1932

Abstract

Long interspersed element 1 (LINE-1 or L1) retrotransposons have generated one-third of the human genome, and their ongoing mobility is a source of inter- and intraindividual genetic diversity. Although retrotransposition in metazoans has long been considered a germline phenomenon, recent experiments using cultured cells, animal models, and human tissues have revealed extensive L1 mobilization in rodent and human neurons, as well as mobile element activity in the brain. In this review, we evaluate the available evidence for L1 retrotransposition in the brain and discuss mechanisms that may regulate neuronal retrotransposition in vivo. We compare experimental strategies used to map de novo somatic retrotransposition events and present the optimal criteria to identify a somatic L1 insertion. Finally, we discuss the unresolved impact of L1-mediated somatic mosaicism upon normal neurobiology, as well as its potential to drive neurological disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120213-092412
2014-11-23
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/genet/48/1/annurev-genet-120213-092412.html?itemId=/content/journals/10.1146/annurev-genet-120213-092412&mimeType=html&fmt=ahah

Literature Cited

  1. Alisch RS, Garcia-Perez JL, Muotri AR, Gage FH, Moran JV. 1.  2006. Unconventional translation of mammalian LINE-1 retrotransposons. Genes Dev. 20:210–24 [Google Scholar]
  2. Ambrose M, Gatti RA. 2.  2013. Pathogenesis of ataxia-telangiectasia: the next generation of ATM functions. Blood 121:4036–45 [Google Scholar]
  3. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. 3.  1999. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23:185–88 [Google Scholar]
  4. Arjan-Odedra S, Swanson CM, Sherer NM, Wolinsky SM, Malim MH. 4.  2012. Endogenous MOV10 inhibits the retrotransposition of endogenous retroelements but not the replication of exogenous retroviruses. Retrovirology 9:53 [Google Scholar]
  5. Athanikar JN, Badge RM, Moran JV. 5.  2004. A YY1-binding site is required for accurate human LINE-1 transcription initiation. Nucleic Acids Res. 32:3846–55 [Google Scholar]
  6. Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA. 6.  et al. 2011. Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479:534–37 [Google Scholar]
  7. Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM. 7.  et al. 2010. LINE-1 retrotransposition activity in human genomes. Cell 141:1159–70 [Google Scholar]
  8. Beck CR, Garcia-Perez JL, Badge RM, Moran JV. 8.  2010. LINE-1 elements in structural variation and disease. Annu. Rev. Genomics Hum. Genet. 12:187–215 [Google Scholar]
  9. Becker KG, Swergold GD, Ozato K, Thayer RE. 9.  1993. Binding of the ubiquitous nuclear transcription factor YY1 to a cis regulatory sequence in the human LINE-1 transposable element. Hum. Mol. Genet. 2:1697–702 [Google Scholar]
  10. Belancio VP, Hedges DJ, Deininger P. 10.  2008. Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res. 18:343–58 [Google Scholar]
  11. Belancio VP, Roy-Engel AM, Deininger P. 11.  2008. The impact of multiple splice sites in human L1 elements. Gene 411:38–45 [Google Scholar]
  12. Bestor TH, Bourc'his D. 12.  2004. Transposon silencing and imprint establishment in mammalian germ cells. Cold Spring Harb. Symp. Quant. Biol. 69:381–87 [Google Scholar]
  13. Bogerd HP, Wiegand HL, Doehle BP, Lueders KK, Cullen BR. 13.  2006. APOBEC3A and APOBEC3B are potent inhibitors of LTR-retrotransposon function in human cells. Nucleic Acids Res. 34:89–95 [Google Scholar]
  14. Bogerd HP, Wiegand HL, Hulme AE, Garcia-Perez JL, O'Shea KS. 14.  et al. 2006. Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proc. Natl. Acad. Sci. USA 103:8780–85 [Google Scholar]
  15. Brouha B, Meischl C, Ostertag E, de Boer M, Zhang Y. 15.  et al. 2002. Evidence consistent with human L1 retrotransposition in maternal meiosis I. Am. J. Hum. Genet. 71:327–36 [Google Scholar]
  16. Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH. 16.  et al. 2003. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl. Acad. Sci. USA 100:5280–85 [Google Scholar]
  17. Bundo M, Toyoshima M, Okada Y, Akamatsu W, Ueda J. 17.  et al. 2014. Increased L1 retrotransposition in the neuronal genome in schizophrenia. Neuron 81:306–13 [Google Scholar]
  18. Chen H, Lilley CE, Yu Q, Lee DV, Chou J. 18.  et al. 2006. APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons. Curr. Biol. 16:480–85 [Google Scholar]
  19. Ciaudo C, Jay F, Okamoto I, Chen CJ, Sarazin A. 19.  et al. 2013. RNAi-dependent and independent control of LINE1 accumulation and mobility in mouse embryonic stem cells. PLoS Genet. 9:e1003791 [Google Scholar]
  20. Cordaux R, Batzer MA. 20.  2009. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 10:691–703 [Google Scholar]
  21. Cost GJ, Boeke JD. 21.  1998. Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry 37:18081–93 [Google Scholar]
  22. Cost GJ, Golding A, Schlissel MS, Boeke JD. 22.  2001. Target DNA chromatinization modulates nicking by L1 endonuclease. Nucleic Acids Res. 29:573–77 [Google Scholar]
  23. Coufal NG, Garcia-Perez JL, Peng GE, Marchetto MC, Muotri AR. 23.  et al. 2011. Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. Proc. Natl. Acad. Sci. USA 108:20382–87 [Google Scholar]
  24. Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y. 24.  et al. 2009. L1 retrotransposition in human neural progenitor cells. Nature 460:1127–31 [Google Scholar]
  25. de Boer M, van Leeuwen K, Geissler J, Weemaes CM, van den Berg TK. 25.  et al. 2014. Primary immunodeficiency caused by an exonized retroposed gene copy inserted in the CYBB gene. Hum. Mutat. 35:486–96 [Google Scholar]
  26. de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD. 26.  2011. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 7:e1002384 [Google Scholar]
  27. Dmitriev SE, Andreev DE, Terenin IM, Olovnikov IA, Prassolov VS. 27.  et al. 2007. Efficient translation initiation directed by the 900-nucleotide-long and GC-rich 5′ untranslated region of the human retrotransposon LINE-1 mRNA is strictly cap dependent rather than internal ribosome entry site mediated. Mol. Cell. Biol. 27:4685–97 [Google Scholar]
  28. Dombroski BA, Mathias SL, Nanthakumar E, Scott AF, Kazazian HH Jr. 28.  1991. Isolation of an active human transposable element. Science 254:1805–8 [Google Scholar]
  29. Doucet AJ, Hulme AE, Sahinovic E, Kulpa DA, Moldovan JB. 29.  et al. 2010. Characterization of LINE-1 ribonucleoprotein particles. PLoS Genet. 6:e1001150 [Google Scholar]
  30. Ergun S, Buschmann C, Heukeshoven J, Dammann K, Schnieders F. 30.  et al. 2004. Cell type–specific expression of LINE-1 open reading frames 1 and 2 in fetal and adult human tissues. J. Biol. Chem. 279:27753–63 [Google Scholar]
  31. Esnault C, Maestre J, Heidmann T. 31.  2000. Human LINE retrotransposons generate processed pseudogenes. Nat. Genet. 24:363–67 [Google Scholar]
  32. Evrony GD, Cai X, Lee E, Hills LB, Elhosary PC. 32.  et al. 2012. Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151:483–96 [Google Scholar]
  33. Ewing AD, Kazazian HH Jr. 33.  2010. High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res. 20:1262–70 [Google Scholar]
  34. Faulkner GJ. 34.  2011. Retrotransposons: mobile and mutagenic from conception to death. FEBS Lett. 585:1589–94 [Google Scholar]
  35. Faulkner GJ, Kimura Y, Daub CO, Wani S, Plessy C. 35.  et al. 2009. The regulated retrotransposon transcriptome of mammalian cells. Nat. Genet. 41:563–71 [Google Scholar]
  36. Feng Q, Moran JV, Kazazian HH Jr, Boeke JD. 36.  1996. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905–16 [Google Scholar]
  37. Garcia-Perez JL, Marchetto MC, Muotri AR, Coufal NG, Gage FH. 37.  et al. 2007. LINE-1 retrotransposition in human embryonic stem cells. Hum. Mol. Genet. 16:1569–77 [Google Scholar]
  38. Garcia-Perez JL, Morell M, Scheys JO, Kulpa DA, Morell S. 38.  et al. 2010. Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells. Nature 466:769–73 [Google Scholar]
  39. Ghildiyal M, Seitz H, Horwich MD, Li C, Du T. 39.  et al. 2008. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320:1077–81 [Google Scholar]
  40. Gilbert N, Lutz S, Morrish TA, Moran JV. 40.  2005. Multiple fates of L1 retrotransposition intermediates in cultured human cells. Mol. Cell. Biol. 25:7780–95 [Google Scholar]
  41. Gilbert N, Lutz-Prigge S, Moran JV. 41.  2002. Genomic deletions created upon LINE-1 retrotransposition. Cell 110:315–25 [Google Scholar]
  42. Gole J, Gore A, Richards A, Chiu YJ, Fung HL. 42.  et al. 2013. Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells. Nat. Biotechnol. 31:1126–32 [Google Scholar]
  43. Goodier JL, Cheung LE, Kazazian HH Jr. 43.  2012. MOV10 RNA helicase is a potent inhibitor of retrotransposition in cells. PLoS Genet. 8:e1002941 [Google Scholar]
  44. Goodier JL, Cheung LE, Kazazian HH Jr. 44.  2013. Mapping the LINE1 ORF1 protein interactome reveals associated inhibitors of human retrotransposition. Nucleic Acids Res. 41:7401–19 [Google Scholar]
  45. Goodier JL, Kazazian HH Jr. 45.  2008. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135:23–35 [Google Scholar]
  46. Goodier JL, Ostertag EM, Du K, Kazazian HH Jr. 46.  2001. A novel active L1 retrotransposon subfamily in the mouse. Genome Res. 11:1677–85 [Google Scholar]
  47. Goodier JL, Ostertag EM, Kazazian HH Jr. 47.  2000. Transduction of 3′-flanking sequences is common in L1 retrotransposition. Hum. Mol. Genet. 9:653–57 [Google Scholar]
  48. Grimaldi G, Skowronski J, Singer MF. 48.  1984. Defining the beginning and end of KpnI family segments. EMBO J. 3:1753–59 [Google Scholar]
  49. Guy J, Gan J, Selfridge J, Cobb S, Bird A. 49.  2007. Reversal of neurological defects in a mouse model of Rett syndrome. Science 315:1143–47 [Google Scholar]
  50. Hall LL, Carone DM, Gomez AV, Kolpa HJ, Byron M. 50.  et al. 2014. Stable C0T-1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes. Cell 156:907–19 [Google Scholar]
  51. Han JS, Shao S. 51.  2012. Circular retrotransposition products generated by a LINE retrotransposon. Nucleic Acids Res. 40:10866–77 [Google Scholar]
  52. Han JS, Szak ST, Boeke JD. 52.  2004. Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429:268–74 [Google Scholar]
  53. Hancks DC, Kazazian HH Jr. 53.  2012. Active human retrotransposons: variation and disease. Curr. Opin. Genet. Dev. 22:191–203 [Google Scholar]
  54. Heras SR, Macias S, Plass M, Fernandez N, Cano D. 54.  et al. 2013. The Microprocessor controls the activity of mammalian retrotransposons. Nat. Struct. Mol. Biol. 20:1173–81 [Google Scholar]
  55. Hohjoh H, Singer MF. 55.  1996. Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J. 15:630–39 [Google Scholar]
  56. Iida S, Morita Y, Choi JD, Park KI, Hoshino A. 56.  2004. Genetics and epigenetics in flower pigmentation associated with transposable elements in morning glories. Adv. Biophys. 38:141–59 [Google Scholar]
  57. Iskow RC, McCabe MT, Mills RE, Torene S, Pittard WS. 57.  et al. 2010. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141:1253–61 [Google Scholar]
  58. Jakobsson J, Cordero MI, Bisaz R, Groner AC, Busskamp V. 58.  et al. 2008. KAP1-mediated epigenetic repression in the forebrain modulates behavioral vulnerability to stress. Neuron 60:818–31 [Google Scholar]
  59. Jones RB, Song H, Xu Y, Garrison KE, Buzdin AA. 59.  et al. 2013. LINE-1 retrotransposable element DNA accumulates in HIV-1-infected cells. J. Virol. 87:13307–20 [Google Scholar]
  60. Jurka J. 60.  1997. Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc. Natl. Acad. Sci. USA 94:1872–77 [Google Scholar]
  61. Kano H, Godoy I, Courtney C, Vetter MR, Gerton GL. 61.  et al. 2009. L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev. 23:1303–12 [Google Scholar]
  62. Kazazian HH Jr, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE. 62.  1988. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332:164–66 [Google Scholar]
  63. Khazina E, Weichenrieder O. 63.  2009. Non-LTR retrotransposons encode noncanonical RRM domains in their first open reading frame. Proc. Natl. Acad. Sci. USA 106:731–36 [Google Scholar]
  64. Kinomoto M, Kanno T, Shimura M, Ishizaka Y, Kojima A. 64.  et al. 2007. All APOBEC3 family proteins differentially inhibit LINE-1 retrotransposition. Nucleic Acids Res. 35:2955–64 [Google Scholar]
  65. Kubo S, Seleme MC, Soifer HS, Perez JL, Moran JV. 65.  et al. 2006. L1 retrotransposition in nondividing and primary human somatic cells. Proc. Natl. Acad. Sci. USA 103:8036–41 [Google Scholar]
  66. Kulpa DA, Moran JV. 66.  2005. Ribonucleoprotein particle formation is necessary but not sufficient for LINE-1 retrotransposition. Hum. Mol. Genet. 14:3237–48 [Google Scholar]
  67. Kulpa DA, Moran JV. 67.  2006. cis-Preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat. Struct. Mol. Biol. 13:655–60 [Google Scholar]
  68. Kuwabara T, Hsieh J, Muotri A, Yeo G, Warashina M. 68.  et al. 2009. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat. Neurosci. 12:1097–105 [Google Scholar]
  69. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC. 69.  et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921 [Google Scholar]
  70. Lasken RS, Stockwell TB. 70.  2007. Mechanism of chimera formation during the multiple displacement amplification reaction. BMC Biotechnol. 7:19 [Google Scholar]
  71. Lee E, Iskow R, Yang L, Gokcumen O, Haseley P. 71.  et al. 2012. Landscape of somatic retrotransposition in human cancers. Science 337:967–71 [Google Scholar]
  72. Leeb M, Pasini D, Novatchkova M, Jaritz M, Helin K, Wutz A. 72.  2010. Polycomb complexes act redundantly to repress genomic repeats and genes. Genes Dev. 24:265–76 [Google Scholar]
  73. Levin HL, Moran JV. 73.  2011. Dynamic interactions between transposable elements and their hosts. Nat. Rev. Genet. 12:615–27 [Google Scholar]
  74. Li W, Prazak L, Chatterjee N, Gruninger S, Krug L. 74.  et al. 2013. Activation of transposable elements during aging and neuronal decline in Drosophila. Nat. Neurosci. 16:529–31 [Google Scholar]
  75. Li X, Zhang J, Jia R, Cheng V, Xu X. 75.  et al. 2013. The MOV10 helicase inhibits LINE-1 mobility. J. Biol. Chem. 288:21148–60 [Google Scholar]
  76. Liu C, Sage JC, Miller MR, Verhaak RG, Hippenmeyer S. 76.  et al. 2011. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146:209–21 [Google Scholar]
  77. Luan DD, Korman MH, Jakubczak JL, Eickbush TH. 77.  1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595–605 [Google Scholar]
  78. Macfarlan TS, Gifford WD, Agarwal S, Driscoll S, Lettieri K. 78.  et al. 2011. Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev. 25:594–607 [Google Scholar]
  79. Macfarlane CM, Collier P, Rahbari R, Beck CR, Wagstaff JF. 79.  et al. 2013. Transduction-specific ATLAS reveals a cohort of highly active L1 retrotransposons in human populations. Hum. Mutat. 34:974–85 [Google Scholar]
  80. Martin SL. 80.  1991. Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells. Mol. Cell. Biol. 11:4804–7 [Google Scholar]
  81. Martin SL, Bushman FD. 81.  2001. Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol. Cell. Biol. 21:467–75 [Google Scholar]
  82. Mathias SL, Scott AF, Kazazian HH Jr, Boeke JD, Gabriel A. 82.  1991. Reverse transcriptase encoded by a human transposable element. Science 254:1808–10 [Google Scholar]
  83. Matlik K, Redik K, Speek M. 83.  2006. L1 antisense promoter drives tissue-specific transcription of human genes. J. Biomed. Biotechnol. 2006:71753 [Google Scholar]
  84. Matsui T, Leung D, Miyashita H, Maksakova IA, Miyachi H. 84.  et al. 2010. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464:927–31 [Google Scholar]
  85. McClintock B. 85.  1950. The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. USA 36:344–55 [Google Scholar]
  86. McConnell MJ, Lindberg MR, Brennand KJ, Piper JC, Voet T. 86.  et al. 2013. Mosaic copy number variation in human neurons. Science 342:632–37 [Google Scholar]
  87. McKay R. 87.  1997. Stem cells in the central nervous system. Science 276:66–71 [Google Scholar]
  88. Miki Y, Nishisho I, Horii A, Miyoshi Y, Utsunomiya J. 88.  et al. 1992. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res. 52:643–45 [Google Scholar]
  89. Minakami R, Kurose K, Etoh K, Furuhata Y, Hattori M, Sakaki Y. 89.  1992. Identification of an internal cis-element essential for the human L1 transcription and a nuclear factor(s) binding to the element. Nucleic Acids Res. 20:3139–45 [Google Scholar]
  90. Mine M, Chen JM, Brivet M, Desguerre I, Marchant D. 90.  et al. 2007. A large genomic deletion in the PDHX gene caused by the retrotranspositional insertion of a full-length LINE-1 element. Hum. Mutat. 28:137–42 [Google Scholar]
  91. Monot C, Kuciak M, Viollet S, Mir AA, Gabus C. 91.  et al. 2013. The specificity and flexibility of L1 reverse transcription priming at imperfect T-tracts. PLoS Genet. 9:e1003499 [Google Scholar]
  92. Moran JV, DeBerardinis RJ, Kazazian HH Jr. 92.  1999. Exon shuffling by L1 retrotransposition. Science 283:1530–34 [Google Scholar]
  93. Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH Jr. 93.  1996. High frequency retrotransposition in cultured mammalian cells. Cell 87:917–27 [Google Scholar]
  94. Morgan HD, Sutherland HG, Martin DI, Whitelaw E. 94.  1999. Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 23:314–18 [Google Scholar]
  95. Morrish TA, Garcia-Perez JL, Stamato TD, Taccioli GE, Sekiguchi J, Moran JV. 95.  2007. Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres. Nature 446:208–12 [Google Scholar]
  96. Morrish TA, Gilbert N, Myers JS, Vincent BJ, Stamato TD. 96.  et al. 2002. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat. Genet. 31:159–65 [Google Scholar]
  97. Muckenfuss H, Hamdorf M, Held U, Perkovic M, Lower J. 97.  et al. 2006. APOBEC3 proteins inhibit human LINE-1 retrotransposition. J. Biol. Chem. 281:22161–72 [Google Scholar]
  98. Mulle JG. 98.  2012. Schizophrenia genetics: progress, at last. Curr. Opin. Genet. Dev. 22:238–44 [Google Scholar]
  99. Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV, Gage FH. 99.  2005. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435:903–10 [Google Scholar]
  100. Muotri AR, Marchetto MC, Coufal NG, Oefner R, Yeo G. 100.  et al. 2010. L1 retrotransposition in neurons is modulated by MeCP2. Nature 468:443–46 [Google Scholar]
  101. Muotri AR, Zhao C, Marchetto MC, Gage FH. 101.  2009. Environmental influence on L1 retrotransposons in the adult hippocampus. Hippocampus 19:1002–7 [Google Scholar]
  102. Naas TP, DeBerardinis RJ, Moran JV, Ostertag EM, Kingsmore SF. 102.  et al. 1998. An actively retrotransposing, novel subfamily of mouse L1 elements. EMBO J. 17:590–97 [Google Scholar]
  103. Niewiadomska AM, Tian C, Tan L, Wang T, Sarkis PT, Yu XF. 103.  2007. Differential inhibition of long interspersed element 1 by APOBEC3 does not correlate with high-molecular-mass-complex formation or P-body association. J. Virol. 81:9577–83 [Google Scholar]
  104. Nigumann P, Redik K, Matlik K, Speek M. 104.  2002. Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics 79:628–34 [Google Scholar]
  105. Ostertag EM, DeBerardinis RJ, Goodier JL, Zhang Y, Yang N. 105.  et al. 2002. A mouse model of human L1 retrotransposition. Nat. Genet. 32:655–60 [Google Scholar]
  106. Owen MJ, Williams HJ, O'Donovan MC. 106.  2009. Schizophrenia genetics: advancing on two fronts. Curr. Opin. Genet. Dev. 19:266–70 [Google Scholar]
  107. Perepelitsa-Belancio V, Deininger P. 107.  2003. RNA truncation by premature polyadenylation attenuates human mobile element activity. Nat. Genet. 35:363–66 [Google Scholar]
  108. Perrat PN, DasGupta S, Wang J, Theurkauf W, Weng Z. 108.  et al. 2013. Transposition-driven genomic heterogeneity in the Drosophila brain. Science 340:91–95 [Google Scholar]
  109. Pickeral OK, Makalowski W, Boguski MS, Boeke JD. 109.  2000. Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res. 10:411–15 [Google Scholar]
  110. Ray DA, Batzer MA. 110.  2011. Reading TE leaves: new approaches to the identification of transposable element insertions. Genome Res. 21:813–20 [Google Scholar]
  111. Rebollo R, Karimi MM, Bilenky M, Gagnier L, Miceli-Royer K. 111.  et al. 2011. Retrotransposon-induced heterochromatin spreading in the mouse revealed by insertional polymorphisms. PLoS Genet. 7:e1002301 [Google Scholar]
  112. Reichmann J, Crichton JH, Madej MJ, Taggart M, Gautier P. 112.  et al. 2012. Microarray analysis of LTR retrotransposon silencing identifies Hdac1 as a regulator of retrotransposon expression in mouse embryonic stem cells. PLoS Comput. Biol. 8:e1002486 [Google Scholar]
  113. Richardson SR, Narvaiza I, Planegger RA, Weitzman MD, Moran JV. 113.  2014. APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition. eLife 3:e02008 [Google Scholar]
  114. Rowe HM, Jakobsson J, Mesnard D, Rougemont J, Reynard S. 114.  et al. 2010. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463:237–40 [Google Scholar]
  115. Scott AF, Schmeckpeper BJ, Abdelrazik M, Comey CT, O'Hara B. 115.  et al. 1987. Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence. Genomics 1:113–25 [Google Scholar]
  116. Sen SK, Huang CT, Han K, Batzer MA. 116.  2007. Endonuclease-independent insertion provides an alternative pathway for L1 retrotransposition in the human genome. Nucleic Acids Res. 35:3741–51 [Google Scholar]
  117. Shiloh Y. 117.  2001. ATM (ataxia telangiectasia mutated): expanding roles in the DNA damage response and cellular homeostasis. Biochem. Soc. Trans. 29:661–66 [Google Scholar]
  118. Shukla R, Upton KR, Munoz-Lopez M, Gerhardt DJ, Fisher ME. 118.  et al. 2013. Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 153:101–11 [Google Scholar]
  119. Singer T, McConnell MJ, Marchetto MC, Coufal NG, Gage FH. 119.  2010. LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes?. Trends Neurosci. 33:345–54 [Google Scholar]
  120. Slotkin RK, Martienssen R. 120.  2007. Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 8:272–85 [Google Scholar]
  121. Solyom S, Ewing AD, Rahrmann EP, Doucet T, Nelson HH. 121.  et al. 2012. Extensive somatic L1 retrotransposition in colorectal tumors. Genome Res. 22:2328–38 [Google Scholar]
  122. Speek M. 122.  2001. Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol. Cell. Biol. 21:1973–85 [Google Scholar]
  123. Stenglein MD, Harris RS. 123.  2006. APOBEC3B and APOBEC3F inhibit L1 retrotransposition by a DNA deamination-independent mechanism. J. Biol. Chem. 281:16837–41 [Google Scholar]
  124. Stetson DB, Ko JS, Heidmann T, Medzhitov R. 124.  2008. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134:587–98 [Google Scholar]
  125. Swergold GD. 125.  1990. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol. Cell. Biol. 10:6718–29 [Google Scholar]
  126. Symer DE, Connelly C, Szak ST, Caputo EM, Cost GJ. 126.  et al. 2002. Human L1 retrotransposition is associated with genetic instability in vivo. Cell 110:327–38 [Google Scholar]
  127. Takasu M, Hayashi R, Maruya E, Ota M, Imura K. 127.  et al. 2007. Deletion of entire HLA-A gene accompanied by an insertion of a retrotransposon. Tissue Antigens 70:144–50 [Google Scholar]
  128. Taylor MS, Lacava J, Mita P, Molloy KR, Huang CR. 128.  et al. 2013. Affinity proteomics reveals human host factors implicated in discrete stages of LINE-1 retrotransposition. Cell 155:1034–48 [Google Scholar]
  129. Tchenio T, Casella JF, Heidmann T. 129.  2000. Members of the SRY family regulate the human LINE retrotransposons. Nucleic Acids Res. 28:411–15 [Google Scholar]
  130. Upton KR, Baillie JK, Faulkner GJ. 130.  2011. Is somatic retrotransposition a parasitic or symbiotic phenomenon?. Mob. Genet. Elements 1:279–82 [Google Scholar]
  131. van den Hurk JA, Meij IC, Seleme MC, Kano H, Nikopoulos K. 131.  et al. 2007. L1 retrotransposition can occur early in human embryonic development. Hum. Mol. Genet. 16:1587–92 [Google Scholar]
  132. van den Hurk JA, van de Pol DJ, Wissinger B, van Driel MA, Hoefsloot LH. 132.  et al. 2003. Novel types of mutation in the choroideremia (CHM) gene: a full-length L1 insertion and an intronic mutation activating a cryptic exon. Hum. Genet. 113:268–75 [Google Scholar]
  133. Wei W, Gilbert N, Ooi SL, Lawler JF, Ostertag EM. 133.  et al. 2001. Human L1 retrotransposition: cis preference versus trans complementation. Mol. Cell. Biol. 21:1429–39 [Google Scholar]
  134. Wheelan SJ, Aizawa Y, Han JS, Boeke JD. 134.  2005. Gene-breaking: a new paradigm for human retrotransposon-mediated gene evolution. Genome Res. 15:1073–78 [Google Scholar]
  135. Yang N, Kazazian HH Jr. 135.  2006. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat. Struct. Mol. Biol. 13:763–71 [Google Scholar]
  136. Yang N, Zhang L, Zhang Y, Kazazian HH Jr. 136.  2003. An important role for RUNX3 in human L1 transcription and retrotransposition. Nucleic Acids Res. 31:4929–40 [Google Scholar]
  137. Yu F, Zingler N, Schumann G, Stratling WH. 137.  2001. Methyl-CpG-binding protein 2 represses LINE-1 expression and retrotransposition but not Alu transcription. Nucleic Acids Res. 29:4493–501 [Google Scholar]
  138. Zhao K, Du J, Han X, Goodier JL, Li P. 138.  et al. 2013. Modulation of LINE-1 and Alu/SVA retrotransposition by Aicardi-Goutieres syndrome-related SAMHD1. Cell Rep. 4:1108–15 [Google Scholar]
/content/journals/10.1146/annurev-genet-120213-092412
Loading
/content/journals/10.1146/annurev-genet-120213-092412
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error