1932

Abstract

Translation of the genome into functional proteins is critical for cellular life. Accurate protein synthesis relies on proper decoding of mRNAs by the ribosome using aminoacyl-tRNAs. During aminoacyl-tRNA synthesis, stringent substrate discrimination and rigorous product proofreading ensure tRNAs are paired with the correct amino acid, as defined by the rules of the genetic code. What has remained far less clear is the extent to which amino acids that are not part of the genetic code might also threaten translational accuracy. Here, we review the broad range of nonproteinogenic, or nonprotein, amino acids that can naturally accumulate under different conditions, the ability of the translation quality control machinery to deal with such substrates, and their potential impact on the integrity of the genetic code and cellular viability.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120213-092101
2014-11-23
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/genet/48/1/annurev-genet-120213-092101.html?itemId=/content/journals/10.1146/annurev-genet-120213-092101&mimeType=html&fmt=ahah

Literature Cited

  1. Allen AK, Neuberger A. 1.  1973. The purification and properties of the lectin from potato tubers, a hydroxyproline-containing glycoprotein. Biochem. J. 135:307–14 [Google Scholar]
  2. Ambrogelly A, O'Donoghue P, Soll D, Moses S. 2.  2010. A bacterial ortholog of class II lysyl-tRNA synthetase activates lysine. FEBS Lett. 584:3055–60 [Google Scholar]
  3. Anderson JW, Fowden L. 3.  1970. Properties and substrate specificities of the phenylalanyl-transfer-ribonucleic acid synthetases of Aesculus species. Biochem. J. 119:677–90 [Google Scholar]
  4. Apostol I, Levine J, Lippincott J, Leach J, Hess E. 4.  et al. 1997. Incorporation of norvaline at leucine positions in recombinant human hemoglobin expressed in Escherichia coli. J. Biol. Chem. 272:28980–88 [Google Scholar]
  5. Baldwin AN, Berg P. 5.  1966. Transfer ribonucleic acid–induced hydrolysis of valyladenylate bound to isoleucyl ribonucleic acid synthetase. J. Biol. Chem. 241:839–45 [Google Scholar]
  6. Banack SA, Cox PA. 6.  2003. Biomagnification of cycad neurotoxins in flying foxes: implications for ALS-PDC in Guam. Neurology 61:387–89 [Google Scholar]
  7. Bar-Rogovsky H, Hugenmatter A, Tawfik DS. 7.  2013. The evolutionary origins of detoxifying enzymes: The mammalian serum paraoxonases (PONs) relate to bacterial homoserine lactonases. J. Biol. Chem. 288:23914–27 [Google Scholar]
  8. Bertin C, Weston LA, Huang T, Jander G, Owens T. 8.  et al. 2007. Grass roots chemistry: meta-tyrosine, an herbicidal nonprotein amino acid. Proc. Natl. Acad. Sci. USA 104:16964–69 [Google Scholar]
  9. Beuning PJ, Musier-Forsyth K. 9.  2000. Hydrolytic editing by a class II aminoacyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA 97:8916–20 [Google Scholar]
  10. Biermann M, Linnemann J, Knüpfer U, Vollstädt S, Bardl B. 10.  et al. 2013. Trace element associated reduction of norleucine and norvaline accumulation during oxygen limitation in a recombinant Escherichia coli fermentation. Microb. Cell Fact. 12:116 [Google Scholar]
  11. Bogosian G, Violand BN, Dorward-King EJ, Workman WE, Jung PE, Kane JF. 11.  1989. Biosynthesis and incorporation into protein of norleucine by Escherichia coli. J. Biol. Chem. 264:531–39 [Google Scholar]
  12. Brevet A, Chen J, Leveque F, Blanquet S, Plateau P. 12.  1995. Comparison of the enzymatic properties of the two Escherichia coli lysyl-tRNA synthetase species. J. Biol. Chem. 270:14439–44 [Google Scholar]
  13. Buechter DD, Paolella DN, Leslie BS, Brown MS, Mehos KA, Gruskin EA. 13.  2003. Co-translational incorporation of trans-4-hydroxyproline into recombinant proteins in bacteria. J. Biol. Chem. 278:645–50 [Google Scholar]
  14. Bullwinkle TJ, Ibba M. 14.  2014. Emergence and evolution. Top. Curr. Chem. 344:43–88 [Google Scholar]
  15. Bullwinkle TJ, Reynolds NM, Raina M, Moghal A, Matsa E. 15.  et al. 2014. Oxidation of cellular amino acid pools leads to cytotoxic mistranslation of the genetic code. eLife 3:e02501 [Google Scholar]
  16. Calendar R, Berg P. 16.  1966. The catalytic properties of tyrosyl ribonucleic acid synthetases from Escherichia coli and Bacillus subtilis. Biochemistry 5:1690–95 [Google Scholar]
  17. Cava F, Lam H, de Pedro MA, Waldor MK. 17.  2011. Emerging knowledge of regulatory roles of D-amino acids in bacteria. Cell. Mol. Life Sci. 68:817–31 [Google Scholar]
  18. Chen SJ, Wu YH, Huang HY, Wang CC. 18.  2012. Saccharomyces cerevisiae possesses a stress-inducible glycyl-tRNA synthetase gene. PLOS ONE 7:e33363 [Google Scholar]
  19. Cohen GN, Saint-Girons I. 19.  1987. Biosynthesis of threonine, lysine, and methionine. Escherichia coli and Salmonella typhimurium FC Neidhardt 429–44 . Washington, DC: American Soc. Microbiol. [Google Scholar]
  20. Cox PA, Banack SA, Murch SJ. 20.  2003. Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. Proc. Natl. Acad. Sci. USA 100:13380–83 [Google Scholar]
  21. Davies J. 21.  2013. Specialized microbial metabolites: functions and origins. J. Antibiot. (Tokyo 66:361–64 [Google Scholar]
  22. Döring V, Mootz HD, Nangle LA, Hendrickson TL, De Crécy-Lagard V. 22.  et al. 2001. Enlarging the amino acid set of Escherichia coli by infiltration of the valine coding pathway. Science 292:501–4 [Google Scholar]
  23. Dulic M, Cvetesic N, Perona JJ, Gruic-Sovulj I. 23.  2010. Partitioning of tRNA-dependent editing between pre- and post-transfer pathways in class I aminoacyl-tRNA synthetases. J. Biol. Chem. 285:23799–809 [Google Scholar]
  24. Dunlop RA, Cox PA, Banack SA, Rodgers KJ. 24.  2013. The non-protein amino acid BMAA is misincorporated into human proteins in place of L-serine causing protein misfolding and aggregation. PLOS ONE 8:e75376 [Google Scholar]
  25. Dunlop RA, Dean RT, Rodgers KJ. 25.  2008. The impact of specific oxidized amino acids on protein turnover in J774 cells. Biochem. J. 410:131–40 [Google Scholar]
  26. Dunlop RA, Rodgers KJ, Dean RT. 26.  2002. Recent developments in the intracellular degradation of oxidized proteins. Free Radic. Biol. Med. 33:894–906 [Google Scholar]
  27. Eldred EW, Schimmel PR. 27.  1972. Rapid deacylation by isoleucyl transfer ribonucleic acid synthetase of isoleucine-specific transfer ribonucleic acid aminoacylated with valine. J. Biol. Chem. 247:2961–64 [Google Scholar]
  28. Englisch S, Englisch U, von der Haar F, Cramer F. 28.  1986. The proofreading of hydroxy analogues of leucine and isoleucine by leucyl-tRNA synthetases from E. coli and yeast. Nucleic Acids Res. 14:7529–39 [Google Scholar]
  29. Federle MJ. 29.  2009. Autoinducer-2-based chemical communication in bacteria: complexities of interspecies signaling. Contrib. Microbiol. 16:18–32 [Google Scholar]
  30. Fersht AR. 30.  1977. Editing mechanisms in protein synthesis. Rejection of valine by the isoleucyl-tRNA synthetase. Biochemistry 16:1025–30 [Google Scholar]
  31. Fersht AR, Dingwall C. 31.  1979. Evidence for the double-sieve editing mechanism in protein synthesis. Steric exclusion of isoleucine by valyl-tRNA synthetases. Biochemistry 18:2627–31 [Google Scholar]
  32. Fowden L, Lea PJ, Bell EA. 32.  1979. The nonprotein amino acids of plants. Adv. Enzymol. Relat. Areas Mol. Biol. 50:117–75 [Google Scholar]
  33. Fu SL, Dean RT. 33.  1997. Structural characterization of the products of hydroxyl-radical damage to leucine and their detection on proteins. Biochem. J. 324:Pt. 141–48 [Google Scholar]
  34. Gabius HJ, von der Haar F, Cramer F. 34.  1983. Evolutionary aspects of accuracy of phenylalanyl-tRNA synthetase. A comparative study with enzymes from Escherichia coli, Saccharomyces cerevisiae, Neurospora crassa, and turkey liver using phenylalanine analogues. Biochemistry 22:2331–39 [Google Scholar]
  35. Gurer-Orhan H, Ercal N, Mare S, Pennathur S, Orhan H, Heinecke JW. 35.  2006. Misincorporation of free m-tyrosine into cellular proteins: a potential cytotoxic mechanism for oxidized amino acids. Biochem. J. 395:277–84 [Google Scholar]
  36. Hellmann RA, Martinis SA. 36.  2009. Defects in transient tRNA translocation bypass tRNA synthetase quality control mechanisms. J. Biol. Chem. 284:11478–84 [Google Scholar]
  37. Hendrickson TL, Schimmel P. 37.  2003. Transfer RNA–dependent amino acid discrimination by aminoacyl-tRNA synthetases. Translation Mechanisms J Lapointe, L Brakier-Gingras 34–64 New York: Kluwer Acad./Plenum Publ. [Google Scholar]
  38. Henkin TM, Glass BL, Grundy FJ. 38.  1992. Analysis of the Bacillus subtilis tyrS gene: conservation of a regulatory sequence in multiple tRNA synthetase genes. J. Bacteriol. 174:1299–306 [Google Scholar]
  39. Horcajo P, de Pedro MA, Cava F. 39.  2012. Peptidoglycan plasticity in bacteria: stress-induced peptidoglycan editing by noncanonical D-amino acids. Microb. Drug Resist. 18:306–13 [Google Scholar]
  40. Ibba M, Söll D. 40.  2000. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69:617–50 [Google Scholar]
  41. Igloi GL, Schiefermayr E. 41.  2009. Amino acid discrimination by arginyl-tRNA synthetases as revealed by an examination of natural specificity variants. FEBS J. 276:1307–18 [Google Scholar]
  42. Jakubowski H. 42.  1997. Aminoacyl thioester chemistry of class II aminoacyl-tRNA synthetases. Biochemistry 36:11077–85 [Google Scholar]
  43. Jakubowski H. 43.  1999. Misacylation of tRNALys with noncognate amino acids by lysyl-tRNA synthetase. Biochemistry 38:8088–93 [Google Scholar]
  44. Jakubowski H. 44.  1999. Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels. FASEB J. 13:2277–83 [Google Scholar]
  45. Jakubowski H. 45.  2000. Homocysteine thiolactone: metabolic origin and protein homocysteinylation in humans. J. Nutr. 130:377S–81 [Google Scholar]
  46. Jakubowski H. 46.  2011. Quality control in tRNA charging: editing of homocysteine. Acta Biochim. Pol. 58:149–63 [Google Scholar]
  47. Jakubowski H, Perla-Kajan J, Finnell RH, Cabrera RM, Wang H. 47.  et al. 2009. Genetic or nutritional disorders in homocysteine or folate metabolism increase protein N-homocysteinylation in mice. FASEB J. 23:1721–27 [Google Scholar]
  48. Kiick KL, Weberskirch R, Tirrell DA. 48.  2001. Identification of an expanded set of translationally active methionine analogues in Escherichia coli. FEBS Lett. 502:25–30 [Google Scholar]
  49. Klipcan L, Moor N, Kessler N, Safro MG. 49.  2009. Eukaryotic cytosolic and mitochondrial phenylalanyl-tRNA synthetases catalyze the charging of tRNA with the meta-tyrosine. Proc. Natl. Acad. Sci. USA 106:11045–48 [Google Scholar]
  50. Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. 50.  2010. D-amino acids trigger biofilm disassembly. Science 328:627–29 [Google Scholar]
  51. Lam H, Oh DC, Cava F, Takacs CN, Clardy J. 51.  et al. 2009. D-amino acids govern stationary phase cell wall remodeling in bacteria. Science 325:1552–55 [Google Scholar]
  52. Lee JW, Beebe K, Nangle LA, Jang J, Longo-Guess CM. 52.  et al. 2006. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443:50–55 [Google Scholar]
  53. Lee SJ, Lee DH, Yoo HW, Koo SK, Park ES. 53.  et al. 2005. Identification and functional analysis of cystathionine beta-synthase gene mutations in patients with homocystinuria. J. Hum. Genet. 50:648–54 [Google Scholar]
  54. Lee SJ, Park SY, Lee JJ, Yum DY, Koo BT, Lee JK. 54.  2002. Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl. Environ. Microbiol. 68:3919–24 [Google Scholar]
  55. Leiman SA, May JM, Lebar MD, Kahne D, Kolter R, Losick R. 55.  2013. D-amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis. J. Bacteriol. 195:5391–95 [Google Scholar]
  56. Li L, Boniecki MT, Jaffe JD, Imai BS, Yau PM. 56.  et al. 2011. Naturally occurring aminoacyl-tRNA synthetases editing-domain mutations that cause mistranslation in Mycoplasma parasites. Proc. Natl. Acad. Sci. USA 108:9378–83 [Google Scholar]
  57. Ling J, Reynolds N, Ibba M. 57.  2009. Aminoacyl-tRNA synthesis and translational quality control. Annu. Rev. Microbiol. 63:61–78 [Google Scholar]
  58. Ling J, So BR, Yadavalli SS, Roy H, Shoji S. 58.  et al. 2009. Resampling and editing of mischarged tRNA prior to translation elongation. Mol. Cell 33:654–60 [Google Scholar]
  59. Ling J, Soll D. 59.  2010. Severe oxidative stress induces protein mistranslation through impairment of an aminoacyl-tRNA synthetase editing site. Proc. Natl. Acad. Sci. USA 107:4028–33 [Google Scholar]
  60. Lu HS, Tsai LB, Kenney WC, Lai PH. 60.  1988. Identification of unusual replacement of methionine by norleucine in recombinant interleukin-2 produced by E. coli. Biochem. Biophys. Res. Commun. 156:807–13 [Google Scholar]
  61. Luo S, Levine RL. 61.  2009. Methionine in proteins defends against oxidative stress. FASEB J. 23:464–72 [Google Scholar]
  62. Malinow MR, Bardana EJ Jr, Pirofsky B, Craig S, McLaughlin P. 62.  1982. Systemic lupus erythematosus-like syndrome in monkeys fed alfalfa sprouts: role of a nonprotein amino acid. Science 216:415–17 [Google Scholar]
  63. Miranda I, Silva-Dias A, Rocha R, Teixeira-Santos R, Coelho C. 63.  et al. 2013. Candida albicans CUG mistranslation is a mechanism to create cell surface variation. mBio 4:e00285–13 [Google Scholar]
  64. Moor N, Klipcan L, Safro MG. 64.  2011. Bacterial and eukaryotic phenylalanyl-tRNA synthetases catalyze misaminoacylation of tRNA(Phe) with 3,4-dihydroxy-L-phenylalanine. Chem. Biol. 18:1221–29 [Google Scholar]
  65. Muramatsu R, Negishi T, Mimoto T, Miura A, Misawa S, Hayashi H. 65.  2002. Existence of beta-methylnorleucine in recombinant hirudin produced by Escherichia coli. J. Biotechnol. 93:131–42 [Google Scholar]
  66. Nangle LA, De Crécy-Lagard V, Döring V, Schimmel P. 66.  2002. Genetic code ambiguity. Cell viability related to the severity of editing defects in mutant tRNA synthetases. J. Biol. Chem. 277:45729–33 [Google Scholar]
  67. Nangle LA, Motta CM, Schimmel P. 67.  2006. Global effects of mistranslation from an editing defect in mammalian cells. Chem. Biol. 13:1091–100 [Google Scholar]
  68. Netzer N, Goodenbour JM, David A, Dittmar KA, Jones RB. 68.  et al. 2009. Innate immune and chemically triggered oxidative stress modifies translational fidelity. Nature 462:522–26 [Google Scholar]
  69. O'Donoghue P, Ling J, Wang YS, Soll D. 69.  2013. Upgrading protein synthesis for synthetic biology. Nat. Chem. Biol. 9:594–98 [Google Scholar]
  70. Ozawa K, Headlam MJ, Mouradov D, Watt SJ, Beck JL. 70.  et al. 2005. Translational incorporation of L-3,4-dihydroxyphenylalanine into proteins. FEBS J. 272:3162–71 [Google Scholar]
  71. Ozer EA, Pezzulo A, Shih DM, Chun C, Furlong C. 71.  et al. 2005. Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing. FEMS Microbiol. Lett. 253:29–37 [Google Scholar]
  72. Pan T. 72.  2013. Adaptive translation as a mechanism of stress response and adaptation. Annu. Rev. Genet. 47:121–37 [Google Scholar]
  73. Paoli P, Sbrana F, Tiribilli B, Caselli A, Pantera B. 73.  et al. 2010. Protein N-homocysteinylation induces the formation of toxic amyloid-like protofibrils. J. Mol. Biol. 400:889–907 [Google Scholar]
  74. Park HS, Hohn MJ, Umehara T, Guo LT, Osborne EM. 74.  et al. 2011. Expanding the genetic code of Escherichia coli with phosphoserine. Science 333:1151–54 [Google Scholar]
  75. Pei D, Zhu J. 75.  2004. Mechanism of action of S-ribosylhomocysteinase (LuxS). Curr. Opin. Chem. Biol. 8:492–97 [Google Scholar]
  76. Perla-Kajan J, Jakubowski H. 76.  2010. Paraoxonase 1 protects against protein N-homocysteinylation in humans. FASEB J. 24:931–36 [Google Scholar]
  77. Perla-Kajan J, Twardowski T, Jakubowski H. 77.  2007. Mechanisms of homocysteine toxicity in humans. Amino Acids 32:561–72 [Google Scholar]
  78. Peterson PJ, Fowden L. 78.  1965. Purification, properties and comparative specificities of the enzyme prolyl-transfer ribonucleic acid synthetase from Phaseolus aureus and Polygonatum multiflorum. Biochem. J. 97:112–24 [Google Scholar]
  79. Pezo V, Metzgar D, Hendrickson TL, Waas WF, Hazebrouck S. 79.  et al. 2004. Artificially ambiguous genetic code confers growth yield advantage. Proc. Natl. Acad. Sci. USA 101:8593–97 [Google Scholar]
  80. Reynolds NM, Lazazzera BA, Ibba M. 80.  2010. Cellular mechanisms that control mistranslation. Nat. Rev. Microbiol. 8:849–56 [Google Scholar]
  81. Rodgers KJ. 81.  2014. Non-protein amino acids and neurodegeneration: the enemy within. Exp. Neurol. 253C:192–96 [Google Scholar]
  82. Rodgers KJ, Shiozawa N. 82.  2008. Misincorporation of amino acid analogues into proteins by biosynthesis. Int. J. Biochem. Cell Biol. 40:1452–66 [Google Scholar]
  83. Rodgers KJ, Wang H, Fu S, Dean RT. 83.  2002. Biosynthetic incorporation of oxidized amino acids into proteins and their cellular proteolysis. Free Radic. Biol. Med. 32:766–75 [Google Scholar]
  84. Rodgers KJ, Hume PM, Dunlop RA, Dean RT. 84.  2004. Biosynthesis and turnover of DOPA-containing proteins by human cells. Free Radic. Biol. Med. 37:1756–64 [Google Scholar]
  85. Rosenthal GA. 85.  2001. L-Canavanine: a higher plant insecticidal allelochemical. Amino Acids 21:319–30 [Google Scholar]
  86. Rosenthal GA, Dahlman DL. 86.  1986. L-Canavanine and protein synthesis in the tobacco hornworm Manduca sexta. Proc. Natl. Acad. Sci. USA 83:14–18 [Google Scholar]
  87. Rosenthal GA, Dahlman DL, Janzen DH. 87.  1976. A novel means for dealing with L-canavanine, a toxic metabolite. Science 192:256–58 [Google Scholar]
  88. Ruan B, Palioura S, Sabina J, Marvin-Guy L, Kochhar S. 88.  et al. 2008. Quality control despite mistranslation caused by an ambiguous genetic code. Proc. Natl. Acad. Sci. USA 105:16502–7 [Google Scholar]
  89. Rubenstein E. 89.  2000. Biologic effects of and clinical disorders caused by nonprotein amino acids. Medicine Baltimore 79:80–89 [Google Scholar]
  90. Rubenstein E, McLaughlin T, Winant RC, Sanchez A, Eckart M. 90.  et al. 2009. Azetidine-2-carboxylic acid in the food chain. Phytochemistry 70:100–4 [Google Scholar]
  91. Rui F, Marques JC, Miller ST, Maycock CD, Xavier KB, Ventura MR. 91.  2012. Stereochemical diversity of AI-2 analogs modulates quorum sensing in Vibrio harveyi and Escherichia coli. Bioorg. Med. Chem. 20:249–56 [Google Scholar]
  92. Schmidt E, Schimmel P. 92.  1994. Mutational isolation of a sieve for editing in a transfer RNA synthetase. Science 264:265–67 [Google Scholar]
  93. Schofield CJ, Ratcliffe PJ. 93.  2004. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 5:343–54 [Google Scholar]
  94. Schwartz TW. 94.  1988. Effect of amino acid analogs on the processing of the pancreatic polypeptide precursor in primary cell cultures. J. Biol. Chem. 263:11504–10 [Google Scholar]
  95. Sheoran A, Sharma G, First EA. 95.  2008. Activation of D-tyrosine by Bacillus stearothermophilus tyrosyl-tRNA synthetase: 1. Pre-steady-state kinetic analysis reveals the mechanistic basis for the recognition of D-tyrosine. J. Biol. Chem. 283:12960–70 [Google Scholar]
  96. Smith IK, Fowden L. 96.  1968. Studies on specificities of phenylalanyl- and tyrosyl-sRNA synthetases from plants. Phytochemistry 7:1065–75 [Google Scholar]
  97. Soini J, Falschlehner C, Liedert C, Bernhardt J, Vuoristo J, Neubauer P. 97.  2008. Norvaline is accumulated after a down-shift of oxygen in Escherichia coli W3110. Microb. Cell Fact. 7:30 [Google Scholar]
  98. Stadtman ER. 98.  1993. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu. Rev. Biochem. 62:797–821 [Google Scholar]
  99. Stadtman ER. 99.  2006. Protein oxidation and aging. Free Radic. Res. 40:1250–58 [Google Scholar]
  100. Sugiura M, Kisumi M, Chibata I. 100.  1981. Beta-methylnorleucine, an antimetabolite produced by Serratia marcescens. J. Antibiot. (Tokyo 34:1278–82 [Google Scholar]
  101. Takeuchi T, Rosenbloom J, Prockop DJ. 101.  1969. Biosynthesis of abnormal collagens with amino acid analogues. II. Inability of cartilage cells to extrude collagen polypeptides containing L-azetidine-2-carboxylic acid or cis-4-fluoro-L-proline. Biochim. Biophys. Acta 175:156–64 [Google Scholar]
  102. Tang Y, Tirrell DA. 102.  2002. Attenuation of the editing activity of the Escherichia coli leucyl-tRNA synthetase allows incorporation of novel amino acids into proteins in vivo. Biochemistry 41:10635–45 [Google Scholar]
  103. Trimmer EE. 103.  2013. Methylenetetrahydrofolate reductase: biochemical characterization and medical significance. Curr. Pharm. Des. 19:2574–93 [Google Scholar]
  104. Turner RJ, Lovato M, Schimmel P. 104.  2000. One of two genes encoding glycyl-tRNA synthetase in Saccharomyces cerevisiae provides mitochondrial and cytoplasmic functions. J. Biol. Chem. 275:27681–88 [Google Scholar]
  105. Umeda A, Thibodeaux GN, Zhu J, Lee Y, Zhang ZJ. 105.  2009. Site-specific protein cross-linking with genetically incorporated 3,4-dihydroxy-L-phenylalanine. ChemBioChem 10:1302–4 [Google Scholar]
  106. Uversky VN, Oldfield CJ, Dunker AK. 106.  2008. Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu. Rev. Biophys. 37:215–46 [Google Scholar]
  107. Vynnytska-Myronovska B, Bobak Y, Garbe Y, Dittfeld C, Stasyk O, Kunz-Schughart LA. 107.  2012. Single amino acid arginine starvation efficiently sensitizes cancer cells to canavanine treatment and irradiation. Int. J. Cancer 130:2164–75 [Google Scholar]
  108. Xie X, Basile M, Mash DC. 108.  2013. Cerebral uptake and protein incorporation of cyanobacterial toxin beta-N-methylamino-L-alanine. Neuroreport 24:779–84 [Google Scholar]
  109. Yadavalli SS, Ibba M. 109.  2012. Quality control in aminoacyl-tRNA synthesis its role in translational fidelity. Adv. Protein Chem. Struct. Biol. 86:1–43 [Google Scholar]
  110. Yadavalli SS, Ibba M. 110.  2012. Selection of tRNA charging quality control mechanisms that increase mistranslation of the genetic code. Nucleic Acids Res. 41:1104–12 [Google Scholar]
  111. Yadavalli SS, Musier-Forsyth K, Ibba M. 111.  2008. The return of pretransfer editing in protein synthesis. Proc. Natl. Acad. Sci. USA 105:19031–32 [Google Scholar]
  112. Yang H, Zheng G, Peng X, Qiang B, Yuan J. 112.  2003. D-Amino acids and D-Tyr-tRNA(Tyr) deacylase: stereospecificity of the translation machine revisited. FEBS Lett. 552:95–98 [Google Scholar]
  113. Zaher HS, Green R. 113.  2009. Fidelity at the molecular level: lessons from protein synthesis. Cell 136:746–62 [Google Scholar]
/content/journals/10.1146/annurev-genet-120213-092101
Loading
/content/journals/10.1146/annurev-genet-120213-092101
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error