1932

Abstract

Language is a defining characteristic of the human species, but its foundations remain mysterious. Heritable disorders offer a gateway into biological underpinnings, as illustrated by the discovery that disruptions cause a rare form of speech and language impairment. The genetic architecture underlying language-related disorders is complex, and although some progress has been made, it has proved challenging to pinpoint additional relevant genes with confidence. Next-generation sequencing and genome-wide association studies are revolutionizing understanding of the genetic bases of other neurodevelopmental disorders, like autism and schizophrenia, and providing fundamental insights into the molecular networks crucial for typical brain development. We discuss how a similar genomic perspective, brought to the investigation of language-related phenotypes, promises to yield equally informative discoveries. Moreover, we outline how follow-up studies of genetic findings using cellular systems and animal models can help to elucidate the biological mechanisms involved in the development of brain circuits supporting language.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120213-092236
2015-11-23
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/genet/49/1/annurev-genet-120213-092236.html?itemId=/content/journals/10.1146/annurev-genet-120213-092236&mimeType=html&fmt=ahah

Literature Cited

  1. Adegbola AA, Cox GF, Bradshaw EM, Hafler DA, Gimelbrant A, Chess A. 1.  2014. Monoallelic expression of the human FOXP2 speech gene. PNAS 112:6848–54 [Google Scholar]
  2. Alarcón M, Abrahams BS, Stone JL, Duvall JA, Perederiy JV. 2.  et al. 2008. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am. J. Hum. Genet. 82:150–59 [Google Scholar]
  3. Alcock KJ, Passingham RE, Watkins K, Vargha-Khadem F. 3.  2000. Pitch and timing abilities in inherited speech and language impairment. Brain Lang. 75:34–46 [Google Scholar]
  4. Amarillo IE, Li WL, Li X, Vilain E, Kantarci S. 4.  2014. De novo single exon deletion of AUTS2 in a patient with speech and language disorder: A review of disrupted AUTS2 and further evidence for its role in neurodevelopmental disorders. Am. J. Med. Genet. A 164A:958–65 [Google Scholar]
  5. Anney R, Klei L, Pinto D, Almeida J, Bacchelli E. 5.  et al. 2012. Individual common variants exert weak effects on the risk for autism spectrum disorders. Hum. Mol. Genet. 21:4781–92 [Google Scholar]
  6. Anthoni H, Zucchelli M, Matsson H, Müller-Myhsok B, Fransson I. 6.  et al. 2007. A locus on 2p12 containing the co-regulated MRPL19 and C2ORF3 genes is associated to dyslexia. Hum. Mol. Genet. 16:667–77 [Google Scholar]
  7. Arking DE, Cutler DJ, Brune CW, Teslovich TM, West K. 7.  et al. 2008. A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am. J. Hum. Genet. 82:160–64 [Google Scholar]
  8. Asadollahi R, Oneda B, Joset P, Azzarello-Burri S, Bartholdi D. 8.  et al. 2014. The clinical significance of small copy number variants in neurodevelopmental disorders. J. Med. Genet. 51:677–88 [Google Scholar]
  9. 9. ASHA 2007. Childhood apraxia of speech [tech. rep.]. http://www.asha.org [Google Scholar]
  10. Bacon C, Rappold GA. 10.  2012. The distinct and overlapping phenotypic spectra of FOXP1 and FOXP2 in cognitive disorders. Hum. Genet. 131:1687–98 [Google Scholar]
  11. Bacon C, Schneider M, Le Magueresse C, Froehlich H, Sticht C. 11.  et al. 2014. Brain-specific Foxp1 deletion impairs neuronal development and causes autistic-like behaviour. Mol. Psychiatry 20:632–39 [Google Scholar]
  12. Baek ST, Kerjan G, Bielas SL, Lee JE, Fenstermaker AG. 12.  et al. 2014. Off-target effect of doublecortin family shRNA on neuronal migration associated with endogenous microRNA dysregulation. Neuron 82:1255–62 [Google Scholar]
  13. Baetens D, Verdin H, Cools M, De Baere E. 13.  2013. Forkhead transcription factors in genetic disease. eLS. doi: 10.1002/9780470015902.a0024256 [Google Scholar]
  14. Bakkaloglu B, O'Roak BJ, Louvi A, Gupta AR, Abelson JF. 14.  et al. 2008. Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. Am. J. Hum. Genet. 82:165–73 [Google Scholar]
  15. Becker J, Czamara D, Scerri TS, Ramus F, Csépe V. 15.  et al. 2014. Genetic analysis of dyslexia candidate genes in the European cross-linguistic NeuroDys cohort. Eur. J. Hum. Genet. 22:675–80 [Google Scholar]
  16. Belton E, Salmond CH, Watkins KE, Vargha-Khadem F, Gadian DG. 16.  2003. Bilateral brain abnormalities associated with dominantly inherited verbal and orofacial dyspraxia. Hum. Brain Mapp. 18:194–200 [Google Scholar]
  17. Briscoe J, Chilvers R, Baldeweg T, Skuse D. 17.  2012. A specific cognitive deficit within semantic cognition across a multi-generational family. Proc. Biol. Sci. 279:3652–61 [Google Scholar]
  18. Campbell P, Reep RL, Stoll ML, Ophir AG, Phelps SM. 18.  2009. Conservation and diversity of Foxp2 expression in muroid rodents: functional implications. J. Comp. Neurol. 512:84–100 [Google Scholar]
  19. Carrion-Castillo A, Franke B, Fisher SE. 19.  2013. Molecular genetics of dyslexia: an overview. Dyslexia 19:214–40 [Google Scholar]
  20. Ceroni F, Simpson NH, Francks C, Baird G, Conti-Ramsden G. 20.  et al. 2014. Homozygous microdeletion of exon 5 in ZNF277 in a girl with specific language impairment. Eur. J. Hum. Genet. 22:1165–71 [Google Scholar]
  21. Chandrasekar G, Vesterlund L, Hultenby K, Tapia-Paez I, Kere J. 21.  2013. The zebrafish orthologue of the dyslexia candidate gene DYX1C1 is essential for cilia growth and function. PLOS ONE 8:e63123 [Google Scholar]
  22. Chien YL, Wu YY, Chiu YN, Liu SK, Tsai WC. 22.  et al. 2011. Association study of the CNS patterning genes and autism in Han Chinese in Taiwan. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 35:1512–17 [Google Scholar]
  23. Clovis YM, Enard W, Marinaro F, Huttner WB, De Pietri Tonelli D. 23.  2012. Convergent repression of Foxp2 3′UTR by miR-9 and miR-132 in embryonic mouse neocortex: implications for radial migration of neurons. Development 139:3332–42 [Google Scholar]
  24. Coe BP, Witherspoon K, Rosenfeld JA, van Bon BW, Vulto-van Silfhout AT. 24.  et al. 2014. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat. Genet. 46:1063–71 [Google Scholar]
  25. 25. Deciphering Dev. Disord. Study 2014. Large-scale discovery of novel genetic causes of developmental disorders. Nature 519:223–28 [Google Scholar]
  26. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K. 26.  et al. 2014. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515:209–15 [Google Scholar]
  27. Dennis EL, Jahanshad N, Rudie JD, Brown JA, Johnson K. 27.  et al. 2011. Altered structural brain connectivity in healthy carriers of the autism risk gene, CNTNAP2. Brain Connect. 1:447–59 [Google Scholar]
  28. Dennis MY, Paracchini S, Scerri TS, Prokunina-Olsson L, Knight JC. 28.  et al. 2009. A common variant associated with dyslexia reduces expression of the KIAA0319 gene. PLOS Genet. 5:e1000436 [Google Scholar]
  29. Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L. 29.  et al. 2010. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics 26:1205–10 [Google Scholar]
  30. Deriziotis P, O'Roak BJ, Graham SA, Estruch SB, Dimitropoulou D. 30.  et al. 2014. De novo TBR1 mutations in sporadic autism disrupt protein functions. Nat. Commun. 5:4954 [Google Scholar]
  31. Dorfman R, Nalpathamkalam T, Taylor C, Gonska T, Keenan K. 31.  et al. 2010. Do common in silico tools predict the clinical consequences of amino-acid substitutions in the CFTR gene?. Clin. Genet. 77:464–73 [Google Scholar]
  32. Edwards SL, Beesley J, French JD, Dunning AM. 32.  2013. Beyond GWASs: illuminating the dark road from association to function. Am. J. Hum. Genet. 93:779–97 [Google Scholar]
  33. Eicher JD, Powers NR, Miller LL, Akshoomoff N, Amaral DG. 33.  et al. 2013. Genome-wide association study of shared components of reading disability and language impairment. Genes Brain Behav. 12:792–801 [Google Scholar]
  34. Fedorenko E, Morgan A, Murray E, Cardinaux A, Mei C. 34.  et al. 2015. A highly penetrant form of childhood apraxia of speech due to deletion of 16p11.2. Eur. J. Hum. Genet. In press. doi: 10.1038/ejhg.2015.149 [Google Scholar]
  35. Ferland RJ, Cherry TJ, Preware PO, Morrisey EE, Walsh CA. 35.  2003. Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. J. Comp. Neurol. 460:266–79 [Google Scholar]
  36. Feuk L, Kalervo A, Lipsanen-Nyman M, Skaug J, Nakabayashi K. 36.  et al. 2006. Absence of a paternally inherited FOXP2 gene in developmental verbal dyspraxia. Am. J. Hum. Genet. 79:965–72 [Google Scholar]
  37. Field LL, Shumansky K, Ryan J, Truong D, Swiergala E, Kaplan BJ. 37.  2013. Dense-map genome scan for dyslexia supports loci at 4q13, 16p12, 17q22; suggests novel locus at 7q36. Genes Brain Behav. 12:56–69 [Google Scholar]
  38. Filges I, Shimojima K, Okamoto N, Rothlisberger B, Weber P. 38.  et al. 2011. Reduced expression by SETBP1 haploinsufficiency causes developmental and expressive language delay indicating a phenotype distinct from Schinzel-Giedion syndrome. J. Med. Genet. 48:117–22 [Google Scholar]
  39. Fisher SE, Lai CS, Monaco AP. 39.  2003. Deciphering the genetic basis of speech and language disorders. Annu. Rev. Neurosci. 26:57–80 [Google Scholar]
  40. Fisher SE, Scharff C. 40.  2009. FOXP2 as a molecular window into speech and language. Trends Genet. 25:166–77 [Google Scholar]
  41. Francks C, Paracchini S, Smith SD, Richardson AJ, Scerri TS. 41.  et al. 2004. A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States. Am. J. Hum. Genet. 75:1046–58 [Google Scholar]
  42. French CA, Fisher SE. 42.  2014. What can mice tell us about Foxp2 function?. Curr. Opin. Neurobiol. 28C:72–79 [Google Scholar]
  43. French CA, Groszer M, Preece C, Coupe AM, Rajewsky K, Fisher SE. 43.  2007. Generation of mice with a conditional Foxp2 null allele. Genesis 45:440–46 [Google Scholar]
  44. French CA, Jin X, Campbell TG, Gerfen E, Groszer M. 44.  et al. 2012. An aetiological Foxp2 mutation causes aberrant striatal activity and alters plasticity during skill learning. Mol. Psychiatry 17:1077–85 [Google Scholar]
  45. Fu L, Shi Z, Luo G, Tu W, Wang X. 45.  et al. 2014. Multiple microRNAs regulate human FOXP2 gene expression by targeting sequences in its 3' untranslated region. Mol. Brain 7:71 [Google Scholar]
  46. Fujita E, Tanabe Y, Shiota A, Ueda M, Suwa K. 46.  et al. 2008. Ultrasonic vocalization impairment of Foxp2 (R552H) knockin mice related to speech-language disorder and abnormality of Purkinje cells. PNAS 105:3117–22 [Google Scholar]
  47. Gaub S, Groszer M, Fisher SE, Ehret G. 47.  2010. The structure of innate vocalizations in Foxp2-deficient mouse pups. Genes Brain Behav. 9:390–401 [Google Scholar]
  48. 48. Genome Neth. Consort 2014. Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nat. Genet. 46:818–25 [Google Scholar]
  49. Gialluisi A, Newbury DF, Wilcutt EG, Olson RK, DeFries JC. 49.  et al. 2014. Genome-wide screening for DNA variants associated with reading and language traits. Genes Brain Behav. 13:686–701 [Google Scholar]
  50. Gimelli S, Capra V, Di Rocco M, Leoni M, Mirabelli-Badenier M. 50.  et al. 2014. Interstitial 7q31.1 copy number variations disrupting IMMP2L gene are associated with a wide spectrum of neurodevelopmental disorders. Mol. Cytogenet. 7:54 [Google Scholar]
  51. Girirajan S, Brkanac Z, Coe BP, Baker C, Vives L. 51.  et al. 2011. Relative burden of large CNVs on a range of neurodevelopmental phenotypes. PLOS Genet. 7:e1002334 [Google Scholar]
  52. Graham SA, Deriziotis P, Fisher SE. 52.  2015. Insights into the genetic foundations of human communication. Neuropsychol. Rev. 25:3–26 [Google Scholar]
  53. Grati M, Chakchouk I, Ma Q, Bensaid M, Desmidt A. 53.  et al. 2015. A missense mutation in DCDC2 causes human recessive deafness DFNB66, likely by interfering with sensory hair cell and supporting cell cilia length regulation. Hum. Mol. Genet. 24:2482–91 [Google Scholar]
  54. Groszer M, Keays DA, Deacon RM, de Bono JP, Prasad-Mulcare S. 54.  et al. 2008. Impaired synaptic plasticity and motor learning in mice with a point mutation implicated in human speech deficits. Curr. Biol. 18:354–62 [Google Scholar]
  55. Guadalupe T, Zwiers MP, Wittfeld K, Teumer A, Vasquez AA. 55.  et al. 2015. Asymmetry within and around the human planum temporale is sexually dimorphic and influenced by genes involved in steroid hormone receptor activity. Cortex 62:41–55 [Google Scholar]
  56. Guemez-Gamboa A, Coufal NG, Gleeson JG. 56.  2014. Primary cilia in the developing and mature brain. Neuron 82:511–21 [Google Scholar]
  57. Haesler S, Rochefort C, Georgi B, Licznerski P, Osten P, Scharff C. 57.  2007. Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X. PLOS Biol. 5:e321 [Google Scholar]
  58. Han TU, Park J, Domingues CF, Moretti-Ferreira D, Paris E. 58.  et al. 2014. A study of the role of the FOXP2 and CNTNAP2 genes in persistent developmental stuttering. Neurobiol. Dis. 69:23–31 [Google Scholar]
  59. Hancarova M, Simandlova M, Drabova J, Mannik K, Kurg A, Sedlacek Z. 59.  2013. A patient with de novo 0.45 Mb deletion of 2p16.1: the role of BCL11A, PAPOLG, REL, and FLJ16341 in the 2p15-p16.1 microdeletion syndrome. Am. J. Med. Genet. A 161A:865–70 [Google Scholar]
  60. Hannula-Jouppi K, Kaminen-Ahola N, Taipale M, Eklund R, Nopola-Hemmi J. 60.  et al. 2005. The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia. PLOS Genet. 1:e50 [Google Scholar]
  61. Hanson E, Bernier R, Porche K, Jackson FI, Goin-Kochel RP. 61.  et al. 2014. The cognitive and behavioral phenotype of the 16p11.2 deletion in a clinically ascertained population. Biol. Psychiatry 77:785–93 [Google Scholar]
  62. Hara E, Perez JM, Whitney O, Chen Q, White SA, Wright TF. 62.  2015. Neural FoxP2 and FoxP1 expression in the budgerigar, an avian species with adult vocal learning. Behav. Brain Res. 283:22–29 [Google Scholar]
  63. Harlaar N, Meaburn EL, Hayiou-Thomas ME, Davis OS, Docherty S. 63.  et al. 2014. Genome-wide association study of receptive language ability of 12-year-olds. J. Speech Lang. Hear. Res. 57:96–105 [Google Scholar]
  64. Heston JB, White SA. 64.  2015. Behavior-linked FoxP2 regulation enables zebra finch vocal learning. J. Neurosci. 35:2885–94 [Google Scholar]
  65. Hibar DP, Stein JL, Renteria ME, Arias-Vasquez A, Desrivieres S. 65.  et al. 2015. Common genetic variants influence human subcortical brain structures. Nature 520:224–29 [Google Scholar]
  66. Hisaoka T, Nakamura Y, Senba E, Morikawa Y. 66.  2010. The forkhead transcription factors, Foxp1 and Foxp2, identify different subpopulations of projection neurons in the mouse cerebral cortex. Neuroscience 166:551–63 [Google Scholar]
  67. Hofmeister W, Nilsson D, Topa A, Anderlid BM, Darki F. 67.  et al. 2015. CTNND2-a candidate gene for reading problems and mild intellectual disability. J. Med. Genet. 52:111–22 [Google Scholar]
  68. Hoischen A, Krumm N, Eichler EE. 68.  2014. Prioritization of neurodevelopmental disease genes by discovery of new mutations. Nat. Neurosci. 17:764–72 [Google Scholar]
  69. Hoischen A, van Bon BW, Gilissen C, Arts P, van Lier B. 69.  et al. 2010. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat. Genet. 42:483–85 [Google Scholar]
  70. Hoogman M, Guadalupe T, Zwiers MP, Klarenbeek P, Francks C, Fisher SE. 70.  2014. Assessing the effects of common variation in the FOXP2 gene on human brain structure. Front. Hum. Neurosci. 8:473 [Google Scholar]
  71. Huang N, Lee I, Marcotte EM, Hurles ME. 71.  2010. Characterising and predicting haploinsufficiency in the human genome. PLOS Genet. 6:e1001154 [Google Scholar]
  72. Ivliev AE, ‘t Hoen PA, van Roon-Mom WM, Peters DJ, Sergeeva MG. 72.  2012. Exploring the transcriptome of ciliated cells using in silico dissection of human tissues. PLOS ONE 7:e35618 [Google Scholar]
  73. Kang C, Drayna D. 73.  2011. Genetics of speech and language disorders. Annu. Rev. Genomics Hum. Genet. 12:145–64 [Google Scholar]
  74. Kang C, Riazuddin S, Mundorff J, Krasnewich D, Friedman P. 74.  et al. 2010. Mutations in the lysosomal enzyme-targeting pathway and persistent stuttering. N. Engl. J. Med. 362:677–85 [Google Scholar]
  75. King DA, Jones WD, Crow YJ, Dominiczak AF, Foster NA. 75.  et al. 2015. Mosaic structural variation in children with developmental disorders. Hum. Mol. Genet. 24:2733–45 [Google Scholar]
  76. Krumm N, O'Roak BJ, Shendure J, Eichler EE. 76.  2014. A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci. 37:95–105 [Google Scholar]
  77. Kuo TY, Chen CY, Hsueh YP. 77.  2010. Bcl11A/CTIP1 mediates the effect of the glutamate receptor on axon branching and dendrite outgrowth. J. Neurochem. 114:1381–92 [Google Scholar]
  78. Kurt S, Fisher SE, Ehret G. 78.  2012. Foxp2 mutations impair auditory-motor association learning. PLOS ONE 7:e33130 [Google Scholar]
  79. Laffin JJ, Raca G, Jackson CA, Strand EA, Jakielski KJ, Shriberg LD. 79.  2012. Novel candidate genes and regions for childhood apraxia of speech identified by array comparative genomic hybridization. Genet. Med. 14:928–36 [Google Scholar]
  80. Lai CS, Fisher SE, Hurst JA, Levy ER, Hodgson S. 80.  et al. 2000. The SPCH1 region on human 7q31: Genomic characterization of the critical interval and localization of translocations associated with speech and language disorder. Am. J. Hum. Genet. 67:357–68 [Google Scholar]
  81. Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. 81.  2001. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413:519–23 [Google Scholar]
  82. Lai CS, Gerrelli D, Monaco AP, Fisher SE, Copp AJ. 82.  2003. FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain 126:2455–62 [Google Scholar]
  83. Lee WS, Kang C, Drayna D, Kornfeld S. 83.  2011. Analysis of mannose 6-phosphate uncovering enzyme mutations associated with persistent stuttering. J. Biol. Chem. 286:39786–93 [Google Scholar]
  84. Lennon PA, Cooper ML, Peiffer DA, Gunderson KL, Patel A. 84.  et al. 2007. Deletion of 7q31.1 supports involvement of FOXP2 in language impairment: clinical report and review. Am. J. Med. Genet. A 143A:791–98 [Google Scholar]
  85. Lesca G, Rudolf G, Bruneau N, Lozovaya N, Labalme A. 85.  et al. 2013. GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nat. Genet. 45:1061–66 [Google Scholar]
  86. Li S, Weidenfeld J, Morrisey EE. 86.  2004. Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions. Mol. Cell. Biol. 24:809–22 [Google Scholar]
  87. Li T, Zeng Z, Zhao Q, Wang T, Huang K. 87.  et al. 2013. FoxP2 is significantly associated with schizophrenia and major depression in the Chinese Han population. World J. Biol. Psychiatry 14:146–50 [Google Scholar]
  88. Liégeois F, Baldeweg T, Connelly A, Gadian DG, Mishkin M, Vargha-Khadem F. 88.  2003. Language fMRI abnormalities associated with FOXP2 gene mutation. Nat. Neurosci. 6:1230–37 [Google Scholar]
  89. Lim ET, Raychaudhuri S, Sanders SJ, Stevens C, Sabo A. 89.  et al. 2013. Rare complete knockouts in humans: population distribution and significant role in autism spectrum disorders. Neuron 77:235–42 [Google Scholar]
  90. Luciano M, Evans DM, Hansell NK, Medland SE, Montgomery GW. 90.  et al. 2013. A genome-wide association study for reading and language abilities in two population cohorts. Genes Brain Behav. 12:645–52 [Google Scholar]
  91. MacDermot KD, Bonora E, Sykes N, Coupe AM, Lai CS. 91.  et al. 2005. Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. Am. J. Hum. Genet. 76:1074–80 [Google Scholar]
  92. Maestrini E, Pagnamenta AT, Lamb JA, Bacchelli E, Sykes NH. 92.  et al. 2010. High-density SNP association study and copy number variation analysis of the AUTS1 and AUTS5 loci implicate the IMMP2L-DOCK4 gene region in autism susceptibility. Mol. Psychiatry 15:954–68 [Google Scholar]
  93. Marseglia G, Scordo MR, Pescucci C, Nannetti G, Biagini E. 93.  et al. 2012. 372 kb microdeletion in 18q12.3 causing SETBP1 haploinsufficiency associated with mild mental retardation and expressive speech impairment. Eur. J. Med. Genet. 55:216–21 [Google Scholar]
  94. Mathelier A, Shi W, Wasserman WW. 94.  2015. Identification of altered cis-regulatory elements in human disease. Trends Genet. 31:67–76 [Google Scholar]
  95. Medland SE, Jahanshad N, Neale BM, Thompson PM. 95.  2014. Whole-genome analyses of whole-brain data: working within an expanded search space. Nat. Neurosci. 17:791–800 [Google Scholar]
  96. Meng H, Smith SD, Hager K, Held M, Liu J. 96.  et al. 2005. DCDC2 is associated with reading disability and modulates neuronal development in the brain. PNAS 102:17053–58 [Google Scholar]
  97. Mitchell KJ. 97.  2012. What is complex about complex disorders?. Genome Biol. 13:237 [Google Scholar]
  98. Mitchell KJ. 98.  2015. The genetic architecture of neurodevelopmental disorders. The Genetics of Neurodevelopmental Disorders KJ Mitchell 1–28 Hoboken, NJ: Wiley [Google Scholar]
  99. Murdoch JD, Gupta AR, Sanders SJ, Walker MF, Keaney J. 99.  et al. 2015. No evidence for association of autism with rare heterozygous point mutations in contactin-associated protein-like 2 (CNTNAP2), or in other contactin-associated proteins or contactins. PLOS Genet. 11:e1004852 [Google Scholar]
  100. Murugan M, Harward S, Scharff C, Mooney R. 100.  2013. Diminished FoxP2 levels affect dopaminergic modulation of corticostriatal signaling important to song variability. Neuron 80:1464–76 [Google Scholar]
  101. Namjou B, Marsolo K, Caroll RJ, Denny JC, Ritchie MD. 101.  et al. 2014. Phenome-wide association study (PheWAS) in EMR-linked pediatric cohorts, genetically links PLCL1 to speech language development and IL5-IL13 to eosinophilic esophagitis. Front. Genet. 5:401 [Google Scholar]
  102. Nazaryan L, Stefanou EG, Hansen C, Kosyakova N, Bak M. 102.  et al. 2014. The strength of combined cytogenetic and mate-pair sequencing techniques illustrated by a germline chromothripsis rearrangement involving FOXP2. Eur. J. Hum. Genet. 22:338–43 [Google Scholar]
  103. Newbury DF, Bonora E, Lamb JA, Fisher SE, Lai CS. 103.  et al. 2002. FOXP2 is not a major susceptibility gene for autism or specific language impairment. Am. J. Hum. Genet. 70:1318–27 [Google Scholar]
  104. Newbury DF, Mari F, Sadighi Akha E, Macdermot KD, Canitano R. 104.  et al. 2012. Dual copy number variants involving 16p11 and 6q22 in a case of childhood apraxia of speech and pervasive developmental disorder. Eur. J. Hum. Genet. 21:361–65 [Google Scholar]
  105. Newbury DF, Monaco AP. 105.  2010. Genetic advances in the study of speech and language disorders. Neuron 68:309–20 [Google Scholar]
  106. Newbury DF, Monaco AP, Paracchini S. 106.  2014. Reading and language disorders: The importance of both quantity and quality. Genes 5:285–309 [Google Scholar]
  107. Newbury DF, Paracchini S, Scerri TS, Winchester L, Addis L. 107.  et al. 2011. Investigation of dyslexia and SLI risk variants in reading- and language-impaired subjects. Behav. Genet. 41:90–104 [Google Scholar]
  108. Newbury DF, Winchester L, Addis L, Paracchini S, Buckingham LL. 108.  et al. 2009. CMIP and ATP2C2 modulate phonological short-term memory in language impairment. Am. J. Hum. Genet. 85:264–72 [Google Scholar]
  109. Nudel R, Simpson NH, Baird G, O'Hare A, Conti-Ramsden G. 109.  et al. 2014. Genome-wide association analyses of child genotype effects and parent-of-origin effects in specific language impairment. Genes Brain Behav. 13:418–29 [Google Scholar]
  110. O'Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ. 110.  et al. 2011. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 43:585–89 [Google Scholar]
  111. O'Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB. 111.  et al. 2012. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338:1619–22 [Google Scholar]
  112. Ocklenburg S, Arning L, Gerding WM, Epplen JT, Gunturkun O, Beste C. 112.  2013. FOXP2 variation modulates functional hemispheric asymmetries for speech perception. Brain Lang. 126:279–84 [Google Scholar]
  113. Pagnamenta AT, Bacchelli E, de Jonge MV, Mirza G, Scerri TS. 113.  et al. 2010. Characterization of a family with rare deletions in CNTNAP5 and DOCK4 suggests novel risk loci for autism and dyslexia. Biol. Psychiatry 68:320–28 [Google Scholar]
  114. Palka C, Alfonsi M, Mohn A, Cerbo R, Guanciali Franchi P. 114.  et al. 2012. Mosaic 7q31 deletion involving FOXP2 gene associated with language impairment. Pediatrics 129:e183–88 [Google Scholar]
  115. Paracchini S, Thomas A, Castro S, Lai C, Paramasivam M. 115.  et al. 2006. . The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration.. Hum. Mol. Genet. 15:1659–66 [Google Scholar]
  116. Patel C, Cooper-Charles L, McMullan DJ, Walker JM, Davison V, Morton J. 116.  2011. Translocation breakpoint at 7q31 associated with tics: further evidence for IMMP2L as a candidate gene for Tourette syndrome. Eur. J. Hum. Genet. 19:634–39 [Google Scholar]
  117. Paul DS, Soranzo N, Beck S. 117.  2014. Functional interpretation of non-coding sequence variation: concepts and challenges. BioEssays 36:191–99 [Google Scholar]
  118. Penagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A. 118.  et al. 2011. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147:235–46 [Google Scholar]
  119. Peschansky VJ, Burbridge TJ, Volz AJ, Fiondella C, Wissner-Gross Z. 119.  et al. 2010. The effect of variation in expression of the candidate dyslexia susceptibility gene homolog Kiaa0319 on neuronal migration and dendritic morphology in the rat. Cereb. Cortex 20:884–97 [Google Scholar]
  120. Peter B, Button L, Stoel-Gammon C, Chapman K, Raskind WH. 120.  2013. Deficits in sequential processing manifest in motor and linguistic tasks in a multigenerational family with childhood apraxia of speech. Clin. Linguist. Phon. 27:163–91 [Google Scholar]
  121. Peter B, Matsushita M, Oda K, Raskind W. 121.  2014. De novo microdeletion of BCL11A is associated with severe speech sound disorder. Am. J. Med. Genet. A 164:2091–96 [Google Scholar]
  122. Peter B, Raskind WH, Matsushita M, Lisowski M, Vu T. 122.  et al. 2011. Replication of CNTNAP2 association with nonword repetition and support for FOXP2 association with timed reading and motor activities in a dyslexia family sample. J. Neurodev. Disord. 3:39–49 [Google Scholar]
  123. Petitto LA, Marentette PF. 123.  1991. Babbling in the manual mode: Evidence for the ontogeny of language. Science 251:1493–96 [Google Scholar]
  124. Pfenning AR, Hara E, Whitney O, Rivas MV, Wang R. 124.  et al. 2014. Convergent transcriptional specializations in the brains of humans and song-learning birds. Science 346:1256846 [Google Scholar]
  125. Piton A, Redin C, Mandel JL. 125.  2013. XLID-causing mutations and associated genes challenged in light of data from large-scale human exome sequencing. Am. J. Hum. Genet. 93:368–83 [Google Scholar]
  126. Poduri A, Evrony GD, Cai X, Walsh CA. 126.  2013. Somatic mutation, genomic variation, and neurological disease. Science 341:1237758 [Google Scholar]
  127. Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N. 127.  et al. 2014. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506:185–90 [Google Scholar]
  128. Raca G, Baas BS, Kirmani S, Laffin JJ, Jackson CA. 128.  et al. 2013. Childhood Apraxia of Speech (CAS) in two patients with 16p11.2 microdeletion syndrome. Eur. J. Hum. Genet. 21:455–59 [Google Scholar]
  129. Reader RH, Covill LE, Nudel R, Newbury DF. 129.  2014. Genome-wide studies of specific language impairment. Curr. Behav. Neurosci. Rep. 1:242–50 [Google Scholar]
  130. Reinthaler EM, Lal D, Jurkowski W, Feucht M, Steinböck H. 130.  et al. 2014. Analysis of ELP4, SRPX2, and interacting genes in typical and atypical rolandic epilepsy. Epilepsia 55:e89–93 [Google Scholar]
  131. Ribasés M, Sánchez-Mora C, Ramos-Quiroga JA, Bosch R, Gómez N. 131.  et al. 2012. An association study of sequence variants in the forkhead box P2 (FOXP2) gene and adulthood attention-deficit/hyperactivity disorder in two European samples. Psychiatr. Genet. 22:155–60 [Google Scholar]
  132. Rice GM, Raca G, Jakielski KJ, Laffin JJ, Iyama-Kurtycz CM. 132.  et al. 2012. Phenotype of FOXP2 haploinsufficiency in a mother and son. Am. J. Med. Genet. A 158A:174–81 [Google Scholar]
  133. Rietveld CA, Medland SE, Derringer J, Yang J, Esko T. 133.  et al. 2013. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science 340:1467–71 [Google Scholar]
  134. Robinson MR, Wray NR, Visscher PM. 134.  2014. Explaining additional genetic variation in complex traits. Trends Genet. 30:124–32 [Google Scholar]
  135. Rodenas-Cuadrado P, Ho J, Vernes SC. 135.  2014. Shining a light on CNTNAP2: complex functions to complex disorders. Eur. J. Hum. Genet. 22:171–78 [Google Scholar]
  136. Roll P, Rudolf G, Pereira S, Royer B, Scheffer IE. 136.  et al. 2006. SRPX2 mutations in disorders of language cortex and cognition. Hum. Mol. Genet. 15:1195–207 [Google Scholar]
  137. Roll P, Vernes SC, Bruneau N, Cillario J, Ponsole-Lenfant M. 137.  et al. 2010. Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex. Hum. Mol. Genet. 19:4848–60 [Google Scholar]
  138. Sampath S, Bhat S, Gupta S, O'Connor A, West AB. 138.  et al. 2013. Defining the contribution of CNTNAP2 to autism susceptibility. PLOS ONE 8:e77906 [Google Scholar]
  139. Scharff C, Petri J. 139.  2011. Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language. Philos. Trans R. Soc. Lond. B 366:2124–40 [Google Scholar]
  140. 140. Schizophr. Work. Group Psychiatr. Genomics C 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–27 [Google Scholar]
  141. Schueler M, Braun DA, Chandrasekar G, Gee HY, Klasson TD. 141.  et al. 2015. DCDC2 mutations cause a renal-hepatic ciliopathy by disrupting Wnt signaling. Am. J. Hum. Genet. 96:81–92 [Google Scholar]
  142. Senghas A, Kita S, Ozyurek A. 142.  2004. Children creating core properties of language: Evidence from an emerging sign language in Nicaragua. Science 305:1779–82 [Google Scholar]
  143. Shi Z, Luo G, Fu L, Fang Z, Wang X, Li X. 143.  2013. miR-9 and miR-140-5p target FoxP2 and are regulated as a function of the social context of singing behavior in zebra finches. J. Neurosci. 33:16510–21 [Google Scholar]
  144. Shriberg LD, Ballard KJ, Tomblin JB, Duffy JR, Odell KH, Williams CA. 144.  2006. Speech, prosody, and voice characteristics of a mother and daughter with a 7;13 translocation affecting FOXP2. J. Speech Lang. Hear. Res. 49:500–25 [Google Scholar]
  145. Shriberg LD, Jakielski KJ, El-Shanti H. 145.  2008. Breakpoint localization using array-CGH in three siblings with an unbalanced 4q;16q translocation and childhood apraxia of speech (CAS). Am. J. Med. Genet. 146A:2227–33 [Google Scholar]
  146. Shu W, Cho JY, Jiang Y, Zhang M, Weisz D. 146.  et al. 2005. Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. PNAS 102:9643–48 [Google Scholar]
  147. Shu W, Lu MM, Zhang Y, Tucker PW, Zhou D, Morrisey EE. 147.  2007. Foxp2 and Foxp1 cooperatively regulate lung and esophagus development. Development 134:1991–2000 [Google Scholar]
  148. Sia GM, Clem RL, Huganir RL. 148.  2013. The human language-associated gene SRPX2 regulates synapse formation and vocalization in mice. Science 342:987–91 [Google Scholar]
  149. Simpson NH, Ceroni F, Reader RH, Covill LE, Knight JC. 149.  et al. 2015. Genome-wide analysis identifies a role for common copy number variants in specific language impairment. Eur. J. Hum. Genet. 231370–77 [Google Scholar]
  150. Smith AW, Holden KR, Dwivedi A, Dupont BR, Lyons MJ. 150.  2015. Deletion of 16q24.1 supports a role for the ATP2C2 gene in specific language impairment. J. Child Neurol. 30:517–21 [Google Scholar]
  151. Speevak MD, Farrell SA. 151.  2011. Non-syndromic language delay in a child with disruption in the Protocadherin11X/Y gene pair. Am. J. Med. Genet. Part B 156B:484–89 [Google Scholar]
  152. Spiteri E, Konopka G, Coppola G, Bomar J, Oldham M. 152.  et al. 2007. Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in developing human brain. Am. J. Hum. Genet. 81:1144–57 [Google Scholar]
  153. Srivastava S, Cohen JS, Vernon H, Baranano K, McClellan R. 153.  et al. 2014. Clinical whole exome sequencing in child neurology practice. Ann. Neurol. 76:473–83 [Google Scholar]
  154. St Pourcain B, Cents RA, Whitehouse AJ, Haworth CM, Davis OS. 154.  et al. 2014. Common variation near ROBO2 is associated with expressive vocabulary in infancy. Nat. Commun. 5:4831 [Google Scholar]
  155. St Pourcain B, Skuse DH, Mandy WP, Wang K, Hakonarson H. 155.  et al. 2014. Variability in the common genetic architecture of social-communication spectrum phenotypes during childhood and adolescence. Mol. Autism. 5:18 [Google Scholar]
  156. Stein JL, Medland SE, Vasquez AA, Hibar DP, Senstad RE. 156.  et al. 2012. Identification of common variants associated with human hippocampal and intracranial volumes. Nat. Genet. 44:552–61 [Google Scholar]
  157. Stessman HA, Bernier R, Eichler EE. 157.  2014. A genotype-first approach to defining the subtypes of a complex disease. Cell 156:872–77 [Google Scholar]
  158. Strauss KA, Puffenberger EG, Huentelman MJ, Gottlieb S, Dobrin SE. 158.  et al. 2006. Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N. Engl. J. Med. 354:1370–77 [Google Scholar]
  159. Stroud JC, Wu Y, Bates DL, Han A, Nowick K. 159.  et al. 2006. Structure of the forkhead domain of FOXP2 bound to DNA. Structure 14:159–66 [Google Scholar]
  160. Sullivan PF, Daly MJ, O'Donovan M. 160.  2012. Genetic architectures of psychiatric disorders: The emerging picture and its implications. Nat. Rev. Genet. 13:537–51 [Google Scholar]
  161. Sun E, Shi Y. 161.  2014. MicroRNAs: Small molecules with big roles in neurodevelopment and diseases. Exp. Neurol. 268:46–53 [Google Scholar]
  162. Szalkowski CE, Booker AB, Truong DT, Threlkeld SW, Rosen GD, Fitch RH. 162.  2013. Knockdown of the candidate dyslexia susceptibility gene homolog dyx1c1 in rodents: effects on auditory processing, visual attention, and cortical and thalamic anatomy. Dev. Neurosci. 35:50–68 [Google Scholar]
  163. Szalkowski CE, Fiondella CG, Galaburda AM, Rosen GD, Loturco JJ, Fitch RH. 163.  2012. Neocortical disruption and behavioral impairments in rats following in utero RNAi of candidate dyslexia risk gene Kiaa0319. Int. J. Dev. Neurosci. 30:293–302 [Google Scholar]
  164. Taipale M, Kaminen N, Nopola-Hemmi J, Haltia T, Myllyluoma B. 164.  et al. 2003. A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain. PNAS 100:11553–58 [Google Scholar]
  165. Takahashi K, Liu FC, Hirokawa K, Takahashi H. 165.  2008. Expression of Foxp4 in the developing and adult rat forebrain. J. Neurosci. Res. 86:3106–16 [Google Scholar]
  166. Tan GC, Doke TF, Ashburner J, Wood NW, Frackowiak RS. 166.  2010. Normal variation in fronto-occipital circuitry and cerebellar structure with an autism-associated polymorphism of CNTNAP2. Neuroimage 53:1030–42 [Google Scholar]
  167. Tarkar A, Loges NT, Slagle CE, Francis R, Dougherty GW. 167.  et al. 2013. DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat. Genet. 45:995–1003 [Google Scholar]
  168. Teramitsu I, Kudo LC, London SE, Geschwind DH, White SA. 168.  2004. Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction. J. Neurosci. 24:3152–63 [Google Scholar]
  169. Teramitsu I, White SA. 169.  2006. FoxP2 regulation during undirected singing in adult songbirds. J. Neurosci. 26:7390–94 [Google Scholar]
  170. Thevenon J, Callier P, Andrieux J, Delobel B, David A. 170.  et al. 2013. 12p13.33 microdeletion including ELKS/ERC1, a new locus associated with childhood apraxia of speech. Eur. J. Hum. Genet. 21:82–88 [Google Scholar]
  171. Thomas AC, Frost JM, Ishida M, Vargha-Khadem F, Moore GE, Stanier P. 171.  2012. The speech gene FOXP2 is not imprinted. J. Med. Genet. 49:669–70 [Google Scholar]
  172. Toma C, Hervas A, Torrico B, Balmana N, Salgado M. 172.  et al. 2013. Analysis of two language-related genes in autism: A case-control association study of FOXP2 and CNTNAP2. Psychiatr. Genet. 23:82–85 [Google Scholar]
  173. Tomblin JB, O'Brien M, Shriberg LD, Williams C, Murray J. 173.  et al. 2009. Language features in a mother and daughter of a chromosome 7;13 translocation involving FOXP2. J. Speech Lang. Hear. Res. 52:1157–74 [Google Scholar]
  174. Tran C, Wigg KG, Zhang K, Cate-Carter TD, Kerr E. 174.  et al. 2014. Association of the ROBO1 gene with reading disabilities in a family-based analysis. Genes Brain Behav. 13:430–38 [Google Scholar]
  175. Truong DT, Che A, Rendall AR, Szalkowski CE, LoTurco JJ. 175.  et al. 2014. Mutation of Dcdc2 in mice leads to impairments in auditory processing and memory ability. Genes Brain Behav. 13:802–11 [Google Scholar]
  176. Turner SJ, Hildebrand MS, Block S, Damiano J, Fahey M. 176.  et al. 2013. Small intragenic deletion in FOXP2 associated with childhood apraxia of speech and dysarthria. Am. J. Med. Genet. A 161:2321–26 [Google Scholar]
  177. Turner SJ, Mayes AK, Verhoeven A, Mandelstam SA, Morgan AT, Scheffer IE. 177.  2015. GRIN2A: an aptly named gene for speech dysfunction. Neurology 84:586–93 [Google Scholar]
  178. Turner TN, Sharma K, Oh EC, Liu YP, Collins RL. 178.  et al. 2015. Loss of delta-catenin function in severe autism. Nature 520:51–56 [Google Scholar]
  179. Utine GE, Haliloglu G, Volkan-Salanci B, Cetinkaya A, Kiper PO. 179.  et al. 2014. Etiological yield of SNP microarrays in idiopathic intellectual disability. Eur. J. Paed. Neurol. 18:327–37 [Google Scholar]
  180. Van der Aa N, Vandeweyer G, Reyniers E, Kenis S, Dom L. 180.  et al. 2012. Haploinsufficiency of CMIP in a girl with autism spectrum disorder and developmental delay due to a de novo deletion on chromosome 16q23.2. Autism Res. 5:277–81 [Google Scholar]
  181. Veerappa AM, Saldanha M, Padakannaya P, Ramachandra NB. 181.  2013. Genome-wide copy number scan identifies disruption of PCDH11X in developmental dyslexia. Am. J. Med. Genet. Part B 162B:889–97 [Google Scholar]
  182. Vernes SC, MacDermot KD, Monaco AP, Fisher SE. 182.  2009. Assessing the impact of FOXP1 mutations on developmental verbal dyspraxia. Eur. J. Hum. Genet. 17:1354–58 [Google Scholar]
  183. Vernes SC, Newbury DF, Abrahams BS, Winchester L, Nicod J. 183.  et al. 2008. A functional genetic link between distinct developmental language disorders. N. Engl. J. Med. 359:2337–45 [Google Scholar]
  184. Vernes SC, Nicod J, Elahi FM, Coventry JA, Kenny N. 184.  et al. 2006. Functional genetic analysis of mutations implicated in a human speech and language disorder. Hum. Mol. Genet. 15:3154–67 [Google Scholar]
  185. Vernes SC, Oliver PL, Spiteri E, Lockstone HE, Puliyadi R. 185.  et al. 2011. Foxp2 regulates gene networks implicated in neurite outgrowth in the developing brain. PLOS Genet. 7:e1002145 [Google Scholar]
  186. Vernes SC, Spiteri E, Nicod J, Groszer M, Taylor JM. 186.  et al. 2007. High-throughput analysis of promoter occupancy reveals direct neural targets of FOXP2, a gene mutated in speech and language disorders. Am. J. Hum. Genet. 81:1232–50 [Google Scholar]
  187. Villanueva P, Newbury DF, Jara L, De Barbieri Z, Mirza G. 187.  et al. 2011. Genome-wide analysis of genetic susceptibility to language impairment in an isolated Chilean population. Eur. J. Hum. Genet. 19:687–95 [Google Scholar]
  188. Villanueva P, Nudel R, Hoischen A, Fernández MA, Simpson NH. 188.  et al. 2015. Exome sequencing in an admixed isolated population indicates NFXL1 variants confer a risk for specific language impairment. PLOS Genet. 11:e1004925 [Google Scholar]
  189. Visscher PM, Brown MA, McCarthy MI, Yang J. 189.  2012. Five years of GWAS discovery. Am. J. Hum. Genet. 90:7–24 [Google Scholar]
  190. Vissers LE, de Ligt J, Gilissen C, Janssen I, Steehouwer M. 190.  et al. 2010. A de novo paradigm for mental retardation. Nat. Genet. 42:1109–12 [Google Scholar]
  191. Wang B, Lin D, Li C, Tucker P. 191.  2003. Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors. J. Biol. Chem. 278:24259–68 [Google Scholar]
  192. Wang R, Chen CC, Hara E, Rivas MV, Roulhac PL. 192.  et al. 2015. Convergent differential regulation of SLIT-ROBO axon guidance genes in the brains of vocal learners. J. Comp. Neurol. 523:892–906 [Google Scholar]
  193. Wang Y, Yin X, Rosen G, Gabel L, Guadiana SM. 193.  et al. 2011. Dcdc2 knockout mice display exacerbated developmental disruptions following knockdown of doublecortin. Neuroscience 190:398–408 [Google Scholar]
  194. Watkins KE, Vargha-Khadem F, Ashburner J, Passingham RE, Connelly A. 194.  et al. 2002. MRI analysis of an inherited speech and language disorder: Structural brain abnormalities. Brain 125:465–78 [Google Scholar]
  195. Watson CM, Crinnion LA, Tzika A, Mills A, Coates A. 195.  et al. 2014. Diagnostic whole genome sequencing and split-read mapping for nucleotide resolution breakpoint identification in CNTNAP2 deficiency syndrome. Am. J. Med. Genet. A 164A:2649–55 [Google Scholar]
  196. Whitehouse AJ, Bishop DV, Ang QW, Pennell CE, Fisher SE. 196.  2011. CNTNAP2 variants affect early language development in the general population. Genes Brain Behav. 10:451–56 [Google Scholar]
  197. Whitney O, Voyles T, Hara E, Chen Q, White SA, Wright TF. 197.  2014. Differential FoxP2 and FoxP1 expression in a vocal learning nucleus of the developing budgerigar. Dev. Neurobiol. 75:778–90 [Google Scholar]
  198. Wiszniewski W, Hunter JV, Hanchard NA, Willer JR, Shaw C. 198.  et al. 2013. TM4SF20 ancestral deletion and susceptibility to a pediatric disorder of early language delay and cerebral white matter hyperintensities. Am. J. Hum. Genet. 93:197–210 [Google Scholar]
  199. Wood AR, Esko T, Yang J, Vedantam S, Pers TH. 199.  et al. 2014. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46:1173–86 [Google Scholar]
  200. Worthey EA, Raca G, Laffin JJ, Wilk BM, Harris JM. 200.  et al. 2013. Whole-exome sequencing supports genetic heterogeneity in childhood apraxia of speech. J. Neurodev. Disord. 5:29 [Google Scholar]
  201. Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D. 201.  et al. 2015. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science 347:1254806 [Google Scholar]
  202. Zeesman S, Nowaczyk MJ, Teshima I, Roberts W, Cardy JO. 202.  et al. 2006. Speech and language impairment and oromotor dyspraxia due to deletion of 7q31 that involves FOXP2. Am. J. Med. Genet. A 140:509–14 [Google Scholar]
  203. Zhao Y, Ma H, Wang Y, Gao H, Xi C. 203.  et al. 2010. Association between FOXP2 gene and speech sound disorder in Chinese population. Psychiatry Clin. Neurosci. 64:565–73 [Google Scholar]
  204. Zhu G, Yoshida S, Migita K, Yamada J, Mori F. 204.  et al. 2012. Dysfunction of extrasynaptic GABAergic transmission in phospholipase C-related, but catalytically inactive protein 1 knockout mice is associated with an epilepsy phenotype. J. Pharmacol. Exp. Ther. 340:520–28 [Google Scholar]
  205. Zilina O, Reimand T, Zjablovskaja P, Mannik K, Mannamaa M. 205.  et al. 2012. Maternally and paternally inherited deletion of 7q31 involving the FOXP2 gene in two families. Am. J. Med. Genet. A 158A:254–56 [Google Scholar]
  206. Zweier C, de Jong EK, Zweier M, Orrico A, Ousager LB. 206.  et al. 2009. CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila. Am. J. Hum. Genet. 85:655–66 [Google Scholar]
/content/journals/10.1146/annurev-genet-120213-092236
Loading
/content/journals/10.1146/annurev-genet-120213-092236
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error