Recent advancements in single-cell and single-molecule imaging technologies have resolved biological processes in time and space that are fundamental to understanding the regulation of gene expression. Observations of single-molecule events in their cellular context have revealed highly dynamic aspects of transcriptional and post-transcriptional control in eukaryotic cells. This approach can relate transcription with mRNA abundance and lifetimes. Another key aspect of single-cell analysis is the cell-to-cell variability among populations of cells. Definition of heterogeneity has revealed stochastic processes, determined characteristics of under-represented cell types or transitional states, and integrated cellular behaviors in the context of multicellular organisms. In this review, we discuss novel aspects of gene expression of eukaryotic cells and multicellular organisms revealed by the latest advances in single-cell and single-molecule imaging technology.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ainaoui N, Hantelys F, Renaud-Gabardos E, Bunel M, Lopez F. 1.  et al. 2015. Promoter-dependent translation controlled by p54nrb and hnRNPM during myoblast differentiation. PLOS ONE 10:e0136466 [Google Scholar]
  2. Bahar Halpern K, Caspi I, Lemze D, Levy M, Landen S. 2.  et al. 2015. Nuclear retention of mRNA in mammalian tissues. Cell Rep. 13:2653–62 [Google Scholar]
  3. Bahar Halpern K, Tanami S, Landen S, Chapal M, Szlak L. 3.  et al. 2015. Bursty gene expression in the intact mammalian liver. Mol. Cell 58:147–56 [Google Scholar]
  4. Balazsi G, van Oudenaarden A, Collins JJ. 4.  2011. Cellular decision making and biological noise: from microbes to mammals. Cell 144:910–25 [Google Scholar]
  5. Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R. 5.  et al. 2009. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81:6813–22 [Google Scholar]
  6. Battich N, Stoeger T, Pelkmans L. 6.  2013. Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat. Methods 10:1127–33 [Google Scholar]
  7. Battich N, Stoeger T, Pelkmans L. 7.  2015. Control of transcript variability in single mammalian cells. Cell 163:1596–610 [Google Scholar]
  8. Belmont AS. 8.  2014. Large-scale chromatin organization: the good, the surprising, and the still perplexing. Curr. Opin. Cell Biol. 26:69–78 [Google Scholar]
  9. Ben-Ari Y, Brody Y, Kinor N, Mor A, Tsukamoto T. 9.  et al. 2010. The life of an mRNA in space and time. J. Cell Sci. 123:1761–74 [Google Scholar]
  10. Berger AB, Cabal GG, Fabre E, Duong T, Buc H. 10.  et al. 2008. High-resolution statistical mapping reveals gene territories in live yeast. Nat. Methods 5:1031–37 [Google Scholar]
  11. Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM. 11.  1998. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2:437–45 [Google Scholar]
  12. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S. 12.  et al. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–45 [Google Scholar]
  13. Bothma JP, Garcia HG, Esposito E, Schlissel G, Gregor T, Levine M. 13.  2014. Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos. PNAS 111:10598–603 [Google Scholar]
  14. Bothma JP, Garcia HG, Ng S, Perry MW, Gregor T, Levine M. 14.  2015. Enhancer additivity and non-additivity are determined by enhancer strength in the Drosophila embryo. eLife 4:e07956 [Google Scholar]
  15. Boyle S, Rodesch MJ, Halvensleben HA, Jeddeloh JA, Bickmore WA. 15.  2011. Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis. Chromosome Res. 19:901–9 [Google Scholar]
  16. Brodsky AS, Silver PA. 16.  2002. Identifying proteins that affect mRNA localization in living cells. Methods 26:151–55 [Google Scholar]
  17. Brody Y, Shav-Tal Y. 17.  2011. Transcription and splicing: when the twain meet. Transcription 2:216–20 [Google Scholar]
  18. Buxbaum AR, Haimovich G, Singer RH. 18.  2015. In the right place at the right time: visualizing and understanding mRNA localization. Nat. Rev. Mol. Cell Biol. 16:95–109 [Google Scholar]
  19. Buxbaum AR, Wu B, Singer RH. 19.  2014. Single β-actin mRNA detection in neurons reveals a mechanism for regulating its translatability. Science 343:419–22 [Google Scholar]
  20. Buxbaum AR, Yoon YJ, Singer RH, Park HY. 20.  2015. Single-molecule insights into mRNA dynamics in neurons. Trends Cell Biol. 25:468–75 [Google Scholar]
  21. Cabili MN, Dunagin MC, McClanahan PD, Biaesch A, Padovan-Merhar O. 21.  et al. 2015. Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol 16:20 [Google Scholar]
  22. Cai L, Dalal CK, Elowitz MB. 22.  2008. Frequency-modulated nuclear localization bursts coordinate gene regulation. Nature 455:485–90 [Google Scholar]
  23. Capoulade J, Wachsmuth M, Hufnagel L, Knop M. 23.  2011. Quantitative fluorescence imaging of protein diffusion and interaction in living cells. Nat. Biotechnol. 29:835–39 [Google Scholar]
  24. Carrillo Oesterreich F, Bieberstein N, Neugebauer KM. 24.  2011. Pause locally, splice globally. Trends Cell Biol 21:328–35 [Google Scholar]
  25. Caunt CJ, McArdle CA. 25.  2012. ERK phosphorylation and nuclear accumulation: insights from single-cell imaging. Biochem. Soc. Trans. 40:224–29 [Google Scholar]
  26. Chalancon G, Ravarani CN, Balaji S, Martinez-Arias A, Aravind L. 26.  et al. 2012. Interplay between gene expression noise and regulatory network architecture. Trends Genet 28:221–32 [Google Scholar]
  27. Chao JA, Patskovsky Y, Almo SC, Singer RH. 27.  2008. Structural basis for the coevolution of a viral RNA-protein complex. Nat. Struct. Mol. Biol. 15:103–5 [Google Scholar]
  28. Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W. 28.  et al. 2013. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–91 [Google Scholar]
  29. Chen J, Zhang Z, Li L, Chen BC, Revyakin A. 29.  et al. 2014. Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 156:1274–85 [Google Scholar]
  30. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. 30.  2015. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:aaa6090 [Google Scholar]
  31. Chenouard N, Smal I, de Chaumont F, Maska M, Sbalzarini IF. 31.  et al. 2014. Objective comparison of particle tracking methods. Nat. Methods 11:281–89 [Google Scholar]
  32. Cho WK, Jayanth N, English BP, Inoue T, Andrews JO. 32.  et al. 2016. RNA polymerase II cluster dynamics predict mRNA output in living cells. eLife 5:e13617 [Google Scholar]
  33. Chubb JR, Trcek T, Shenoy SM, Singer RH. 33.  2006. Transcriptional pulsing of a developmental gene. Curr. Biol. 16:1018–25 [Google Scholar]
  34. Cisse II, Izeddin I, Causse SZ, Boudarene L, Senecal A. 34.  et al. 2013. Real-time dynamics of RNA polymerase II clustering in live human cells. Science 341:664–67 [Google Scholar]
  35. Clevers H. 35.  2013. The intestinal crypt, a prototype stem cell compartment. Cell 154:274–84 [Google Scholar]
  36. Cohen-Saidon C, Cohen AA, Sigal A, Liron Y, Alon U. 36.  2009. Dynamics and variability of ERK2 response to EGF in individual living cells. Mol. Cell 36:885–93 [Google Scholar]
  37. Coleman RA, Liu Z, Darzacq X, Tjian R, Singer RH, Lionnet T. 37.  2016. Imaging transcription: past, present, and future. Cold Spring Harb. Symp. Quant. Biol. doi:10.1101/sqb.2015.80.02720 [Google Scholar]
  38. Coulon A, Ferguson ML, de Turris V, Palangat M, Chow CC, Larson DR. 38.  2014. Kinetic competition during the transcription cycle results in stochastic RNA processing. eLife 3:e03939 [Google Scholar]
  39. Cremer T, Cremer C. 39.  2001. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2:292–301 [Google Scholar]
  40. Dacheux E, Firczuk H, McCarthy JE. 40.  2015. Rate control in yeast protein synthesis at the population and single-cell levels. Biochem. Soc. Trans. 43:1266–70 [Google Scholar]
  41. Dar RD, Razooky BS, Singh A, Trimeloni TV, McCollum JM. 41.  et al. 2012. Transcriptional burst frequency and burst size are equally modulated across the human genome. PNAS 109:17454–59 [Google Scholar]
  42. Decker CJ, Parker R. 42.  2012. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb. Perspect. Biol. 4:a012286 [Google Scholar]
  43. Dubarry M, Loiodice I, Chen CL, Thermes C, Taddei A. 43.  2011. Tight protein-DNA interactions favor gene silencing. Genes Dev 25:1365–70 [Google Scholar]
  44. Dujardin G, Lafaille C, de la Mata M, Marasco LE, Munoz MJ. 44.  et al. 2014. How slow RNA polymerase II elongation favors alternative exon skipping. Mol. Cell 54:683–90 [Google Scholar]
  45. Ea V, Baudement MO, Lesne A, Forne T. 45.  2015. Contribution of topological domains and loop formation to 3D chromatin organization. Genes (Basel) 6:734–50 [Google Scholar]
  46. Elf J, Li GW, Xie XS. 46.  2007. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316:1191–94 [Google Scholar]
  47. Eliscovich C, Buxbaum AR, Katz ZB, Singer RH. 47.  2013. mRNA on the move: the road to its biological destiny. J. Biol. Chem. 288:20361–68 [Google Scholar]
  48. Fanucchi S, Shibayama Y, Burd S, Weinberg MS, Mhlanga MM. 48.  2013. Chromosomal contact permits transcription between coregulated genes. Cell 155:606–20 [Google Scholar]
  49. Featherstone K, Hey K, Momiji H, McNamara AV, Patist AL. 49.  et al. 2016. Spatially coordinated dynamic gene transcription in living pituitary tissue. eLife 5:e0894 [Google Scholar]
  50. Femino AM, Fay FS, Fogarty K, Singer RH. 50.  1998. Visualization of single RNA transcripts in situ. Science 280:585–90 [Google Scholar]
  51. Finlan LE, Sproul D, Thomson I, Boyle S, Kerr E. 51.  et al. 2008. Recruitment to the nuclear periphery can alter expression of genes in human cells. PLOS Genet 4:e1000039 [Google Scholar]
  52. Fusco D, Accornero N, Lavoie B, Shenoy SM, Blanchard JM. 52.  et al. 2003. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr. Biol. 13:161–67 [Google Scholar]
  53. Garcia HG, Tikhonov M, Lin A, Gregor T. 53.  2013. Quantitative imaging of transcription in living Drosophila embryos links polymerase activity to patterning. Curr. Biol. 23:2140–45 [Google Scholar]
  54. Gebhardt JC, Suter DM, Roy R, Zhao ZW, Chapman AR. 54.  et al. 2013. Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat. Methods 10:421–26 [Google Scholar]
  55. Gibcus JH, Dekker J. 55.  2013. The hierarchy of the 3D genome. Mol. Cell 49:773–82 [Google Scholar]
  56. Giorgetti L, Galupa R, Nora EP, Piolot T, Lam F. 56.  et al. 2014. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157:950–63 [Google Scholar]
  57. Gregor T, Garcia HG, Little SC. 57.  2014. The embryo as a laboratory: quantifying transcription in Drosophila. Trends Genet 30:364–75 [Google Scholar]
  58. Grimm JB, English BP, Chen J, Slaughter JP, Zhang Z. 58.  et al. 2015. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12:244–50 [Google Scholar]
  59. Grun D, Lyubimova A, Kester L, Wiebrands K, Basak O. 59.  et al. 2015. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525:251–55 [Google Scholar]
  60. Grunwald D, Singer RH. 60.  2010. In vivo imaging of labelled endogenous β-actin mRNA during nucleocytoplasmic transport. Nature 467:604–7 [Google Scholar]
  61. Hager GL, McNally JG, Misteli T. 61.  2009. Transcription dynamics. Mol. Cell 35:741–53 [Google Scholar]
  62. Haimovich G, Choder M, Singer RH, Trcek T. 62.  2013. The fate of the messenger is pre-determined: a new model for regulation of gene expression. Biochim. Biophys. Acta 1829:643–53 [Google Scholar]
  63. Halstead JM, Lionnet T, Wilbertz JH, Wippich F, Ephrussi A. 63.  et al. 2015. Translation. An RNA biosensor for imaging the first round of translation from single cells to living animals. Science 347:1367–671 [Google Scholar]
  64. Hansen AS, O'Shea EK. 64.  2013. Promoter decoding of transcription factor dynamics involves a trade-off between noise and control of gene expression. Mol. Syst. Biol. 9:704 [Google Scholar]
  65. Hansen AS, O'Shea EK. 65.  2015. Limits on information transduction through amplitude and frequency regulation of transcription factor activity. eLife 4:e06559 [Google Scholar]
  66. Harper CV, Finkenstadt B, Woodcock DJ, Friedrichsen S, Semprini S. 66.  et al. 2011. Dynamic analysis of stochastic transcription cycles. PLOS Biol 9:e1000607 [Google Scholar]
  67. Hess ST, Girirajan TP, Mason MD. 67.  2006. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91:4258–72 [Google Scholar]
  68. Hocine S, Raymond P, Zenklusen D, Chao JA, Singer RH. 68.  2013. Single-molecule analysis of gene expression using two-color RNA labeling in live yeast. Nat. Methods 10:119–21 [Google Scholar]
  69. Hocine S, Vera M, Zenklusen D, Singer RH. 69.  2015. Promoter-autonomous functioning in a controlled environment using single molecule FISH. Sci. Rep. 5:9934 [Google Scholar]
  70. Huttelmaier S, Zenklusen D, Lederer M, Dictenberg J, Lorenz M. 70.  et al. 2005. Spatial regulation of β-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438:512–15 [Google Scholar]
  71. Imakaev MV, Fudenberg G, Mirny LA. 71.  2015. Modeling chromosomes: beyond pretty pictures. FEBS Lett 589:3031–36 [Google Scholar]
  72. Itzkovitz S, Lyubimova A, Blat IC, Maynard M, van Es J. 72.  et al. 2012. Single-molecule transcript counting of stem-cell markers in the mouse intestine. Nat. Cell Biol. 14:106–14 [Google Scholar]
  73. Izeddin I, Recamier V, Bosanac L, Cisse II, Boudarene L. 73.  et al. 2014. Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus. eLife 3:e02230 [Google Scholar]
  74. Jegou T, Chung I, Heuvelman G, Wachsmuth M, Gorisch SM. 74.  et al. 2009. Dynamics of telomeres and promyelocytic leukemia nuclear bodies in a telomerase-negative human cell line. Mol. Biol. Cell 20:2070–82 [Google Scholar]
  75. Katz ZB, English BP, Lionnet T, Yoon YJ, Monnier N. 75.  et al. 2016. Mapping translation “hot-spots” in live cells by tracking single molecules of mRNA and ribosomes. eLife 5:310415 [Google Scholar]
  76. Khanna N, Hu Y, Belmont AS. 76.  2014. HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation. Curr. Biol. 24:1138–44 [Google Scholar]
  77. Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ. 77.  et al. 2004. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat. Genet. 36:147–50 [Google Scholar]
  78. Lange S, Katayama Y, Schmid M, Burkacky O, Brauchle C. 78.  et al. 2008. Simultaneous transport of different localized mRNA species revealed by live-cell imaging. Traffic 9:1256–67 [Google Scholar]
  79. Larson DR, Fritzsch C, Sun L, Meng X, Lawrence DS, Singer RH. 79.  2013. Direct observation of frequency modulated transcription in single cells using light activation. eLife 2:e00750 [Google Scholar]
  80. Larson DR, Singer RH, Zenklusen D. 80.  2009. A single molecule view of gene expression. Trends Cell Biol 19:630–37 [Google Scholar]
  81. Lecuyer E, Yoshida H, Parthasarathy N, Alm C, Babak T. 81.  et al. 2007. Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131:174–87 [Google Scholar]
  82. Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL. 82.  et al. 2014. Highly multiplexed subcellular RNA sequencing in situ. Science 343:1360–63 [Google Scholar]
  83. Lehner B. 83.  2008. Selection to minimise noise in living systems and its implications for the evolution of gene expression. Mol. Syst. Biol. 4:170 [Google Scholar]
  84. Levesque MJ, Ginart P, Wei Y, Raj A. 84.  2013. Visualizing SNVs to quantify allele-specific expression in single cells. Nat. Methods 10:865–67 [Google Scholar]
  85. Levesque MJ, Raj A. 85.  2013. Single-chromosome transcriptional profiling reveals chromosomal gene expression regulation. Nat. Methods 10:246–48 [Google Scholar]
  86. Levsky JM, Shenoy SM, Pezo RC, Singer RH. 86.  2002. Single-cell gene expression profiling. Science 297:836–40 [Google Scholar]
  87. Lidstrom ME, Konopka MC. 87.  2010. The role of physiological heterogeneity in microbial population behavior. Nat. Chem. Biol. 6:705–12 [Google Scholar]
  88. Lin Y, Sohn CH, Dalal CK, Cai L, Elowitz MB. 88.  2015. Combinatorial gene regulation by modulation of relative pulse timing. Nature 527:54–58 [Google Scholar]
  89. Lionnet T, Czaplinski K, Darzacq X, Shav-Tal Y, Wells AL. 89.  et al. 2011. A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat. Methods 8:165–70 [Google Scholar]
  90. Lionnet T, Singer RH. 90.  2012. Transcription goes digital. EMBO Rep 13:313–21 [Google Scholar]
  91. Liu N, Pan T. 91.  2016. N-methyladenosine-encoded epitranscriptomics. Nat. Struct. Mol. Biol. 23:98–102 [Google Scholar]
  92. Liu Z, Lavis LD, Betzig E. 92.  2015. Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58:644–59 [Google Scholar]
  93. Liu Z, Legant WR, Chen BC, Li L, Grimm JB. 93.  et al. 2014. 3D imaging of Sox2 enhancer clusters in embryonic stem cells. eLife 3:e04236 [Google Scholar]
  94. Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N. 94.  et al. 2008. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3:373–82 [Google Scholar]
  95. Lubeck E, Cai L. 95.  2012. Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat. Methods 9:743–48 [Google Scholar]
  96. Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L. 96.  2014. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11:360–61 [Google Scholar]
  97. Lucas T, Ferraro T, Roelens B, De Las Heras Chanes J, Walczak AM. 97.  et al. 2013. Live imaging of bicoid-dependent transcription in Drosophila embryos. Curr. Biol. 23:2135–39 [Google Scholar]
  98. Maheshri N, O'Shea EK. 98.  2007. Living with noisy genes: how cells function reliably with inherent variability in gene expression. Annu. Rev. Biophys. Biomol. Struct. 36:413–34 [Google Scholar]
  99. Mazza D, Abernathy A, Golob N, Morisaki T, McNally JG. 99.  2012. A benchmark for chromatin binding measurements in live cells. Nucleic Acids Res 40:e119 [Google Scholar]
  100. Miermont A, Waharte F, Hu S, McClean MN, Bottani S. 100.  et al. 2013. Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding. PNAS 110:5725–30 [Google Scholar]
  101. Monnier N, Barry Z, Park HY, Su KC, Katz Z. 101.  et al. 2015. Inferring transient particle transport dynamics in live cells. Nat. Methods 12:838–40 [Google Scholar]
  102. Mora-Bermudez F, Ellenberg J. 102.  2007. Measuring structural dynamics of chromosomes in living cells by fluorescence microscopy. Methods 41:158–67 [Google Scholar]
  103. Morisaki T, Lyon K, DeLuca KF, DeLuca JG, English BP. 103.  et al. 2016. Real-time quantification of single RNA translation dynamics in living cells. Science 352:1425–29 [Google Scholar]
  104. Mueller F, Senecal A, Tantale K, Marie-Nelly H, Ly N. 104.  et al. 2013. FISH-quant: automatic counting of transcripts in 3D FISH images. Nat. Methods 10:277–78 [Google Scholar]
  105. Muller I, Boyle S, Singer RH, Bickmore WA, Chubb JR. 105.  2010. Stable morphology, but dynamic internal reorganisation, of interphase human chromosomes in living cells. PLOS ONE 5:e11560 [Google Scholar]
  106. Munsky B, Neuert G, van Oudenaarden A. 106.  2012. Using gene expression noise to understand gene regulation. Science 336:183–87 [Google Scholar]
  107. Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E. 107.  et al. 2013. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59–64 [Google Scholar]
  108. Nelles DA, Fang MY, O'Connell MR, Xu JL, Markmiller SJ. 108.  et al. 2016. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165:488–496 [Google Scholar]
  109. Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA. 109.  et al. 2004. Oscillations in NF-κB signaling control the dynamics of gene expression. Science 306:704–8 [Google Scholar]
  110. Novick A, Weiner M. 110.  1957. Enzyme induction as an all-or-none phenomenon. PNAS 43:553–66 [Google Scholar]
  111. Ochiai H, Sugawara T, Yamamoto T. 111.  2015. Simultaneous live imaging of the transcription and nuclear position of specific genes. Nucleic Acids Res 43:e127 [Google Scholar]
  112. Oddone A, Vilanova IV, Tam J, Lakadamyali M. 112.  2014. Super-resolution imaging with stochastic single-molecule localization: concepts, technical developments, and biological applications. Microsc. Res. Tech. 77:502–9 [Google Scholar]
  113. Padovan-Merhar O, Nair GP, Biaesch AG, Mayer A, Scarfone S. 113.  et al. 2015. Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms. Mol. Cell 58:339–52 [Google Scholar]
  114. Park HY, Buxbaum AR, Singer RH. 114.  2010. Single mRNA tracking in live cells. Methods Enzymol 472:387–406 [Google Scholar]
  115. Park HY, Lim H, Yoon YJ, Follenzi A, Nwokafor C. 115.  et al. 2014. Visualization of dynamics of single endogenous mRNA labeled in live mouse. Science 343:422–24 [Google Scholar]
  116. Park HY, Trcek T, Wells AL, Chao JA, Singer RH. 116.  2012. An unbiased analysis method to quantify mRNA localization reveals its correlation with cell motility. Cell Rep 1:179–84 [Google Scholar]
  117. Phair RD, Misteli T. 117.  2000. High mobility of proteins in the mammalian cell nucleus. Nature 404:604–9 [Google Scholar]
  118. Purvis JE, Lahav G. 118.  2013. Encoding and decoding cellular information through signaling dynamics. Cell 152:945–56 [Google Scholar]
  119. Qu X, Lykke-Andersen S, Nasser T, Saguez C, Bertrand E. 119.  et al. 2009. Assembly of an export-competent mRNP is needed for efficient release of the 3′-end processing complex after polyadenylation. Mol. Cell Biol. 29:5327–38 [Google Scholar]
  120. Raj A, Peskin CS. 120.  2006. The influence of chromosome flexibility on chromosome transport during anaphase A. PNAS 103:5349–54 [Google Scholar]
  121. Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S. 121.  2008. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5:877–79 [Google Scholar]
  122. Rust MJ, Bates M, Zhuang X. 122.  2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3:793–95 [Google Scholar]
  123. Saroufim MA, Bensidoun P, Raymond P, Rahman S, Krause MR. 123.  et al. 2015. The nuclear basket mediates perinuclear mRNA scanning in budding yeast. J. Cell Biol. 211:1131–40 [Google Scholar]
  124. Sato T, Clevers H. 124.  2013. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340:1190–94 [Google Scholar]
  125. Semrau S, Crosetto N, Bienko M, Boni M, Bernasconi P. 125.  et al. 2014. FuseFISH: robust detection of transcribed gene fusions in single cells. Cell Rep 6:18–23 [Google Scholar]
  126. Senecal A, Munsky B, Proux F, Ly N, Braye FE. 126.  et al. 2014. Transcription factors modulate c-Fos transcriptional bursts. Cell Rep 8:75–83 [Google Scholar]
  127. Shachar S, Voss TC, Pegoraro G, Sciascia N, Misteli T. 127.  2015. Identification of gene positioning factors using high-throughput imaging mapping. Cell 162:911–23 [Google Scholar]
  128. Shaffer SM, Wu MT, Levesque MJ, Raj A. 128.  2013. Turbo FISH: a method for rapid single molecule RNA FISH. PLOS ONE 8:e75120 [Google Scholar]
  129. Shalem O, Sanjana NE, Zhang F. 129.  2015. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 16:299–311 [Google Scholar]
  130. Singh A, Razooky B, Cox CD, Simpson ML, Weinberger LS. 130.  2010. Transcriptional bursting from the HIV-1 promoter is a significant source of stochastic noise in HIV-1 gene expression. Biophys. J. 98:L32–34 [Google Scholar]
  131. Sinnamon JR, Czaplinski K. 131.  2014. RNA detection in situ with FISH-STICs. RNA 20:260–66 [Google Scholar]
  132. Skupsky R, Burnett JC, Foley JE, Schaffer DV, Arkin AP. 132.  2010. HIV promoter integration site primarily modulates transcriptional burst size rather than frequency. PLOS Comput. Biol. 6:e1000952 [Google Scholar]
  133. Smith C, Lari A, Derrer CP, Ouwehand A, Rossouw A. 133.  et al. 2015. In vivo single-particle imaging of nuclear mRNA export in budding yeast demonstrates an essential role for Mex67p. J. Cell Biol. 211:1121–30 [Google Scholar]
  134. Smith CS, Preibisch S, Joseph A, Abrahamsson S, Rieger B. 134.  et al. 2015. Nuclear accessibility of β-actin mRNA is measured by 3D single-molecule real-time tracking. J. Cell Biol. 209:609–19 [Google Scholar]
  135. Stasevich TJ, Hayashi-Takanaka Y, Sato Y, Maehara K, Ohkawa Y. 135.  et al. 2014. Regulation of RNA polymerase II activation by histone acetylation in single living cells. Nature 516:272–75 [Google Scholar]
  136. Suter DM, Molina N, Gatfield D, Schneider K, Schibler U, Naef F. 136.  2011. Mammalian genes are transcribed with widely different bursting kinetics. Science 332:472–74 [Google Scholar]
  137. Sutherland H, Bickmore WA. 137.  2009. Transcription factories: gene expression in unions?. Nat. Rev. Genet. 10:457–66 [Google Scholar]
  138. Takizawa PA, Vale RD. 138.  2000. The myosin motor, Myo4p, binds Ash1 mRNA via the adapter protein, She3p. PNAS 97:5273–78 [Google Scholar]
  139. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. 139.  2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–46 [Google Scholar]
  140. Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M. 140.  et al. 2010. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329:533–38 [Google Scholar]
  141. Torres-Padilla ME, Chambers I. 141.  2014. Transcription factor heterogeneity in pluripotent stem cells: a stochastic advantage. Development 141:2173–81 [Google Scholar]
  142. Trcek T, Chao JA, Larson DR, Park HY, Zenklusen D. 142.  et al. 2012. Single-mRNA counting using fluorescent in situ hybridization in budding yeast. Nat. Protoc. 7:408–19 [Google Scholar]
  143. Trcek T, Grosch M, York A, Shroff H, Lionnet T, Lehmann R. 143.  2015. Drosophila germ granules are structured and contain homotypic mRNA clusters. Nat. Commun. 6:7962 [Google Scholar]
  144. Trcek T, Larson DR, Moldon A, Query CC, Singer RH. 144.  2011. Single-molecule mRNA decay measurements reveal promoter-regulated mRNA stability in yeast. Cell 147:1484–97 [Google Scholar]
  145. Van Keymeulen A, Blanpain C. 145.  2012. Tracing epithelial stem cells during development, homeostasis, and repair. J. Cell Biol. 197:575–84 [Google Scholar]
  146. Vargas DY, Shah K, Batish M, Levandoski M, Sinha S. 146.  et al. 2011. Single-molecule imaging of transcriptionally coupled and uncoupled splicing. Cell 147:1054–65 [Google Scholar]
  147. Vera M, Pani B, Griffiths LA, Muchardt C, Abbott CM. 147.  et al. 2014. The translation elongation factor eEF1A1 couples transcription to translation during heat shock response. eLife 3:e03164 [Google Scholar]
  148. Vinuelas J, Kaneko G, Coulon A, Vallin E, Morin V. 148.  et al. 2013. Quantifying the contribution of chromatin dynamics to stochastic gene expression reveals long, locus-dependent periods between transcriptional bursts. BMC Biol 11:15 [Google Scholar]
  149. Viswanathan S, Williams ME, Bloss EB, Stasevich TJ, Speer CM. 149.  et al. 2015. High-performance probes for light and electron microscopy. Nat. Methods 12:568–76 [Google Scholar]
  150. Wang C, Han B, Zhou R, Zhuang X. 150.  2016. Real-time imaging of translation on single mRNA transcripts in live cells. Cell 165:990–1001 [Google Scholar]
  151. Weill L, Belloc E, Bava FA, Mendez R. 151.  2012. Translational control by changes in poly(A) tail length: recycling mRNAs. Nat. Struct. Mol. Biol. 19:577–85 [Google Scholar]
  152. Williamson I, Berlivet S, Eskeland R, Boyle S, Illingworth RS. 152.  et al. 2014. Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization. Genes Dev. 28:2778–91 [Google Scholar]
  153. Woringer M, Darzacq X, Izeddin I. 153.  2014. Geometry of the nucleus: a perspective on gene expression regulation. Curr. Opin. Chem. Biol. 20:112–19 [Google Scholar]
  154. Wu B, Buxbaum AR, Katz ZB, Yoon YJ, Singer RH. 154.  2015. Quantifying protein-mRNA interactions in single live cells. Cell 162:211–20 [Google Scholar]
  155. Wu B, Eliscovich C, Yoon Y, Singer RH. 155.  2016. Translation dynamics of single mRNAs in live cells and neurons. Science 352:1430–35 [Google Scholar]
  156. Xu H, Sepulveda LA, Figard L, Sokac AM, Golding I. 156.  2015. Combining protein and mRNA quantification to decipher transcriptional regulation. Nat. Methods 12:739–42 [Google Scholar]
  157. Yan X, Hoek TA, Vale RD, Tanenbaum ME. 157.  2016. Dynamics of translation of single mRNA molecules in vivo. Cell 165:976–89 [Google Scholar]
  158. Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G. 158.  et al. 2015. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–42 [Google Scholar]
  159. Zenklusen D, Larson DR, Singer RH. 159.  2008. Single-RNA counting reveals alternative modes of gene expression in yeast. Nat. Struct. Mol. Biol. 15:1263–71 [Google Scholar]
  160. Zid BM, O'Shea EK. 160.  2014. Promoter sequences direct cytoplasmic localization and translation of mRNAs during starvation in yeast. Nature 514:117–21 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error