Although microRNAs (miRNAs) are among the most intensively studied molecules of the past 20 years, determining what is and what is not a miRNA has not been straightforward. Here, we present a uniform system for the annotation and nomenclature of miRNA genes. We show that less than a third of the 1,881 human miRBase entries, and only approximately 16% of the 7,095 metazoan miRBase entries, are robustly supported as miRNA genes. Furthermore, we show that the human repertoire of miRNAs has been shaped by periods of intense miRNA innovation and that mature gene products show a very different tempo and mode of sequence evolution than star products. We establish a new open access database—MirGeneDB ()—to catalog this set of miRNAs, which complements the efforts of miRBase but differs from it by annotating the mature versus star products and by imposing an evolutionary hierarchy upon this curated and consistently named repertoire.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adams BD, Kasinski AL, Slack FJ. 1.  2014. Aberrant regulation and function of microRNAs in cancer. Curr. Biol. 24:R762–76 [Google Scholar]
  2. Alvarez-Garcia I, Miska EA. 2.  2005. MicroRNA functions in animal development and human disease. Development 132:4653–62 [Google Scholar]
  3. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC. 3.  et al. 2003. A uniform system for microRNA annotation. RNA 9:277–79 [Google Scholar]
  4. Aure MR, Leivonen SK, Fleischer T, Zhu Q, Overgaard J. 4.  et al. 2013. Individual and combined effects of DNA methylation and copy number alterations on miRNA expression in breast tumors. Genome Biol. 14:R126 [Google Scholar]
  5. Axtell MJ, Westholm JO, Lai EC. 5.  2011. Vive la différence: biogenesis and evolution of microRNAs in plants and animals. Genome Biol. 12:221 [Google Scholar]
  6. Bader AG. 6.  2012. miR-34—a microRNA replacement therapy is headed to the clinic. Front. Genet. 3:120 [Google Scholar]
  7. Bai Y, Zhang Z, Jin L, Kang H, Zhu Y. 7.  et al. 2014. Genome-wide sequencing of small RNAs reveals a tissue-specific loss of conserved microRNA families in Echinococcus granulosus. BMC Genomics 15:736 [Google Scholar]
  8. Balatti V, Rizzotto L, Miller C, Palamarchuk A, Fadda P. 8.  et al. 2015. TCL1 targeting miR-3676 is codeleted with tumor protein p53 in chronic lymphocytic leukemia. PNAS 112:2169–74 [Google Scholar]
  9. Barbash S, Shifman S, Soreq H. 9.  2014. Global coevolution of human microRNAs and their target genes. Mol. Biol. Evol. 31:1237–47 [Google Scholar]
  10. Barrett T, Clark K, Gevorgyan R, Gorelenkov V, Gribov E. 10.  et al. 2012. BioProject and BioSample databases at NCBI: facilitating capture and organization of metadata. Nucleic Acids Res. 40:D57–63 [Google Scholar]
  11. Bartel DP. 11.  2009. MicroRNAs: target recognition and regulatory functions. Cell 136:215–33 [Google Scholar]
  12. Benes V, Castoldi M. 12.  2010. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 50:244–49 [Google Scholar]
  13. Berezikov E. 13.  2011. Evolution of microRNA diversity and regulation in animals. Nat. Rev. Genet. 12:846–60 [Google Scholar]
  14. Berezikov E, Robine N, Samsonova A, Westholm JO, Naqvi A. 14.  et al. 2011. Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. Genome Res. 21:203–15 [Google Scholar]
  15. Biscontin A, Casara S, Cagnin S, Tombolan L, Rosolen A. 15.  et al. 2010. New miRNA labeling method for bead-based quantification. BMC Mol. Biol. 11:44 [Google Scholar]
  16. Bouchie A. 16.  2013. First microRNA mimic enters clinic. Nat. Biotechnol. 31:577 [Google Scholar]
  17. Brown M, Suryawanshi H, Hafner M, Farazi TA, Tuschl T. 17.  2013. Mammalian miRNA curation through next-generation sequencing. Front. Genet. 4:145 [Google Scholar]
  18. Budak H, Bulut R. 18.  2015. MicroRNA nomenclature and the need for a revised naming prescription. Brief. Funct. Genomics doi:10.1093/bfgp/elv026 [Google Scholar]
  19. Calin GA, Croce CM. 19.  2006. MicroRNA signatures in human cancers. Nat. Rev. Cancer 6:857–66 [Google Scholar]
  20. Campo-Paysaa F, Sémon M, Cameron RA, Peterson KJ, Schubert M. 20.  2011. miRNA complements in deuterostomes: origin and evolution of miRNAs. Evol. Dev. 13:15–27 [Google Scholar]
  21. Cao J, Shen Y, Zhu L, Xu Y, Zhou Y. 21.  et al. 2012. miR-129-3p controls cilia assembly by regulating CP110 and actin dynamics. Nat. Cell Biol. 14:697–706 [Google Scholar]
  22. Castellano L, Stebbing J. 22.  2013. Deep sequencing of small RNAs identifies canonical and non-canonical miRNA and endogenous siRNAs in mammalian somatic tissues. Nucleic Acids Res. 41:3339–51 [Google Scholar]
  23. Cech TR, Steitz JA. 23.  2014. The noncoding RNA revolution—trashing old rules to forge new ones. Cell 157:77–94 [Google Scholar]
  24. Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ. 24.  2010. A Dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465:584–89 [Google Scholar]
  25. Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N. 25.  et al. 2010. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 24:992–1009 [Google Scholar]
  26. Cifuentes D, Xue H, Taylor DW, Patnode H, Mishima Y. 26.  et al. 2010. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328:1694–98 [Google Scholar]
  27. Cloonan N. 27.  2015. Re-thinking miRNA-mRNA interactions: intertwining issues confound target discovery. BioEssays 37:379–88 [Google Scholar]
  28. Coolen M, Katz S, Bally-Cuif L. 28.  2013. miR-9: a versatile regulator of neurogenesis. Front. Cell. Neurosci. 7:220 [Google Scholar]
  29. de Jong D, Eitel M, Jakob W, Osigus H-J, Hadrys H. 29.  et al. 2009. Multiple Dicer genes in the early-diverging Metazoa. Mol. Biol. Evol. 26:1333–40 [Google Scholar]
  30. Dehal P, Boore JL. 30.  2005. Two rounds of whole genome duplication in the ancestral vertebrate. PLOS Biol. 3:e314 [Google Scholar]
  31. Delsuc F, Brinkman H, Chourrout D, Philippe H. 31.  2006. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–68 [Google Scholar]
  32. Devor EJ, Schickling BM, Leslie KK. 32.  2014. MicroRNA expression patterns across seven cancers are highly correlated and dominated by evolutionarily ancient families. Biomed. Rep. 2:384–87 [Google Scholar]
  33. de Wit E, Linsen SEV, Cuppen E, Berezikov E. 33.  2009. Repertoire and evolution of miRNA genes in four divergent nematode species. Genome Res. 19:2064–74 [Google Scholar]
  34. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T. 34.  et al. 2012. Landscape of transcription in human cells. Nature 489:101–8 [Google Scholar]
  35. dos Reis M, Inoue J, Hasegawa M, Asher RJ, Donoghue PCJ, Yang Z. 35.  2012. Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc. R. Soc. B 279:3491–500 [Google Scholar]
  36. Dvinge H, Git A, Graf S, Salmon-Divon M, Curtis C. 36.  et al. 2013. The shaping and functional consequences of the microRNA landscape in breast cancer. Nature 497:378–82 [Google Scholar]
  37. 37. ENCODE Project Consortium 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74 [Google Scholar]
  38. Erwin DH, LaFlamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ. 38.  2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:1091–97 [Google Scholar]
  39. Esquela-Kerscher A, Slack FJ. 39.  2006. Oncomirs—microRNAs with a role in cancer. Nat. Rev. Cancer 6:259–69 [Google Scholar]
  40. Fan Z, Chen X, Chen R. 40.  2014. Transcriptome-wide analysis of TDP-43 binding small RNAs identifies miR-NID1 (miR-8485), a novel miRNA that represses NRXN1 expression. Genomics 103:76–82 [Google Scholar]
  41. Field DJ, Gauthier JA, King BL, Pisani D, Lyson TR, Peterson KJ. 41.  2014. Toward consilience in reptile phylogeny: miRNAs support an archosaur, not lepidosaur, affinity for turtles. Evol. Dev. 16:189–96 [Google Scholar]
  42. Frank F, Sonenberg N, Nagar B. 42.  2010. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465:818–22 [Google Scholar]
  43. Friedländer M, Lizano E, Houben AJS, Bezdan D, Banez-Coronel M. 43.  et al. 2014. Evidence for the biogenesis of more than 1,000 novel human microRNAs. Genome Biol. 15:R57 [Google Scholar]
  44. Fromm B, Burow S, Hahn C, Bachmann L. 44.  2014. MicroRNA loci support conspecificity of Gyrodactylus salaris and Gyrodactylus thymalli (Platyhelminthes: Monogenea). Int. J. Parasitol. 44:787–93 [Google Scholar]
  45. Fromm B, Worren MM, Hahn C, Hovig E, Bachmann L. 45.  2013. Substantial loss of conserved and gain of novel microRNA families in flatworms. Mol. Biol. Evol. 30:2619–28 [Google Scholar]
  46. Gao Z, Wang M, Blair D, Zheng Y, Dou Y. 46.  2014. Phylogenetic analysis of the endoribonuclease Dicer family. PLOS ONE 9:e95350 [Google Scholar]
  47. Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan KK. 47.  et al. 2012. Architecture of the human regulatory network derived from ENCODE data. Nature 489:91–100 [Google Scholar]
  48. Geslain R, Pan T. 48.  2011. tRNA: vast reservoir of RNA molecules with unexpected regulatory function. PNAS 108:16489–90 [Google Scholar]
  49. Ghildiyal M, Xu J, Seitz H, Weng Z, Zamore PD. 49.  2010. Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA 16:43–56 [Google Scholar]
  50. Glasauer SM, Neuhauss SC. 50.  2014. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol. Genet. Genomics 289:1045–60 [Google Scholar]
  51. Goodarzi H, Liu X, Nguyen HC, Zhang S, Fish L, Tavazoie SF. 51.  2015. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 161:790–802 [Google Scholar]
  52. Graur D, Zheng Y, Price N, Azevedo RB, Zufall RA, Elhaik E. 52.  2013. On the immortality of television sets: “function” in the human genome according to the evolution-free gospel of ENCODE. Genome Biol. Evol. 5:578–90 [Google Scholar]
  53. Griffiths-Jones S. 53.  2004. The microRNA Registry. Nucleic Acids Res. 32:D109–11 [Google Scholar]
  54. Griffiths-Jones S, Hui JH, Marco A, Ronshaugen M. 54.  2011. MicroRNA evolution by arm switching. EMBO Rep. 12:172–77 [Google Scholar]
  55. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. 55.  2007. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27:91–105 [Google Scholar]
  56. Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR. 56.  et al. 2008. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455:1193–97 [Google Scholar]
  57. Guerra-Assuncao JA, Enright AJ. 57.  2012. Large-scale analysis of microRNA evolution. BMC Genomics 13:218 [Google Scholar]
  58. Guo L, Lu ZH. 58.  2010. The fate of miRNA* strand through evolutionary analysis: implication for degradation as merely carrier strand or potential regulatory molecule?. PLOS ONE 5:e11387 [Google Scholar]
  59. Guo L, Yu J, Yu H, Zhao Y, Chen S. 59.  et al. 2015. Evolutionary and expression analysis of miR-#-5p and miR-#-3p at the miRNAs/isomiRs levels. BioMed Res. Int. 2015:168358 [Google Scholar]
  60. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J. 60.  et al. 2010. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–41 [Google Scholar]
  61. Hamilton MP, Rajapakshe K, Hartig SM, Reva B, McLellan MD. 61.  et al. 2013. Identification of a pan-cancer oncogenic microRNA superfamily anchored by a central core seed motif. Nat. Commun. 4:2730 [Google Scholar]
  62. Hansen TB, Kjems J, Bramsen JB. 62.  2011. Enhancing miRNA annotation confidence in miRBase by continuous cross dataset analysis. RNA Biol. 8:378–83 [Google Scholar]
  63. Heimberg AM, Cowper-Sal-lari R, Semon M, Donoghue PC, Peterson KJ. 63.  2010. MicroRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. PNAS 107:19379–83 [Google Scholar]
  64. Heimberg AM, Sempere LF, Moy VN, Donoghue PC, Peterson KJ. 64.  2008. MicroRNAs and the advent of vertebrate morphological complexity. PNAS 105:2946–50 [Google Scholar]
  65. Helwak A, Kudla G, Dudnakova T, Tollervey D. 65.  2013. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–65 [Google Scholar]
  66. Hertel J, Bartschat S, Wintsche A, Otto C. 66.  Stud Bioinform. Comput. Lab, Stadler PF 2012. Evolution of the let-7 microRNA family. RNA Biol. 9:231–41 [Google Scholar]
  67. Hertel J, Lindemeyer M, Missal K, Fried C, Tanzer A. 67.  et al. 2006. The expansion of the metazoan microRNA repertoire. BMC Genomics 7:25 [Google Scholar]
  68. Hertel J, Stadler PF. 68.  2015. The expansion of animal microRNA families revisited. Life 5:905–20 [Google Scholar]
  69. Hill CG, Jabbari N, Matyunina LV, McDonald JF. 69.  2014. Functional and evolutionary significance of human microRNA seed region mutations. PLOS ONE 9:e115241 [Google Scholar]
  70. Hu HY, Yan Z, Xu Y, Hu H, Menzel C. 70.  et al. 2009. Sequence features associated with microRNA strand selection in humans and flies. BMC Genomics 10:413 [Google Scholar]
  71. Imig J, Brunschweiger A, Brummer A, Guennewig B, Mittal N. 71.  et al. 2015. miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction. Nat. Chem. Biol. 11:107–14 [Google Scholar]
  72. Iorio MV, Croce CM. 72.  2012. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med. 4:143–59 [Google Scholar]
  73. Iwama H, Kato K, Imachi H, Murao K, Masaki T. 73.  2013. Human microRNAs originated from two periods at accelerated rates in mammalian evolution. Mol. Biol. Evol. 30:613–26 [Google Scholar]
  74. Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A. 74.  et al. 2015. The landscape of long noncoding RNAs in the human transcriptome. Nat. Genet. 47:199–208 [Google Scholar]
  75. Jan CH, Friedman RC, Ruby JG, Bartel DP. 75.  2011. Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs. Nature 469:97–101 [Google Scholar]
  76. Jonas S, Izaurralde E. 76.  2015. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 16:421–33 [Google Scholar]
  77. Jones-Rhoades MW. 77.  2012. Conservation and divergence in plant microRNAs. Plant Mol. Biol. 80:3–16 [Google Scholar]
  78. Kenny NJ, Namigai EKO, Marlétaz F, Hui JHL, Shimeld SM. 78.  2015. Draft genome assemblies and predicted microRNA complements of the intertidal lophotrochozoans Patella vulgata (Mollusca, Patellogastropoda) and Spirobranchus (Pomatoceros) lamarcki (Annelida, Serpulida). Marine Genomics In press [Google Scholar]
  79. Kenny NJ, Sin YW, Hayward A, Paps J, Chu KH, Hui JHL. 79.  2015. The phylogenetic utility and functional constraint of microRNA flanking sequence. Proc. R. Soc. B 282:20142983 [Google Scholar]
  80. Khvorova A, Reynolds A, Jayasena SD. 80.  2003. Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–16 [Google Scholar]
  81. Kozomara A, Griffiths-Jones S. 81.  2011. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39:D152–57 [Google Scholar]
  82. Kozomara A, Griffiths-Jones S. 82.  2014. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42:D68–73 [Google Scholar]
  83. Krol J, Sobczak K, Wilczynska U, Drath M, Jasinska A. 83.  et al. 2004. Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design.. J. Biol. Chem. 279:42230–39 [Google Scholar]
  84. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. 84.  2001. Identification of novel genes coding for small expressed RNAs. Science 294:853–58 [Google Scholar]
  85. Langenberger D, Bartschat S, Hertel J, Hoffmann S, Tafer H, Stadler PF. 85.  2011. MicroRNA or not microRNA?. Adv. Bioinform. Comput. Biol. 6382:1–9 [Google Scholar]
  86. Lau NC, Lim LP, Weinstein EG, Bartel DP. 86.  2001. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–62 [Google Scholar]
  87. Lee RC, Ambros V. 87.  2001. An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–64 [Google Scholar]
  88. Lee YS, Shibata Y, Malhotra A, Dutta A. 88.  2009. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev. 23:2639–49 [Google Scholar]
  89. Lewis BP, Burge CB, Bartel DP. 89.  2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20 [Google Scholar]
  90. Li SC, Chan WC, Hu LY, Lai CH, Hsu CN, Lin WC. 90.  2010. Identification of homologous microRNAs in 56 animal genomes. Genomics 96:1–9 [Google Scholar]
  91. Lin S, Gregory RI. 91.  2015. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer 15:321–33 [Google Scholar]
  92. Ling H, Fabbri M, Calin GA. 92.  2013. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat. Rev. Drug Discov. 12:847–65 [Google Scholar]
  93. Ling H, Vincent K, Pichler M, Fodde R, Berindan-Neagoe I. 93.  et al. 2015. Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene 375003–11 [Google Scholar]
  94. Liu CG, Calin GA, Volinia S, Croce CM. 94.  2008. MicroRNA expression profiling using microarrays. Nat. Protoc. 3:563–78 [Google Scholar]
  95. Londin E, Loher P, Telonis AG, Quann K, Clark P. 95.  et al. 2015. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. PNAS 112:E1106–15 [Google Scholar]
  96. Lopez JP, Lim R, Cruceanu C, Crapper L, Fasano C. 96.  et al. 2014. miR-1202 is a primate-specific and brain-enriched microRNA involved in major depression and antidepressant treatment. Nat. Med. 20:764–68 [Google Scholar]
  97. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J. 97.  et al. 2005. MicroRNA expression profiles classify human cancers. Nature 435:834–38 [Google Scholar]
  98. Marco A, Hui JH, Ronshaugen M, Griffiths-Jones S. 98.  2010. Functional shifts in insect microRNA evolution. Genome Biol. Evol. 2:686–96 [Google Scholar]
  99. Mattick JS, Rinn JL. 99.  2015. Discovery and annotation of long noncoding RNAs. Nat. Struct. Mol. Biol. 22:5–7 [Google Scholar]
  100. Mendell JT, Olson EN. 100.  2012. MicroRNAs in stress signaling and human disease. Cell 148:1172–87 [Google Scholar]
  101. Meng Y, Shao C, Wang H, Chen M. 101.  2012. Are all the miRBase-registered microRNAs true? A structure- and expression-based re-examination in plants. RNA Biol. 9:249–53 [Google Scholar]
  102. Meunier J, Lemoine F, Soumillon M, Liechti A, Weier M. 102.  et al. 2013. Birth and expression evolution of mammalian microRNA genes. Genome Res. 23:34–45 [Google Scholar]
  103. Mitra R, Lin C-C, Eischen CM, Bandyopadhyay S, Zhao Z. 103.  2015. Concordant dysregulation of miR-5p and miR-3p arms of the same precursor microRNA may be a mechanism in inducing cell proliferation and tumorigenesis: a lung cancer study. RNA 21:1055–65 [Google Scholar]
  104. Moran Y, Praher D, Fredman D, Technau U. 104.  2013. The evolution of microRNA pathway protein components in Cnidaria. Mol. Biol. Evol. 30:2541–52 [Google Scholar]
  105. Morin RD, O'Connor MD, Griffith M, Kuchenbauer F, Delaney A. 105.  et al. 2008. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 18:610–21 [Google Scholar]
  106. Morris KV, Mattick JS. 106.  2014. The rise of regulatory RNA. Nat. Rev. Genet. 15:423–37 [Google Scholar]
  107. Mukherjee K, Campos H, Kolaczkowski B. 107.  2013. Evolution of animal and plant Dicers: early parallel duplications and recurrent adaptation of antiviral RNA binding in plants. Mol. Biol. Evol. 30:627–41 [Google Scholar]
  108. Muller H, Marzi MJ, Nicassio F. 108.  2014. IsomiRage: from functional classification to differential expression of miRNA isoforms. Front. Bioeng. Biotechnol. 2:38 [Google Scholar]
  109. Nass D, Rosenwald S, Meiri E, Gilad S, Tabibian-Keissar H. 109.  et al. 2009. miR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol. 19:375–83 [Google Scholar]
  110. Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA. 110.  et al. 2012. Resolution of ray-finned fish phylogeny and timing of diversification. PNAS 109:13698–703 [Google Scholar]
  111. Neilsen CT, Goodall GJ, Bracken CP. 111.  2012. IsomiRs—the overlooked repertoire in the dynamic microRNAome. Trends Genet. 28:544–49 [Google Scholar]
  112. Nguyen TA, Jo MH, Choi YG, Park J, Kwon SC. 112.  et al. 2015. Functional anatomy of the human microprocessor. Cell 161:1374–87 [Google Scholar]
  113. Noland CL, Doudna JA. 113.  2013. Multiple sensors ensure guide strand selection in human RNAi pathways. RNA 19:639–48 [Google Scholar]
  114. Nozawa M, Miura S, Nei M. 114.  2010. Origins and evolution of microRNA genes in Drosophila species. Genome Biol. Evol. 2:180–89 [Google Scholar]
  115. Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O. 115.  et al. 2011. Silencing of microRNA families by seed-targeting tiny LNAs. Nat. Genet. 43:371–78 [Google Scholar]
  116. Okamura K, Phillips MD, Tyler DM, Duan H, Chou YT, Lai EC. 116.  2008. The regulatory activity of microRNA star species has substantial influence on microRNA and 3′ UTR evolution. Nat. Struct. Mol. Biol. 15:354–63 [Google Scholar]
  117. Quah S, Hui JHL, Holland PWH. 117.  2015. A burst of miRNA innovation in the early evolution of butterflies and moths. Mol. Biol. Evol. 32:1161–74 [Google Scholar]
  118. Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL. 118.  2008. The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. J. Neurosci. 28:14341–46 [Google Scholar]
  119. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. 119.  2008. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40:1413–15 [Google Scholar]
  120. Pennisi E. 120.  2012. ENCODE project writes eulogy for junk DNA. Science 337:1159–61 [Google Scholar]
  121. Peterson KJ, Dietrich MR, McPeek MA. 121.  2009. MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion. BioEssays 31:736–47 [Google Scholar]
  122. Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H. 122.  et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255–58 [Google Scholar]
  123. Prochnik SE, Rokhsar DS, Aboobaker AA. 123.  2007. Evidence for a microRNA expansion in the bilaterian ancestor. Dev. Genes Evol. 217:73–77 [Google Scholar]
  124. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP. 124.  2006. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 20:3407–25 [Google Scholar]
  125. Ruby JG, Jan C, Player C, Axtell MJ, Lee W. 125.  et al. 2006. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127:1193–207 [Google Scholar]
  126. Ruby JG, Stark A, Johnston WK, Kellis M, Bartel DP, Lai EC. 126.  2007. Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res. 17:1850–64 [Google Scholar]
  127. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. 127.  2011. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?. Cell 146:353–58 [Google Scholar]
  128. Schee K, Lorenz S, Worren MM, Gunther CC, Holden M. 128.  et al. 2013. Deep sequencing the microRNA transcriptome in colorectal cancer. PLOS ONE 8:e66165 [Google Scholar]
  129. Schirle NT, Sheu-Gruttadauria J, MacRae IJ. 129.  2014. Gene regulation. Structural basis for microRNA targeting. Science 346:608–13 [Google Scholar]
  130. Schmiedel JM, Klemm SL, Zheng Y, Sahay A, Bluthgen N. 130.  et al. 2015. Gene expression. MicroRNA control of protein expression noise. Science 348:128–32 [Google Scholar]
  131. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD. 131.  2003. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208 [Google Scholar]
  132. Sempere LF, Cole CN, McPeek MA, Peterson KJ. 132.  2006. The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. J. Exp. Zool. Mol. Dev. Evol. 306B:575–88 [Google Scholar]
  133. Sempere LF, Kauppinen S. 133.  2009. Translational implications of microRNAs in clinical diagnostics and therapeutics. Handbook of Cell Signaling RA Bradshaw, EA Dennis 2965–81 Oxford: Academic, 2nd ed.. [Google Scholar]
  134. Shin C, Nam JW, Farh KKH, Chiang HR, Shkumatava A, Bartel DP. 134.  2010. Expanding the MicroRNA targeting code: functional sites with centered pairing. Mol. Cell 38:789–802 [Google Scholar]
  135. Smith JJ, Kuraku S, Holt C, Sauka-Spengler T, Jiang N. 135.  et al. 2013. Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat. Genet. 45:415–21 [Google Scholar]
  136. Song R, Walentek P, Sponer N, Klimke A, Lee JS. 136.  et al. 2014. miR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110. Nature 510:115–20 [Google Scholar]
  137. Starega-Roslan J, Koscianska E, Kozlowski P, Krzyzosiak WJ. 137.  2011. The role of the precursor structure in the biogenesis of microRNA. Cell. Mol. Life Sci. 68:2859–71 [Google Scholar]
  138. Stefani G, Slack FJ. 138.  2008. Small non-coding RNAs in animal development. Nat. Rev. Mol. Cell Biol. 9:219–30 [Google Scholar]
  139. St. Laurent G, Wahlestedt C, Kapranov P. 139.  2015. The landscape of long noncoding RNA classification. Trends Genet. 31:239–51 [Google Scholar]
  140. Sumazin P, Yang X, Chiu H-S, Chung W-J, Iyer A. 140.  et al. 2011. An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147:370–81 [Google Scholar]
  141. Suzuki H, Katsura A, Yasuda T, Ueno T, Mano H. 141.  et al. 2015. Small-RNA asymmetry is directly driven by mammalian Argonautes. Nat. Struct. Mol. Biol. 22:512–21 [Google Scholar]
  142. Taft RJ, Pheasant M, Mattick JS. 142.  2007. The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays 29:288–99 [Google Scholar]
  143. Tarver JE, Donoghue PCJ, Peterson KJ. 143.  2012. Do miRNAs have a deep evolutionary history?. BioEssays 34:857–66 [Google Scholar]
  144. Tarver JE, Sperling EA, Nailor A, Heimberg AM, Robinson JM. 144.  et al. 2013. miRNAs: small genes with big potential in metazoan phylogenetics. Mol. Biol. Evol. 30:2369–82 [Google Scholar]
  145. Tay FC, Lim JK, Zhu H, Hin LC, Wang S. 145.  2015. Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells. Adv. Drug Deliv. Rev. 81C:117–27 [Google Scholar]
  146. Taylor RS, Tarver JE, Hiscock SJ, Donoghue PC. 146.  2014. Evolutionary history of plant microRNAs. Trends Plant Sci. 19:175–82 [Google Scholar]
  147. Thomson RC, Plachetzki DC, Mahler DL, Moore BR. 147.  2014. A critical appraisal of the use of microRNA data in phylogenetics. PNAS 111:E3659–68 [Google Scholar]
  148. Turnock-Jones JJ, Le Quesne JP. 148.  2014. MicroRNA in situ hybridization in tissue microarrays. Methods Mol. Biol. 1211:85–93 [Google Scholar]
  149. Valoczi A, Hornyik C, Varga N, Burgyan J, Kauppinen S, Havelda Z. 149.  2004. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res. 32:e175 [Google Scholar]
  150. Van Peer G, Lefever S, Anckaert J, Beckers A, Rihani A. 150.  et al. 2014. miRBase Tracker: keeping track of microRNA annotation changes. Database 2014:pii:bau080 [Google Scholar]
  151. Wang B. 151.  2013. Base composition characteristics of mammalian miRNAs. J. Nucleic Acids 2013:951570 [Google Scholar]
  152. Wang X. 152.  2014. Composition of seed sequences is a major determinant of microRNA targeting patterns. Bioinformatics 30:1377–83 [Google Scholar]
  153. Wang X, Liu XS. 153.  2011. Systematic curation of miRBase annotation using integrated small RNA high-throughput sequencing data for C. elegans and Drosophila. Front. Genet. 2:25 [Google Scholar]
  154. Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW. 154.  et al. 2009. The deep evolution of metazoan microRNAs. Evol. Dev. 11:50–68 [Google Scholar]
  155. Wright MW, Bruford EA. 155.  2011. Naming “junk”: human non-protein coding RNA (ncRNA) gene nomenclature. Hum. Genomics 5:90–98 [Google Scholar]
  156. Yang JS, Maurin T, Robine N, Rasmussen KD, Jeffrey KL. 156.  et al. 2010. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. PNAS 107:15163–68 [Google Scholar]
  157. Zhang X, Zeng Y. 157.  2010. The terminal loop region controls microRNA processing by Drosha and Dicer. Nucleic Acids Res 38:7689–97 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error