Grain size is one of the most important factors determining rice yield. As a quantitative trait, grain size is predominantly and tightly controlled by genetic factors. Several quantitative trait loci (QTLs) for grain size have been molecularly identified and characterized. These QTLs may act in independent genetic pathways and, along with other identified genes for grain size, are mainly involved in the signaling pathways mediated by proteasomal degradation, phytohormones, and G proteins to regulate cell proliferation and cell elongation. Many of these QTLs and genes have been strongly selected for enhanced rice productivity during domestication and breeding. These findings have paved new ways for understanding the molecular basis of grain size and have substantial implications for genetic improvement of crops.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T. 1.  et al. 2005. Cytokinin oxidase regulates rice grain production. Science 309:741–45 [Google Scholar]
  2. Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A. 2.  1999. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. Proc. Natl. Acad. Sci. USA 96:10284–89 [Google Scholar]
  3. Bednarek J, Boulaflous A, Girousse C, Ravel C, Tassy C. 3.  et al. 2012. Down-regulation of the TaGW2 gene by RNA interference results in decreased grain size and weight in wheat. J. Exp. Bot. 63:5945–55 [Google Scholar]
  4. Bernardi J, Lanubile A, Li Q-B, Kumar D, Kladnik A. 4.  et al. 2012. Impaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in the ZmYuc1 gene encoding endosperm-specific YUCCA1 protein in maize. Plant Physiol. 160:1318–28 [Google Scholar]
  5. Chakravorty D, Trusov Y, Zhang W, Acharya BR, Sheahan MB. 5.  et al. 2011. An atypical heterotrimeric G-protein γ-subunit is involved in guard cell K+-channel regulation and morphological development in Arabidopsis thaliana. Plant J. 67:840–51 [Google Scholar]
  6. Chen Y, Xu Y, Luo W, Li W, Chen N. 6.  et al. 2013. The F-box protein OsFBK12 targets OsSAMS1 for degradation and affects pleiotropic phenotypes, including leaf senescence, in rice. Plant Physiol. 163:1673–85 [Google Scholar]
  7. Deng Y, Dong H, Mu J, Ren B, Zheng B. 7.  et al. 2010. Arabidopsis histidine kinase CKI1 acts upstream of HISTIDINE PHOSPHOTRANSFER PROTEINS to regulate female gametophyte development and vegetative growth. Plant Cell 22:1232–48 [Google Scholar]
  8. Duan P, Rao Y, Zeng D, Yang Y, Xu R. 8.  et al. 2014. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. Plant J. 77:547–57 [Google Scholar]
  9. Fan C, Xing Y, Mao H, Lu T, Han B. 9.  et al. 2006. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112:1164–71 [Google Scholar]
  10. Fan C, Yu S, Wang C, Xing Y. 10.  2009. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor. Appl. Genet. 118:465–72 [Google Scholar]
  11. Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H. 11.  et al. 1999. Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. Proc. Natl. Acad. Sci. USA 96:7575–80 [Google Scholar]
  12. Gao Z, Zhao S, He W, Guo L, Peng Y. 12.  et al. 2013. Dissecting yield-associated loci in super hybrid rice by resequencing recombinant inbred lines and improving parental genome sequences. Proc. Natl. Acad. Sci. USA 110:14492–97 [Google Scholar]
  13. Haig D. 13.  2013. Kin conflict in seed development: an interdependent but fractious collective. Annu. Rev. Cell Dev. Biol. 29:189–211 [Google Scholar]
  14. Hao W, Lin H. 14.  2010. Toward understanding genetic mechanisms of complex traits in rice. J. Genet. Genomics 37:653–66 [Google Scholar]
  15. He Z, Zhai W, Wen H, Tang T, Wang Y. 15.  et al. 2011. Two evolutionary histories in the genome of rice: the roles of domestication genes. PLoS Genet. 7:e1002100 [Google Scholar]
  16. Hu Z, He H, Zhang S, Sun F, Xin X. 16.  et al. 2012. A Kelch motif-containing serine/threonine protein phosphatase determines the large grain QTL trait in rice. J. Integr. Plant Biol. 54:979–90 [Google Scholar]
  17. Huang R, Jiang L, Zheng J, Wang T, Wang H. 17.  et al. 2013. Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci. 18:218–26 [Google Scholar]
  18. Huang X, Kurata N, Wei X, Wang Z, Wang A. 18.  et al. 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497–501 [Google Scholar]
  19. Huang X, Qian Q, Liu Z, Sun H, He S. 19.  et al. 2009. Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41:494–97 [Google Scholar]
  20. Huang X, Wei X, Sang T, Zhao Q, Feng Q. 20.  et al. 2010. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 42:961–67 [Google Scholar]
  21. Huang X, Zhao Y, Wei X, Li C, Wang A. 21.  et al. 2012. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat. Genet. 44:32–39 [Google Scholar]
  22. Hutchison CE, Li J, Argueso C, Gonzalez M, Lee E. 22.  et al. 2006. The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell 18:3073–87 [Google Scholar]
  23. Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N. 23.  et al. 2013. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat. Genet. 45:707–11 [Google Scholar]
  24. Izawa Y, Takayanagi Y, Inaba N, Abe Y, Minami M. 24.  et al. 2010. Function and expression pattern of the α subunit of the heterotrimeric G protein in rice. Plant Cell Physiol. 51:271–81 [Google Scholar]
  25. James MG, Denyer K, Myers AM. 25.  2003. Starch synthesis in the cereal endosperm. Curr. Opin. Plant Biol. 6:215–22 [Google Scholar]
  26. Jiang W, Huang H, Hu Y, Zhu S, Wang Z, Lin W. 26.  2013. Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiol. 162:1965–77 [Google Scholar]
  27. Jiang W, Lin W. 27.  2013. Brassinosteroid functions in Arabidopsis seed development. Plant Signal. Behav. 8:e25928 [Google Scholar]
  28. Jiang Y, Bao L, Jeong S, Kim SK, Xu C. 28.  et al. 2012. XIAO is involved in the control of organ size by contributing to the regulation of signaling and homeostasis of brassinosteroids and cell cycling in rice. Plant J. 70:398–408 [Google Scholar]
  29. Jiao Y, Wang Y, Xue D, Wang J, Yan M. 29.  et al. 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42:541–44 [Google Scholar]
  30. Jones AM, Assmann SM. 30.  2004. Plants: the latest model system for G-protein research. EMBO Rep. 5:572–78 [Google Scholar]
  31. Khush GS. 31.  1997. Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 35:25–34 [Google Scholar]
  32. Kim T-W, Guan S, Sun Y, Deng Z, Tang W. 32.  et al. 2009. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat. Cell Biol. 11:1254–60 [Google Scholar]
  33. Lenser T, Theissen G. 33.  2013. Molecular mechanisms involved in convergent crop domestication. Trends Plant Sci. 18:704–14 [Google Scholar]
  34. Li F, Liu W, Tang J, Chen J, Tong H. 34.  et al. 2010. Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Res. 20:838–49 [Google Scholar]
  35. Li J, Chu H, Zhang Y, Mou T, Wu C. 35.  et al. 2012. The rice HGW gene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight. PLoS ONE 7:e34231 [Google Scholar]
  36. Li J, Nie X, Tan JLH, Berger F. 36.  2013. Integration of epigenetic and genetic controls of seed size by cytokinin in Arabidopsis. Proc. Natl. Acad. Sci. USA 110:15479–84 [Google Scholar]
  37. Li M, Tang D, Wang K, Wu X, Lu L. 37.  et al. 2011. Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnol. J. 9:1002–13 [Google Scholar]
  38. Li Q, Li L, Yang X, Warburton M, Bai G. 38.  et al. 2010. Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol. 10:143 [Google Scholar]
  39. Li S, Liu Y, Zheng L, Chen L, Li N. 39.  et al. 2012. The plant-specific G protein γ subunit AGG3 influences organ size and shape in Arabidopsis thaliana. New Phytol. 194:690–703 [Google Scholar]
  40. Li S, Zhao B, Yuan D, Duan M, Qian Q. 40.  et al. 2013. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc. Natl. Acad. Sci. USA 110:3167–72 [Google Scholar]
  41. Li W, Wu J, Weng S, Zhang Y, Zhang D, Shi C. 41.  2010. Identification and characterization of dwarf 62, a loss-of-function mutation in DLT/OsGRAS-32 affecting gibberellin metabolism in rice. Planta 232:1383–96 [Google Scholar]
  42. Li Y, Fan C, Xing Y, Jiang Y, Luo L. 42.  et al. 2011. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat. Genet. 43:1266–69 [Google Scholar]
  43. Li Y, Zheng L, Corke F, Smith C, Bevan MW. 43.  2008. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes Dev. 22:1331–36 [Google Scholar]
  44. Lin Q, Wang D, Dong H, Gu S, Cheng Z. 44.  et al. 2012. Rice APC/CTE controls tillering by mediating the degradation of MONOCULM 1. Nat. Commun. 3:752–59 [Google Scholar]
  45. Lu L, Shao D, Qiu X, Sun L, Yan W. 45.  et al. 2013. Natural variation and artificial selection in four genes determine grain shape in rice. New Phytol. 200:1269–80 [Google Scholar]
  46. Lu Z, Yu H, Xiong G, Wang J, Jiao Y. 46.  et al. 2013. Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant architecture. Plant Cell 25:3743–59 [Google Scholar]
  47. Luo J, Liu H, Zhou T, Gu B, Huang X. 47.  et al. 2013. An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell 25:3360–76 [Google Scholar]
  48. Lyu J, Zhang S, Dong Y, He W, Zhang J. 48.  et al. 2013. Analysis of elite variety tag SNPs reveals an important allele in upland rice. Nat. Commun. 4:2138–46 [Google Scholar]
  49. Mao H, Sun S, Yao J, Wang C, Yu S. 49.  et al. 2010. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc. Natl. Acad. Sci. USA 107:19579–84 [Google Scholar]
  50. Matsuda F, Okazaki Y, Oikawa A, Kusano M, Nakabayashi R. 50.  et al. 2012. Dissection of genotype-phenotype associations in rice grains using metabolome quantitative trait loci analysis. Plant J. 70:624–36 [Google Scholar]
  51. McCough SR, Doerge RW. 51.  1995. QTL mapping in rice. Trends Genet. 11:482–87 [Google Scholar]
  52. Meyer RS, Purugganan MD. 52.  2013. Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14:840–52 [Google Scholar]
  53. Miao J, Guo D, Zhang J, Huang Q, Qin G. 53.  et al. 2013. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. 10:1233–36 [Google Scholar]
  54. Miura K, Ashikari M, Matsuoka M. 54.  2011. The role of QTLs in the breeding of high-yielding rice. Trends Plant Sci. 16:319–26 [Google Scholar]
  55. Moles AT, Ackerly DD, Webb CO, Tweddle JC, Dickie JB, Westoby M. 55.  2005. A brief history of seed size. Science 307:576–80 [Google Scholar]
  56. Mora-García S, Vert G, Yin Y, Caño-Delgado A, Cheong H, Chory J. 56.  2004. Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev. 18:448–60 [Google Scholar]
  57. Morinaka Y, Sakamoto T, Inukai Y, Agetsuma M, Kitano H. 57.  et al. 2006. Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol. 141:924–31 [Google Scholar]
  58. Nakagawa H, Tanaka A, Tanabata T, Ohtake M, Fujioka S. 58.  et al. 2012. Short Grain1 decreases organ elongation and brassinosteroid response in rice. Plant Physiol. 158:1208–19 [Google Scholar]
  59. Nakayama KI, Nakayama K. 59.  2006. Ubiquitin ligases: cell-cycle control and cancer. Nat. Rev. Cancer 6:369–81 [Google Scholar]
  60. Oki K, Inaba N, Kitagawa K, Fujioka S, Kitano H. 60.  et al. 2009. Function of the α subunit of rice heterotrimeric G protein in brassinosteroid signaling. Plant Cell Physiol. 50:161–72 [Google Scholar]
  61. Olsen OA, Linnestad C, Nichols SE. 61.  1999. Developmental biology of the cereal endosperm. Trends Plant Sci. 4:253–57 [Google Scholar]
  62. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM. 62.  et al. 1999. “Green revolution” genes encode mutant gibberellin response modulators. Nature 400:256–61 [Google Scholar]
  63. Pines J. 63.  2011. Cubism and the cell cycle: the many faces of the APC/C. Nat. Rev. Mol. Cell Biol. 12:427–38 [Google Scholar]
  64. Qi P, Lin Y, Song X, Shen J, Huang W. 64.  et al. 2012. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res. 22:1666–80 [Google Scholar]
  65. Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA. 65.  2012. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3:1293–94 [Google Scholar]
  66. Riefler M, Novak O, Strnad M, Schmülling T. 66.  2006. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54 [Google Scholar]
  67. Roy Choudhury S, Riesselman AJ, Pandey S. 67.  2014. Constitutive or seed-specific overexpression of Arabidopsis G-protein γ subunit 3 (AGG3) results in increased seed and oil production and improved stress tolerance in Camelina sativa. Plant Biotechnol. J. 12:49–59 [Google Scholar]
  68. Sakamoto T, Matsuoka M. 68.  2008. Identifying and exploiting grain yield genes in rice. Curr. Opin. Plant Biol. 11:209–14 [Google Scholar]
  69. Sang T, Ge S. 69.  2007. The puzzle of rice domestication. J. Integr. Plant Biol. 49:760–68 [Google Scholar]
  70. Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A. 70.  et al. 2002. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416:701–2 [Google Scholar]
  71. Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ. 71.  2006. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signaling, cell division, and the size of seeds and other organs. Development 133:251–61 [Google Scholar]
  72. Segami S, Kono I, Ando T, Yano M, Kitano H. 72.  et al. 2012. Small and round seed 5 gene encodes alpha-tubulin regulating seed cell elongation in rice. Rice 5:4 [Google Scholar]
  73. Shan Q, Wang Y, Li J, Zhang Y, Chen K. 73.  et al. 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotech. 31:686–88 [Google Scholar]
  74. Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H. 74.  et al. 2008. Deletion in a gene associated with grain size increased yields during rice domestication. Nat. Genet. 40:1023–28 [Google Scholar]
  75. Song X, Huang W, Shi M, Zhu M, Lin H. 75.  2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39:623–30 [Google Scholar]
  76. Spielmeyer W, Ellis MH, Chandler PM. 76.  2002. Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc. Natl. Acad. Sci. USA 99:9043–48 [Google Scholar]
  77. Sreenivasulu N, Wobus U. 77.  2013. Seed-development programs: a systems biology–based comparison between dicots and monocots. Annu. Rev. Plant Biol. 64:189–217 [Google Scholar]
  78. Su Z, Hao C, Wang L, Dong Y, Zhang X. 78.  2011. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 122:211–23 [Google Scholar]
  79. Sun L, Li X, Fu Y, Zhu Z, Tan L. 79.  et al. 2013. GS6, a member of the GRAS gene family, negatively regulates grain size in rice. J. Integr. Plant Biol. 55:938–49 [Google Scholar]
  80. Sweeney M, McCouch S. 80.  2007. The complex history of the domestication of rice. Ann. Bot. 100:951–57 [Google Scholar]
  81. Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T. 81.  et al. 2009. Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182:1323–34 [Google Scholar]
  82. Takano-Kai N, Jiang H, Powell A, McCouch S, Takamure I. 82.  et al. 2013. Multiple and independent origins of short seeded alleles of GS3 in rice. Breed. Sci. 63:77–85 [Google Scholar]
  83. Takeda S, Matsuoka M. 83.  2008. Genetic approaches to crop improvement: responding to environmental and population changes. Nat. Rev. Genet. 9:444–57 [Google Scholar]
  84. Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S. 84.  et al. 2005. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 17:776–90 [Google Scholar]
  85. Tanaka A, Nakagawa H, Tomita C, Shimatani Z, Ohtake M. 85.  et al. 2009. BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiol. 151:669–80 [Google Scholar]
  86. Tong H, Jin Y, Liu W, Li F, Fang J. 86.  et al. 2009. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J. 58:803–16 [Google Scholar]
  87. Tong H, Liu L, Jin Y, Du L, Yin Y. 87.  et al. 2012. DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. Plant Cell 24:2562–77 [Google Scholar]
  88. Torti G, Manzocchi L, Salamini F. 88.  1986. Free and bound indole-acetic acid is low in the endosperm of the maize mutant defective endosperm-B18. Theor. Appl. Genet. 72:602–5 [Google Scholar]
  89. Urano D, Chen J-G, Botella JR, Jones AM. 89.  2013. Heterotrimeric G protein signalling in the plant kingdom. Open. Biol. 3:120186 [Google Scholar]
  90. Utsunomiya Y, Samejima C, Takayanagi Y, Izawa Y, Yoshida T. 90.  et al. 2011. Suppression of the rice heterotrimeric G protein β-subunit gene, RGB1, causes dwarfism and browning of internodes and lamina joint regions. Plant J. 67:907–16 [Google Scholar]
  91. Vert G, Walcher CL, Chory J, Nemhauser JL. 91.  2008. Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proc. Natl. Acad. Sci. USA 105:9829–34 [Google Scholar]
  92. Wang E, Wang J, Zhu X, Hao W, Wang L. 92.  et al. 2008. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat. Genet. 40:1370–74 [Google Scholar]
  93. Wang L, Xu Y, Ma Q, Li D, Xu Z, Chong K. 93.  2006. Heterotrimeric G protein α subunit is involved in rice brassinosteroid response. Cell Res. 16:916–22 [Google Scholar]
  94. Wang S, Wu K, Yuan Q, Liu X, Liu Z. 94.  et al. 2012. Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genet. 44:950–54 [Google Scholar]
  95. Wang Y, Li J. 95.  2008. Molecular basis of plant architecture. Annu. Rev. Plant Biol. 59:253–79 [Google Scholar]
  96. Wang Y, Li J. 96.  2011. Branching in rice. Curr. Opin. Plant Biol. 14:94–99 [Google Scholar]
  97. Weng J, Gu S, Wan X, Gao H, Guo T. 97.  et al. 2008. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res. 18:1199–209 [Google Scholar]
  98. Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T. 98.  2003. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–50 [Google Scholar]
  99. Xia T, Li N, Dumenil J, Li J, Kamenski A. 99.  et al. 2013. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. Plant Cell 25:3347–59 [Google Scholar]
  100. Xie X, Song M-H, Jin F, Ahn S-N, Suh J-P. 100.  et al. 2006. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon. Theor. Appl. Genet. 113:885–94 [Google Scholar]
  101. Xing Y, Zhang Q. 101.  2010. Genetic and molecular bases of rice yield. Annu. Rev. Plant Biol. 61:421–42 [Google Scholar]
  102. Xu C, Wang Y, Yu Y, Duan J, Liao Z. 102.  et al. 2012. Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering. Nat. Commun. 3:750–58 [Google Scholar]
  103. Xu X, Liu X, Ge S, Jensen JD, Hu F. 103.  et al. 2012. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat. Biotechnol. 30:105–11 [Google Scholar]
  104. Yan C, Yan S, Yang Y, Zeng X, Fang Y. 104.  et al. 2009. Development of gene-tagged markers for quantitative trait loci underlying rice yield components. Euphytica 169:215–26 [Google Scholar]
  105. Yan S, Zou G, Li S, Wang H, Liu H. 105.  et al. 2011. Seed size is determined by the combinations of the genes controlling different seed characteristics in rice. Theor. Appl. Genet. 123:1173–81 [Google Scholar]
  106. Ying J, Gao J, Shan J, Zhu M, Shi M, Lin H. 106.  2012. Dissecting the genetic basis of extremely large grain shape in rice cultivar “JZ1560.” J. Genet. Genomics 39:325–33 [Google Scholar]
  107. Yu Y, Wing RA, Li J. 107.  2013. Grain quality. Genetics and Genomics of Rice Q Zhang, RA Wing 237–54 New York: Springer [Google Scholar]
  108. Zhang L, Zhao Y, Gao L, Zhao G, Zhou R. 108.  et al. 2012. TaCKX6-D1, the ortholog of rice OsCKX2, is associated with grain weight in hexaploid wheat. New Phytol. 195:574–84 [Google Scholar]
  109. Zhang X, Wang J, Huang J, Lan H, Wang C. 109.  et al. 2012. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc. Natl. Acad. Sci. USA 109:21534–39 [Google Scholar]
  110. Zhou S, Yin L, Xue H. 110.  2013. Functional genomics based understanding of rice endosperm development. Curr. Opin. Plant Biol. 16:236–46 [Google Scholar]
  111. Zhou Y, Zhu J, Li Z, Yi C, Liu J. 111.  et al. 2009. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics 183:315–24 [Google Scholar]
  112. Zuo J, Li J. 112.  2014. Molecular dissection of complex agronomic traits of rice: a team effort by Chinese scientists in recent years. Nat. Sci. Rev. 1253–76 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error