rep. 6:21476
    [Google Scholar]
  201. 201.  Zhao Y, Li Z, Liu G, Jiang Y, Maurer HP et al. 2015. Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. PNAS 112:5115624–29
    [Google Scholar]
  202. 202.  Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J et al. 2015. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 33:4408–14
    [Google Scholar]
  203. 203.  Zhu X-G, Lynch JP, LeBauer DS, Millar AJ, Stitt M, Long SP 2016. Plants in silico: Why, why now and what?–an integrative platform for plant systems biology research. Plant Cell Environ 39:51049–57
    [Google Scholar]
/content/journals/10.1146/annurev-genet-120116-024846
Loading
/content/journals/10.1146/annurev-genet-120116-024846
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error