The process of cell migration is essential throughout life, driving embryonic morphogenesis and ensuring homeostasis in adults. Defects in cell migration are a major cause of human disease, with excessive migration causing autoimmune diseases and cancer metastasis, whereas reduced capacity for migration leads to birth defects and immunodeficiencies. Myriad studies in vitro have established a consensus view that cell migrations require cell polarization, Rho GTPase–mediated cytoskeletal rearrangements, and myosin-mediated contractility. However, in vivo studies later revealed a more complex picture, including the discovery that cells migrate not only as single units but also as clusters, strands, and sheets. In particular, the role of E-Cadherin in cell motility appears to be more complex than previously appreciated. Here, we discuss recent advances achieved by combining the plethora of genetic tools available to the geneticist with live imaging and biophysical techniques. Finally, we discuss the emerging themes such studies have revealed and ponder the puzzles that remain to be solved.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abercrombie M, Heaysman JEM. 1.  1953. Observations on the social behaviour of cells in tissue culture. I. Speed of movement of chick heart fibroblasts in relation to their mutual contacts. Exp. Cell Res. 5:111–31 [Google Scholar]
  2. Badolato R. 2.  2013. Defects of leukocyte migration in primary immunodeficiencies. Eur. J. Immunol. 43:1436–40 [Google Scholar]
  3. Bai J, Uehara Y, Montell DJ. 3.  2000. Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell 103:1047–58 [Google Scholar]
  4. Barrett K, Leptin M, Settleman J. 4.  1997. The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the cell shape changes in Drosophila gastrulation. Cell 91:905–15 [Google Scholar]
  5. Bastock R, Strutt D. 5.  2007. The planar polarity pathway promotes coordinated cell migration during Drosophila oogenesis. Development 134:3055–64 [Google Scholar]
  6. Baum B, Settleman J, Quinlan MP. 6.  2008. Transitions between epithelial and mesenchymal states in development and disease. Semin. Cell Dev. Biol. 19:294–308 [Google Scholar]
  7. Bement WM, Forscher P, Mooseker MS. 7.  1993. A novel cytoskeletal structure involved in purse string wound closure and cell polarity maintenance. J. Cell Biol. 121:565–78 [Google Scholar]
  8. Borghese L, Fletcher G, Mathieu J, Atzberger A, Eades WC. 8.  et al. 2006. Systematic analysis of the transcriptional switch inducing migration of border cells. Dev. Cell 10:497–508 [Google Scholar]
  9. Bradford D, Cole SJ, Cooper HM. 9.  2009. Netrin-1: diversity in development. Int. J. Biochem. Cell Biol. 41:487–93 [Google Scholar]
  10. Bradley PL, Andrew DJ. 10.  2001. ribbon encodes a novel BTB/POZ protein required for directed cell migration in Drosophila melanogaster. Development 128:3001–15 [Google Scholar]
  11. Bradley PL, Haberman AS, Andrew DJ. 11.  2001. Organ formation in Drosophila: specification and morphogenesis of the salivary gland. BioEssays 23:901–11 [Google Scholar]
  12. Bradley PL, Myat MM, Comeaux CA, Andrew DJ. 12.  2003. Posterior migration of the salivary gland requires an intact visceral mesoderm and integrin function. Dev. Biol. 257:249–62 [Google Scholar]
  13. Bruckner K, Kockel L, Duchek P, Luque CM, Rorth P, Perrimon N. 13.  2004. The PDGF/VEGF receptor controls blood cell survival in Drosophila. Dev. Cell 7:73–84 [Google Scholar]
  14. Burnett C, Howard K. 14.  2003. Fly and mammalian lipid phosphate phosphatase isoforms differ in activity both in vitro and in vivo. EMBO Rep. 4:793–99 [Google Scholar]
  15. Cai D, Chen SC, Prasad M, He L, Wang X. 15.  et al. 2014. Mechanical feedback through E-Cadherin promotes direction sensing during collective cell migration. Cell 157:1143–59 [Google Scholar]
  16. Caussinus E, Colombelli J, Affolter M. 16.  2008. Tip-cell migration controls stalk-cell intercalation during Drosophila tracheal tube elongation. Curr. Biol. 18:1727–34 [Google Scholar]
  17. Chanet S, Schweisguth F. 17.  2012. Regulation of epithelial polarity by the E3 ubiquitin ligase Neuralized and the Bearded inhibitors in Drosophila. Nat. Cell Biol. 14:467–76 [Google Scholar]
  18. Chen LY, Pan ZK. 18.  2009. Synergistic activation of leukocytes by bacterial chemoattractants: potential drug targets. Endocr. Metab. Immune Disord. Drug Targets 9:361–70 [Google Scholar]
  19. Cheshire AM, Kerman BE, Zipfel WR, Spector AA, Andrew DJ. 19.  2008. Kinetic and mechanical analysis of live tube morphogenesis. Dev. Dyn. 237:2874–88 [Google Scholar]
  20. Chihara T, Kato K, Taniguchi M, Ng J, Hayashi S. 20.  2003. Rac promotes epithelial cell rearrangement during tracheal tubulogenesis in Drosophila. Development 130:1419–28 [Google Scholar]
  21. Cho NK, Keyes L, Johnson E, Heller J, Ryner L. 21.  et al. 2002. Developmental control of blood cell migration by the Drosophila VEGF Pathway. Cell 108:865–76 [Google Scholar]
  22. Choi W, Harris NJ, Sumigray KD, Peifer M. 22.  2013. Rap1 and Canoe/afadin are essential for establishment of apical-basal polarity in the Drosophila embryo. Mol. Biol. Cell 24:945–63 [Google Scholar]
  23. Davis JR, Huang C-Y, Zanet J, Harrison S, Rosten E. 23.  et al. 2012. Emergence of embryonic pattern through contact inhibition of locomotion. Development 139:4555–60 [Google Scholar]
  24. DeGennaro M, Hurd TR, Siekhaus DE, Biteau B, Jasper H, Lehmann R. 24.  2011. Peroxiredoxin stabilization of DE-Cadherin promotes primordial germ cell adhesion. Dev. Cell 20:233–43 [Google Scholar]
  25. Deshpande G, Zhou K, Wan JY, Friedrich J, Jourjine N. 25.  et al. 2013. The hedgehog pathway gene shifted functions together with the hmgcr-dependent isoprenoid biosynthetic pathway to orchestrate germ cell migration. PLOS Genet. 9:e1003720 [Google Scholar]
  26. Di Gennaro A, Haeggstrom JZ. 26.  2012. The leukotrienes: immune-modulating lipid mediators of disease. Adv. Immunol. 116:51–92 [Google Scholar]
  27. Duchek P, Rorth P. 27.  2001. Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science 291:131–33 [Google Scholar]
  28. Duchek P, Somogyi K, Jekely G, Beccari S, Rorth P. 28.  2001. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107:17–26 [Google Scholar]
  29. Dumartin L, Quemener C, Laklai H, Herbert J, Bicknell R. 29.  et al. 2010. Netrin-1 mediates early events in pancreatic adenocarcinoma progression, acting on tumor and endothelial cells. Gastroenterology 138:1595–606 [Google Scholar]
  30. Engelhardt B, Ransohoff RM. 30.  2012. Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol. 33:579–89 [Google Scholar]
  31. Englund C, Steneberg P, Falileeva L, Xylourgidis N, Samakovlis C. 31.  2002. Attractive and repulsive functions of Slit are mediated by different receptors in the Drosophila trachea. Development 129:4941–51 [Google Scholar]
  32. Frasch M. 32.  1995. Induction of visceral and cardiac mesoderm by ectodermal Dpp in the early Drosophila embryo. Nature 374:464–67 [Google Scholar]
  33. Fulga TA, Rorth P. 33.  2002. Invasive cell migration is initiated by guided growth of long cellular extensions. Nat. Cell Biol. 4:715–19 [Google Scholar]
  34. Gates J, Mahaffey JP, Rogers SL, Emerson M, Rogers EM. 34.  et al. 2007. Enabled plays key roles in embryonic epithelial morphogenesis in Drosophila. Development 134:2027–39 [Google Scholar]
  35. Ghabrial A, Luschnig S, Metzstein MM, Krasnow MA. 35.  2003. Branching morphogenesis of the Drosophila tracheal system. Annu. Rev. Cell Dev. Biol 19:623–47 [Google Scholar]
  36. Ghabrial AS, Krasnow MA. 36.  2006. Social interactions among epithelial cells during tracheal branching morphogenesis. Nature 441:746–49 [Google Scholar]
  37. Gheldof A, Berx G. 37.  2013. Cadherins and epithelial-to-mesenchymal transition. Prog. Mol. Biol. Transl. Sci. 116:317–36 [Google Scholar]
  38. Ghysen A, Dambly-Chaudiere C. 38.  2004. Development of the zebrafish lateral line. Curr. Opin. Neurobiol. 14:67–73 [Google Scholar]
  39. Gorfinkiel N, Arias AM. 39.  2007. Requirements for adherens junction components in the interaction between epithelial tissues during dorsal closure in Drosophila. J. Cell Sci. 120:3289–98 [Google Scholar]
  40. Grosshans J, Wieschaus E. 40.  2000. A genetic link between morphogenesis and cell division during formation of the ventral furrow in Drosophila. Cell 101:523–31 [Google Scholar]
  41. Haas P, Gilmour D. 41.  2006. Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. Dev. Cell 10:673–80 [Google Scholar]
  42. Hacker U, Perrimon N. 42.  1998. DRhoGEF2 encodes a member of the Dbl family of oncogenes and controls cell shape changes during gastrulation in Drosophila. Genes Dev. 12:274–84 [Google Scholar]
  43. Hall A. 43.  2012. Rho family GTPases. Biochem. Soc. Trans. 40:1378–82 [Google Scholar]
  44. Hanyu-Nakamura K, Kobayashi S, Nakamura A. 44.  2004. Germ cell–autonomous Wunen2 is required for germline development in Drosophila embryos. Development 131:4545–53 [Google Scholar]
  45. Harris KE, Beckendorf SK. 45.  2007. Different Wnt signals act through the Frizzled and RYK receptors during Drosophila salivary gland migration. Development 134:2017–25 [Google Scholar]
  46. Hobson RP. 46.  1935. On a fat-soluble growth factor required by blow-fly larvae: identity of the growth factor with cholesterol. Biochem. J. 29:2023–26 [Google Scholar]
  47. Hsouna A, Nallamothu G, Kose N, Guinea M, Dammai V, Hsu T. 47.  2010. Drosophila von Hippel-Lindau tumor suppressor gene function in epithelial tubule morphogenesis. Mol. Cell. Biol. 30:3779–94 [Google Scholar]
  48. Ikeya T, Hayashi S. 48.  1999. Interplay of Notch and FGF signaling restricts cell fate and MAPK activation in the Drosophila trachea. Development 126:4455–63 [Google Scholar]
  49. Iwai Y, Usui T, Hirano S, Steward R, Takeichi M, Uemura T. 49.  1997. Axon patterning requires DN-cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron 19:77–89 [Google Scholar]
  50. Jacinto A, Wood W, Balayo T, Turmaine M, Martinez-Arias A, Martin P. 50.  2000. . Dynamic actin-based epithelial adhesion and cell matching during Drosophila dorsal closure. Curr. Biol. 10:1420–26 [Google Scholar]
  51. Jaglarz MK, Howard KR. 51.  1995. The active migration of Drosophila primordial germ cells. Development 121:3495–503 [Google Scholar]
  52. Jang AC, Chang YC, Bai J, Montell D. 52.  2009. Border-cell migration requires integration of spatial and temporal signals by the BTB protein Abrupt. Nat. Cell Biol. 11:569–79 [Google Scholar]
  53. Jankovics F, Brunner D. 53.  2006. Transiently reorganized microtubules are essential for zippering during dorsal closure in Drosophila melanogaster. Dev. Cell 11:375–85 [Google Scholar]
  54. Janssens K, Sung HH, Rorth P. 54.  2010. Direct detection of guidance receptor activity during border cell migration. Proc. Natl. Acad. Sci. USA 107:7323–28 [Google Scholar]
  55. Kaltschmidt JA, Lawrence N, Morel V, Balayo T, Fernandez BG. 55.  et al. 2002. Planar polarity and actin dynamics in the epidermis of Drosophila. Nat. Cell Biol. 4:937–44 [Google Scholar]
  56. Kawauchi T, Shikanai M, Kosodo Y. 56.  2013. Extra–cell cycle regulatory functions of cyclin-dependent kinases (CDK) and CDK inhibitor proteins contribute to brain development and neurological disorders. Genes Cells 18:176–94 [Google Scholar]
  57. Kerman BE, Cheshire AM, Myat MM, Andrew DJ. 57.  2008. Ribbon modulates apical membrane during tube elongation through Crumbs and Moesin. Dev. Biol. 320:278–88 [Google Scholar]
  58. Kiehart DP, Galbraith CG, Edwards KA, Rickoll WL, Montague RA. 58.  2000. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J. Cell Biol. 149:471–90 [Google Scholar]
  59. Killeen MT, Sybingco SS. 59.  2008. Netrin, Slit, and Wnt receptors allow axons to choose the axis of migration. Dev. Biol. 323:143–51 [Google Scholar]
  60. Kolesnikov T, Beckendorf SK. 60.  2005. NETRIN and SLIT guide salivary gland migration. Dev. Biol. 284:102–11 [Google Scholar]
  61. Kollmar R, Nakamura SK, Kappler JA, Hudspeth AJ. 61.  2001. Expression and phylogeny of claudins in vertebrate primordia. Proc. Natl. Acad. Sci. USA 98:10196–201 [Google Scholar]
  62. Kunwar PS, Sano H, Renault AD, Barbosa V, Fuse N, Lehmann R. 62.  2008. Tre1 GPCR initiates germ cell transepithelial migration by regulating Drosophila melanogaster E-Cadherin. J. Cell Biol. 183:157–68 [Google Scholar]
  63. Kunwar PS, Starz-Gaiano M, Bainton RJ, Heberlein U, Lehmann R. 63.  2003. Tre1, a G protein–coupled receptor, directs transepithelial migration of Drosophila germ cells. PLOS Biol. 1:E80 [Google Scholar]
  64. Laplante C, Nilson LA. 64.  2011. Asymmetric distribution of Echinoid defines the epidermal leading edge during Drosophila dorsal closure. J. Cell Biol. 192:335–48 [Google Scholar]
  65. Lauffenburger DA, Horwitz AF. 65.  1996. Cell migration: a physically integrated molecular process. Cell 84:359–69 [Google Scholar]
  66. Lebreton G, Casanova J. 66.  2014. Specification of leading and trailing cell features during collective migration in the Drosophila trachea. J. Cell Sci. 127:465–74 [Google Scholar]
  67. Leptin M, Grunewald B. 67.  1990. Cell shape changes during gastrulation in Drosophila. Development 110:73–84 [Google Scholar]
  68. Leptin M, Roth S. 68.  1994. Autonomy and non-autonomy in Drosophila mesoderm determination and morphogenesis. Development 120:853–59 [Google Scholar]
  69. Levayer R, Lecuit T. 69.  2013. Oscillation and polarity of E-Cadherin asymmetries control actomyosin flow patterns during morphogenesis. Dev. Cell 26:162–75 [Google Scholar]
  70. Liu R, Woolner S, Johndrow JE, Metzger D, Flores A, Parkhurst SM. 70.  2008. Sisyphus, the Drosophila myosin XV homolog, traffics within filopodia transporting key sensory and adhesion cargos. Development 135:53–63 [Google Scholar]
  71. Llense F, Martin-Blanco E. 71.  2008. JNK signaling controls border cell cluster integrity and collective cell migration. Curr. Biol. 18:538–44 [Google Scholar]
  72. Magie CR, Meyer MR, Gorsuch MS, Parkhurst SM. 72.  1999. Mutations in the Rho1 small GTPase disrupt morphogenesis and segmentation during early Drosophila development. Development 126:5353–64 [Google Scholar]
  73. Majumder P, Aranjuez G, Amick J, McDonald JA. 73.  2012. Par-1 controls myosin-II activity through myosin phosphatase to regulate border cell migration. Curr. Biol. 22:363–72 [Google Scholar]
  74. Martin AC, Kaschube M, Wieschaus EF. 74.  2009. Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457:495–99 [Google Scholar]
  75. McDonald JA, Khodyakova A, Aranjuez G, Dudley C, Montell DJ. 75.  2008. PAR-1 kinase regulates epithelial detachment and directional protrusion of migrating border cells. Curr. Biol. 18:1659–67 [Google Scholar]
  76. McDonald JA, Pinheiro EM, Kadlec L, Schupbach T, Montell DJ. 76.  2006. Multiple EGFR ligands participate in guiding migrating border cells. Dev. Biol. 296:94–103 [Google Scholar]
  77. McDonald JA, Pinheiro EM, Montell DJ. 77.  2003. PVF1, a PDGF/VEGF homolog, is sufficient to guide border cells and interacts genetically with Taiman. Development 130:3469–78 [Google Scholar]
  78. McGregor JR, Xi R, Harrison DA. 78.  2002. JAK signaling is somatically required for follicle cell differentiation in Drosophila. Development 129:705–17 [Google Scholar]
  79. McMahon A, Supatto W, Fraser SE, Stathopoulos A. 79.  2008. Dynamic analyses of Drosophila gastrulation provide insights into collective cell migration. Science 322:1546–50 [Google Scholar]
  80. Mehlen P, Delloye-Bourgeois C, Chedotal A. 80.  2011. Novel roles for Slits and netrins: axon guidance cues as anticancer targets?. Nat. Rev. Cancer 11:188–97 [Google Scholar]
  81. Millard TH, Martin P. 81.  2008. Dynamic analysis of filopodial interactions during the zippering phase of Drosophila dorsal closure. Development 135:621–26 [Google Scholar]
  82. Monahan AJ, Starz-Gaiano M. 82.  2013. Socs36E attenuates STAT signaling to optimize motile cell specification in the Drosophila ovary. Dev. Biol. 379:152–66 [Google Scholar]
  83. Montell DJ, Yoon WH, Starz-Gaiano M. 83.  2012. Group choreography: mechanisms orchestrating the collective movement of border cells. Nat. Rev. Mol. Cell Biol. 13:631–45 [Google Scholar]
  84. Moreira S, Stramer B, Evans I, Wood W, Martin P. 84.  2010. Prioritization of competing damage and developmental signals by migrating macrophages in the Drosophila embryo. Curr. Biol. 20:464–70 [Google Scholar]
  85. Morel V, Arias AM. 85.  2004. Armadillo/β-Catenin-dependent Wnt signalling is required for the polarisation of epidermal cells during dorsal closure in Drosophila. Development 131:3273–83 [Google Scholar]
  86. Murphy AM, Montell DJ. 86.  1996. Cell type–specific roles for Cdc42, Rac, and RhoL in Drosophila oogenesis. J. Cell Biol. 133:617–30 [Google Scholar]
  87. Murray MJ, Saint R. 87.  2007. Photoactivatable GFP resolves Drosophila mesoderm migration behaviour. Development 134:3975–83 [Google Scholar]
  88. Myat MM, Andrew DJ. 88.  2000. Organ shape in the Drosophila salivary gland is controlled by regulated, sequential internalization of the primordia. Development 127:679–91 [Google Scholar]
  89. Niewiadomska P, Godt D, Tepass U. 89.  1999. DE-Cadherin is required for intercellular motility during Drosophila oogenesis. J. Cell Biol. 144:533–47 [Google Scholar]
  90. Norman MU, Hickey MJ. 90.  2005. Mechanisms of lymphocyte migration in autoimmune disease. Tissue Antigens 66:163–72 [Google Scholar]
  91. Oda H, Tsukita S, Takeichi M. 91.  1998. Dynamic behavior of the cadherin-based cell-cell adhesion system during Drosophila gastrulation. Dev. Biol. 203:435–50 [Google Scholar]
  92. Parsons B, Foley E. 92.  2013. The Drosophila platelet-derived growth factor and vascular endothelial growth factor–receptor related (Pvr) protein ligands Pvf2 and Pvf3 control hemocyte viability and invasive migration. J. Biol. Chem. 288:20173–83 [Google Scholar]
  93. Peinado H, Ballestar E, Esteller M, Cano A. 93.  2004. Snail mediates E-Cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol. Cell. Biol. 24:306–19 [Google Scholar]
  94. Pinheiro EM, Montell DJ. 94.  2004. Requirement for Par-6 and Bazooka in Drosophila border cell migration. Development 131:5243–51 [Google Scholar]
  95. Pirraglia C, Jattani R, Myat MM. 95.  2006. Rac function in epithelial tube morphogenesis. Dev. Biol. 290:435–46 [Google Scholar]
  96. Pirraglia C, Walters J, Ahn N, Myat MM. 96.  2013. Rac1 GTPase acts downstream of αPS1βPS integrin to control collective migration and lumen size in the Drosophila salivary gland. Dev. Biol. 377:21–32 [Google Scholar]
  97. Poukkula M, Cliffe A, Changede R, Rorth P. 97.  2011. Cell behaviors regulated by guidance cues in collective migration of border cells. J. Cell Biol. 192:513–24 [Google Scholar]
  98. Prasad M, Montell DJ. 98.  2007. Cellular and molecular mechanisms of border cell migration analyzed using time-lapse live-cell imaging. Dev. Cell 12:997–1005 [Google Scholar]
  99. Ramel D, Wang X, Laflamme C, Montell DJ, Emery G. 99.  2013. Rab11 regulates cell-cell communication during collective cell movements. Nat. Cell Biol. 15:317–24 [Google Scholar]
  100. Rauzi M, Lenne PF, Lecuit T. 100.  2010. Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature 468:1110–14 [Google Scholar]
  101. Renault AD, Kunwar PS, Lehmann R. 101.  2010. Lipid phosphate phosphatase activity regulates dispersal and bilateral sorting of embryonic germ cells in Drosophila. Development 137:1815–23 [Google Scholar]
  102. Renault AD, Sigal YJ, Morris AJ, Lehmann R. 102.  2004. Soma-germ line competition for lipid phosphate uptake regulates germ cell migration and survival. Science 305:1963–66 [Google Scholar]
  103. Ricardo S, Lehmann R. 103.  2009. An ABC transporter controls export of a Drosophila germ cell attractant. Science 323:943–46 [Google Scholar]
  104. Richardson BE, Lehmann R. 104.  2010. Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat. Rev. Mol. Cell Biol. 11:37–49 [Google Scholar]
  105. Ring JM, Martinez Arias A. 105.  1993. puckered, a gene involved in position-specific cell differentiation in the dorsal epidermis of the Drosophila larva. Development 19:Suppl.251–59 [Google Scholar]
  106. Samakovlis C, Hacohen N, Manning G, Sutherland DC, Guillemin K, Krasnow MA. 106.  1996. Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. Development 122:1395–407 [Google Scholar]
  107. Sano H, Renault AD, Lehmann R. 107.  2005. Control of lateral migration and germ cell elimination by the Drosophila melanogaster lipid phosphate phosphatases Wunen and Wunen 2. J. Cell Biol. 171:675–83 [Google Scholar]
  108. Santos AC, Lehmann R. 108.  2004. Isoprenoids control germ cell migration downstream of HMGCoA reductase. Dev. Cell 6:283–93 [Google Scholar]
  109. Schäfer G, Narasimha M, Vogelsang E, Leptin M. 109.  2014. Cadherin switching during the formation and differentiation of the Drosophila mesoderm: implications for epithelial mesenchymal transitions. J. Cell Sci. 127:1511–22 [Google Scholar]
  110. Seher TC, Narasimha M, Vogelsang E, Leptin M. 110.  2007. Analysis and reconstitution of the genetic cascade controlling early mesoderm morphogenesis in the Drosophila embryo. Mech. Dev. 124:167–79 [Google Scholar]
  111. Seifert JR, Lehmann R. 111.  2012. Drosophila primordial germ cell migration requires epithelial remodeling of the endoderm. Development 139:2101–6 [Google Scholar]
  112. Shamir ER, Pappalardo E, Jorgens DM, Coutinho K, Tsai WT. 112.  et al. 2014. Twist1-induced dissemination preserves epithelial identity and requires E-Cadherin. J. Cell Biol. 204:839–56 [Google Scholar]
  113. Shishido E, Higashijima S, Emori Y, Saigo K. 113.  1993. Two FGF-receptor homologues of Drosophila: one is expressed in mesodermal primordium in early embryos. Development 117:751–61 [Google Scholar]
  114. Silver DL, Montell DJ. 114.  2001. Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila. Cell 107:831–41 [Google Scholar]
  115. Smallhorn M, Murray MJ, Saint R. 115.  2004. The epithelial-mesenchymal transition of the Drosophila mesoderm requires the Rho GTP exchange factor Pebble. Development 131:2641–51 [Google Scholar]
  116. Solon J, Kaya-Copur A, Colombelli J, Brunner D. 116.  2009. Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137:1331–42 [Google Scholar]
  117. Spahn P, Ott A, Reuter R. 117.  2012. The PDZ-GEF protein Dizzy regulates the establishment of adherens junctions required for ventral furrow formation in Drosophila. J. Cell Sci. 125:3801–12 [Google Scholar]
  118. Starz-Gaiano M, Cho NK, Forbes A, Lehmann R. 118.  2001. Spatially restricted activity of a Drosophila lipid phosphatase guides migrating germ cells. Development 128:983–91 [Google Scholar]
  119. Starz-Gaiano M, Melani M, Meinhardt H, Montell D. 119.  2009. Interpretation of the UPD/JAK/STAT morphogen gradient in Drosophila follicle cells. Cell Cycle 8:2917–25 [Google Scholar]
  120. Starz-Gaiano M, Melani M, Wang X, Meinhardt H, Montell DJ. 120.  2008. Feedback inhibition of Jak/STAT signaling by apontic is required to limit an invasive cell population. Dev. Cell 14:726–38 [Google Scholar]
  121. Stathopoulos A, Tam B, Ronshaugen M, Frasch M, Levine M. 121.  2004. pyramus and thisbe: FGF genes that pattern the mesoderm of Drosophila embryos. Genes Dev. 18:687–99 [Google Scholar]
  122. Stathopoulos A, Van Drenth M, Erives A, Markstein M, Levine M. 122.  2002. Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo. Cell 111:687–701 [Google Scholar]
  123. Stramer B, Moreira S, Millard T, Evans I, Huang C-Y. 123.  et al. 2010. Clasp-mediated microtubule bundling regulates persistent motility and contact repulsion in Drosophila macrophages in vivo. J. Cell Biol. 189:681–89 [Google Scholar]
  124. Stramer B, Wood W, Galko MJ, Redd MJ, Jacinto A. 124.  et al. 2005. Live imaging of wound inflammation in Drosophila embryos reveals key roles for small GTPases during in vivo cell migration. J. Cell Biol. 168:567–73 [Google Scholar]
  125. Sutherland D, Samakovlis C, Krasnow MA. 125.  1996. branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell 87:1091–101 [Google Scholar]
  126. Takahashi Y, Sipp D, Enomoto H. 126.  2013. Tissue interactions in neural crest cell development and disease. Science 341:860–63 [Google Scholar]
  127. Tepass U, Fessler LI, Aziz A, Hartenstein V. 127.  1994. Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development 120:1829–37 [Google Scholar]
  128. Theveneau E, Steventon B, Scarpa E, Garcia S, Trepat X. 128.  et al. 2013. Chase-and-run between adjacent cell populations promotes directional collective migration. Nat. Cell Biol. 15:763–72 [Google Scholar]
  129. Tulin S, Stathopoulos A. 129.  2010. Analysis of Thisbe and Pyramus functional domains reveals evidence for cleavage of Drosophila FGFs. BMC Dev. Biol. 10:83 [Google Scholar]
  130. Van Doren M, Broihier HT, Moore LA, Lehmann R. 130.  1998. HMG-CoA reductase guides migrating primordial germ cells. Nature 396:466–69 [Google Scholar]
  131. Vincent Sp, Wilson R, Coelho C, Affolter M, Leptin M. 131.  1998. The Drosophila protein Dof is specifically required for FGF signaling. Mol. Cell 2:515–25 [Google Scholar]
  132. Wang X, Adam JC, Montell D. 132.  2007. Spatially localized Kuzbanian required for specific activation of Notch during border cell migration. Dev. Biol. 301:532–40 [Google Scholar]
  133. Wang X, Bo J, Bridges T, Dugan KD, Pan TC. 133.  et al. 2006. Analysis of cell migration using whole-genome expression profiling of migratory cells in the Drosophila ovary. Dev. Cell 10:483–95 [Google Scholar]
  134. Wang X, He L, Wu YI, Hahn KM, Montell DJ. 134.  2010. Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo. Nat. Cell Biol. 12:591–97 [Google Scholar]
  135. Wells A, Grahovac J, Wheeler S, Ma B, Lauffenburger D. 135.  2013. Targeting tumor cell motility as a strategy against invasion and metastasis. Trends Pharmacol. Sci. 34:283–89 [Google Scholar]
  136. Werbowetski-Ogilvie TE, Seyed Sadr M, Jabado N, Angers-Loustau A, Agar NY. 136.  et al. 2006. Inhibition of medulloblastoma cell invasion by Slit. Oncogene 25:5103–12 [Google Scholar]
  137. Woolner S, Jacinto A, Martin P. 137.  2005. The small GTPase Rac plays multiple roles in epithelial sheet fusion: dynamic studies of Drosophila dorsal closure. Dev. Biol. 282:163–73 [Google Scholar]
  138. Xu F, Zhang C, Graves DT. 138.  2013. Abnormal cell responses and role of TNF-α in impaired diabetic wound healing. BioMed Res. Int. 2013:754802 [Google Scholar]
  139. Xu N, Keung B, Myat MM. 139.  2008. Rho GTPase controls invagination and cohesive migration of the Drosophila salivary gland through Crumbs and Rho-kinase. Dev. Biol. 321:88–100 [Google Scholar]
  140. Yang J, Weinberg RA. 140.  2008. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 14:818–29 [Google Scholar]
  141. Yoon WH, Meinhardt H, Montell DJ. 141.  2011. miRNA-mediated feedback inhibition of JAK/STAT morphogen signalling establishes a cell fate threshold. Nat. Cell Biol. 13:1062–69 [Google Scholar]
  142. Young PE, Richman AM, Ketchum AS, Kiehart DP. 142.  1993. Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function. Genes Dev. 7:29–41 [Google Scholar]
  143. Zhang N, Zhang J, Cheng Y, Howard K. 143.  1996. Identification and genetic analysis of wunen, a gene guiding Drosophila melanogaster germ cell migration. Genetics 143:1231–41 [Google Scholar]
  144. Zhang N, Zhang J, Purcell KJ, Cheng Y, Howard K. 144.  1997. The Drosophila protein Wunen repels migrating germ cells. Nature 385:64–67 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error