1932

Abstract

Transition metals are required trace elements for all forms of life. Due to their unique inorganic and redox properties, transition metals serve as cofactors for enzymes and other proteins. In bacterial pathogenesis, the vertebrate host represents a rich source of nutrient metals, and bacteria have evolved diverse metal acquisition strategies. Host metal homeostasis changes dramatically in response to bacterial infections, including production of metal sequestering proteins and the bombardment of bacteria with toxic levels of metals. In response, bacteria have evolved systems to subvert metal sequestration and toxicity. The coevolution of hosts and their bacterial pathogens in the battle for metals has uncovered emerging paradigms in social microbiology, rapid evolution, host specificity, and metal homeostasis across domains. This review focuses on recent advances and open questions in our understanding of the complex role of transition metals at the host-pathogen interface.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120215-035146
2016-11-23
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/genet/50/1/annurev-genet-120215-035146.html?itemId=/content/journals/10.1146/annurev-genet-120215-035146&mimeType=html&fmt=ahah

Literature Cited

  1. Abergel RJ, Wilson MK, Arceneaux JE, Hoette TM, Strong RK. 1.  et al. 2006. Anthrax pathogen evades the mammalian immune system through stealth siderophore production. PNAS 103:18499–503 [Google Scholar]
  2. Achouiti A, Vogl T, Endeman H, Mortensen BL, Laterre PF. 2.  et al. 2014. Myeloid-related protein-8/14 facilitates bacterial growth during pneumococcal pneumonia. Thorax 69:1034–42 [Google Scholar]
  3. Achouiti A, Vogl T, Urban CF, Rohm M, Hommes TJ. 3.  et al. 2012. Myeloid-related protein-14 contributes to protective immunity in gram-negative pneumonia derived sepsis. PLOS Pathog. 8:e1002987 [Google Scholar]
  4. Allen CE, Schmitt MP. 4.  2009. HtaA is an iron-regulated hemin binding protein involved in the utilization of heme iron in Corynebacterium diphtheriae. J. Bacteriol. 191:2638–48 [Google Scholar]
  5. Almiron M, Martinez M, Sanjuan N, Ugalde RA. 5.  2001. Ferrochelatase is present in Brucella abortus and is critical for its intracellular survival and virulence. Infect. Immun. 69:6225–30 [Google Scholar]
  6. Ampel NM, van Wyck DB, Aguirre ML, Willis DG, Popp RA. 6.  1989. Resistance to infection in murine β-thalassemia. Infect. Immun. 57:1011–17 [Google Scholar]
  7. Andersen SB, Marvig RL, Molin S, Johansen HK, Griffin AS. 7.  2015. Long-term social dynamics drive loss of function in pathogenic bacteria. PNAS 112:10756–61Evolutionary analysis of long-term infection showed that local competition drives siderophore cheating and community loss of function. [Google Scholar]
  8. Arezes J, Jung G, Gabayan V, Valore E, Ruchala P. 8.  et al. Hepcidin-induced hypoferremia is a critical host defense mechanism against the siderophilic bacterium Vibrio vulnificus. Cell Host Microbe 17:47–57 [Google Scholar]
  9. Bachman MA, Lenio S, Schmidt L, Oyler JE, Weiser JN. 9.  2012. Interaction of lipocalin 2, transferrin, and siderophores determines the replicative niche of Klebsiella pneumoniae during pneumonia. mBio 3:e00224–11 [Google Scholar]
  10. Barber MF, Elde NC. 10.  2014. Escape from bacterial iron piracy through rapid evolution of transferrin. Science 346:1362–66Evolutionary and biochemical analyses showed that rapid evolution drives host-pathogen interactions in metal acquisition. [Google Scholar]
  11. Barber MF, Elde NC. 11.  2015. Buried treasure: evolutionary perspectives on microbial iron piracy. Trends Genet. 31:627–36 [Google Scholar]
  12. Barber MF, Kronenberg Z, Yandell M, Elde NC. 12.  2016. Antimicrobial functions of lactoferrin promote genetic conflicts in ancient primates and modern humans. PLOS Genet. 12:5e1006063 [Google Scholar]
  13. Bhutta ZA, Black RE, Brown KH, Gardner JM, Gore S. 13.  et al. 1999. Prevention of diarrhea and pneumonia by zinc supplementation in children in developing countries: pooled analysis of randomized controlled trials. J. Pediatr. 135:689–97 [Google Scholar]
  14. Blackwell JM, Searle S, Mohamed H, White JK. 14.  2003. Divalent cation transport and susceptibility to infectious and autoimmune disease: continuation of the Ity/Lsh/Bcg/Nramp1/Slc11a1 gene story. Immunol. Lett. 85:197–203 [Google Scholar]
  15. Blair DE, Schuttelkopf AW, MacRae JI, van Aalten DM. 15.  2005. Structure and metal-dependent mechanism of peptidoglycan deacetylase, a streptococcal virulence factor. PNAS 102:15429–34 [Google Scholar]
  16. Bobrov AG, Kirillina O, Fetherston JD, Miller MC, Burlison JA, Perry RD. 16.  2014. The Yersinia pestis siderophore, yersiniabactin, and the ZnuABC system both contribute to zinc acquisition and the development of lethal septicaemic plague in mice. Mol. Microbiol. 93:759–75This study discovered a dedicated Zn2+-siderophore importer and established its importance during infection. [Google Scholar]
  17. Bolick DT, Kolling GL, Moore JH Jr., de Oliveira LA, Tung K. 17.  et al. 2014. Zinc deficiency alters host response and pathogen virulence in a mouse model of enteroaggregative Escherichia coli–induced diarrhea. Gut Microbes 5:618–27 [Google Scholar]
  18. Botella H, Peyron P, Levillain F, Poincloux R, Poquet Y. 18.  et al. 2011. Mycobacterial P1-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10:248–59 [Google Scholar]
  19. Braun V, Hantke K. 19.  2011. Recent insights into iron import by bacteria. Curr. Opin. Chem. Biol. 15:328–34 [Google Scholar]
  20. Braymer JJ, Giedroc DP. 20.  2014. Recent developments in copper and zinc homeostasis in bacterial pathogens. Curr. Opin. Chem. Biol. 19:59–66 [Google Scholar]
  21. Burne RA, Chen YY. 21.  2000. Bacterial ureases in infectious diseases. Microbes Infect. 2:533–42 [Google Scholar]
  22. Carlomagno MA, Coghlan LG, McMurray DN. 22.  1986. Chronic zinc deficiency and listeriosis in rats: acquired cellular resistance and response to vaccination. Med. Microbiol. Immunol. 175:271–80 [Google Scholar]
  23. Carrano CJ, Raymond KN. 23.  1979. Ferric ion sequestering agents. 2. Kinetics and mechanism of iron removal from transferrin by enterobactin and synthetic tricatechols. J. Am. Chem. Soc. 101:5401–4 [Google Scholar]
  24. Cassat JE, Skaar EP. 24.  2013. Iron in infection and immunity. Cell Host Microbe 13:509–19 [Google Scholar]
  25. Chaturvedi KS, Henderson JP. 25.  2014. Pathogenic adaptations to host-derived antibacterial copper. Front. Cell Infect. Microbiol. 4:3 [Google Scholar]
  26. Chaturvedi KS, Hung CS, Crowley JR, Stapleton AE, Henderson JP. 26.  2012. The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat. Chem. Biol. 8:731–36Demonstrated that yersiniabactin secreted by uropathogenic Escherichia coli binds copper to resist toxicity during infection. [Google Scholar]
  27. Choby JE, Skaar EP. 27.  2016. Heme acquisition and synthesis in bacterial pathogens. J. Mol. Biol. 428:3408–28 [Google Scholar]
  28. Clarke SR, Foster SJ. 28.  2008. IsdA protects Staphylococcus aureus against the bactericidal protease activity of apolactoferrin. Infect. Immun. 76:1518–26 [Google Scholar]
  29. Corbett D, Wang J, Schuler S, Lopez-Castejon G, Glenn S. 29.  et al. 2012. Two zinc uptake systems contribute to the full virulence of Listeria monocytogenes during growth in vitro and in vivo. Infect. Immun. 80:14–21 [Google Scholar]
  30. Corbin BD, Seeley EH, Raab A, Feldmann J, Miller MR. 30.  et al. 2008. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319:962–65 [Google Scholar]
  31. Cordes LG, Brink EW, Checko PJ, Lentnek A, Lyons RW. 31.  et al. 1981. A cluster of Acinetobacter pneumonia in foundry workers. Ann. Intern. Med. 95:688–93 [Google Scholar]
  32. Damo SM, Kehl-Fie TE, Sugitani N, Holt ME, Rathi S. 32.  et al. 2013. Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens. PNAS 110:3841–46This structural analysis of calprotectin established the molecular basis for high-affinity manganese binding. [Google Scholar]
  33. Deriu E, Liu JZ, Pezeshki M, Edwards RA, Ochoa RJ. 33.  et al. 2013. Probiotic bacteria reduce Salmonella Typhimurium intestinal colonization by competing for iron. Cell Host Microbe 14:26–37 [Google Scholar]
  34. Dhaenens L, Szczebara F, Husson MO. 34.  1997. Identification, characterization, and immunogenicity of the lactoferrin-binding protein from Helicobacter pylori. Infect. Immun. 65:514–18 [Google Scholar]
  35. Diaz-Ochoa VE, Lam D, Lee CS, Klaus S, Behnsen J, Liu JZ. 35.  et al. 2016. Salmonella mediates oxidative stress and thrives in the inflamed gut by evading calprotectin-mediated manganese sequestration. Cell Host Microbe 19:814–25 [Google Scholar]
  36. Dintilhac A, Alloing G, Granadel C, Claverys JP. 36.  1997. Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol. Microbiol. 25:727–39 [Google Scholar]
  37. Djoko KY, Franiek JA, Edwards JL, Falsetta ML, Kidd SP. 37.  et al. 2012. Phenotypic characterization of a copA mutant of Neisseria gonorrhoeae identifies a link between copper and nitrosative stress. Infect. Immun. 80:1065–71 [Google Scholar]
  38. Djoko KY, McEwan AG. 38.  2013. Antimicrobial action of copper is amplified via inhibition of heme biosynthesis. ACS Chem. Biol. 8:2217–23 [Google Scholar]
  39. Djoko KY, Ong CL, Walker MJ, McEwan AG. 39.  2015. The role of copper and zinc toxicity in innate immune defense against bacterial pathogens. J. Biol. Chem. 290:18954–61 [Google Scholar]
  40. D'Orazio M, Mastropasqua MC, Cerasi M, Pacello F, Consalvo A. 40.  et al. 2015. The capability of Pseudomonas aeruginosa to recruit zinc under conditions of limited metal availability is affected by inactivation of the ZnuABC transporter. Metallomics 7:1023–35 [Google Scholar]
  41. Eaton KA, Krakowka S. 41.  1994. Effect of gastric pH on urease-dependent colonization of gnotobiotic piglets by Helicobacter pylori. Infect. Immun. 62:3604–7 [Google Scholar]
  42. Farrand AJ, Haley KP, Lareau NM, Heilbronner S, McLean JA. 42.  et al. 2015. An iron-regulated autolysin remodels the cell wall to facilitate heme acquisition in Staphylococcus lugdunensis. Infect. Immun. 83:3578–89 [Google Scholar]
  43. Fischbach MA, Lin H, Zhou L, Yu Y, Abergel RJ. 43.  et al. 2006. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. PNAS 103:16502–7 [Google Scholar]
  44. Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA. 44.  et al. 2004. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432:917–21 [Google Scholar]
  45. Fritsche G, Nairz M, Libby SJ, Fang FC, Weiss G. 45.  2012. Slc11a1 (Nramp1) impairs growth of Salmonella enterica serovar typhimurium in macrophages via stimulation of lipocalin-2 expression. J. Leukoc. Biol. 92:353–59 [Google Scholar]
  46. Gaddy JA, Radin JN, Cullen TW, Chazin WJ, Skaar EP. 46.  et al. 2015. Helicobacter pylori resists the antimicrobial activity of calprotectin via lipid A modification and associated biofilm formation. mBio 6:e01349–15 [Google Scholar]
  47. Gaddy JA, Radin JN, Loh JT, Piazuelo MB, Kehl-Fie TE. 47.  et al. 2014. The host protein calprotectin modulates the Helicobacter pylori cag type IV secretion system via zinc sequestration. PLOS Pathog. 10:e1004450 [Google Scholar]
  48. Gangaidzo IT, Moyo VM, Mvundura E, Aggrey G, Murphree NL. 48.  et al. 2001. Association of pulmonary tuberculosis with increased dietary iron. J. Infect. Dis. 184:936–39 [Google Scholar]
  49. Ghoul M, West SA, Diggle SP, Griffin AS. 49.  2014. An experimental test of whether cheating is context dependent. J. Evol. Biol. 27:551–56 [Google Scholar]
  50. Ghssein G, Brutesco C, Ouerdane L, Fojcik C, Izaute A, Wang S. 50.  et al. 2016. Biosynthesis of a broad-spectrum nicotianamine-like metallophore in Staphylococcus aureus. Science 352:62891105–9 [Google Scholar]
  51. Glaser R, Harder J, Lange H, Bartels J, Christophers E, Schroder JM. 51.  2005. Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat. Immunol. 6:57–64 [Google Scholar]
  52. Gold B, Deng H, Bryk R, Vargas D, Eliezer D. 52.  et al. 2008. Identification of a copper-binding metallothionein in pathogenic mycobacteria. Nat. Chem. Biol. 4:609–16 [Google Scholar]
  53. Griffin AS, West SA, Buckling A. 53.  2004. Cooperation and competition in pathogenic bacteria. Nature 430:1024–27 [Google Scholar]
  54. Guilhen C, Taha MK, Veyrier FJ. 54.  2013. Role of transition metal exporters in virulence: the example of Neisseria meningitidis. Front. Cell Infect. Microbiol. 3:102 [Google Scholar]
  55. Haase H, Rink L. 55.  2014. Multiple impacts of zinc on immune function. Metallomics 6:1175–80 [Google Scholar]
  56. Haley KP, Delgado AG, Piazuelo MB, Mortensen BL, Correa P. 56.  et al. 2015. The human antimicrobial protein calgranulin C participates in control of Helicobacter pylori growth and regulation of virulence. Infect. Immun. 83:2944–56 [Google Scholar]
  57. Hammer ND, Cassat JE, Noto MJ, Lojek LJ, Chadha AD. 57.  et al. 2014. Inter- and intraspecies metabolite exchange promotes virulence of antibiotic-resistant Staphylococcus aureus. Cell Host Microbe 16:531–37 [Google Scholar]
  58. Hammer ND, Reniere ML, Cassat JE, Zhang Y, Hirsch AO. 58.  et al. 2013. Two heme-dependent terminal oxidases power Staphylococcus aureus organ-specific colonization of the vertebrate host. mBio 4:e00241–13 [Google Scholar]
  59. Hammerschmidt S, Bethe G, Remane PH, Chhatwal GS. 59.  1999. Identification of pneumococcal surface protein A as a lactoferrin-binding protein of Streptococcus pneumoniae. Infect. Immun. 67:1683–87 [Google Scholar]
  60. Hardin G. 60.  1968. The tragedy of the commons. Science 162:1243–48 [Google Scholar]
  61. Hendricks MR, Lashua LP, Fischer DK, Flitter BA, Eichinger KM. 61.  et al. 2016. Respiratory syncytial virus infection enhances Pseudomonas aeruginosa biofilm growth through dysregulation of nutritional immunity. PNAS 113:1642–47 [Google Scholar]
  62. Higgins KA, Giedroc D. 62.  2014. Insights into protein allostery in the CsoR/RcnR family of transcriptional repressors. Chem. Lett. 43:20–25 [Google Scholar]
  63. Hiron A, Posteraro B, Carriere M, Remy L, Delporte C. 63.  et al. 2010. A nickel ABC-transporter of Staphylococcus aureus is involved in urinary tract infection. Mol. Microbiol. 77:1246–60 [Google Scholar]
  64. Hood MI, Mortensen BL, Moore JL, Zhang Y, Kehl-Fie TE. 64.  et al. 2012. Identification of an Acinetobacter baumannii zinc acquisition system that facilitates resistance to calprotectin-mediated zinc sequestration. PLOS Pathog. 8:e1003068 [Google Scholar]
  65. Hood MI, Skaar EP. 65.  2012. Nutritional immunity: transition metals at the pathogen-host interface. Nat. Rev. Microbiol. 10:525–37 [Google Scholar]
  66. Imperi F, Tiburzi F, Visca P. 66.  2009. Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa. PNAS 106:20440–45 [Google Scholar]
  67. Jabado N, Jankowski A, Dougaparsad S, Picard V, Grinstein S, Gros P. 67.  2000. Natural resistance to intracellular infections: natural resistance–associated macrophage protein 1 (Nramp1) functions as a pH-dependent manganese transporter at the phagosomal membrane. J. Exp. Med. 192:1237–48 [Google Scholar]
  68. Johnson MD, Kehl-Fie TE, Rosch JW. 68.  2015. Copper intoxication inhibits aerobic nucleotide synthesis in Streptococcus pneumoniae. Metallomics 7:786–94 [Google Scholar]
  69. Jones CM, Wells RM, Madduri AV, Renfrow MB, Ratledge C. 69.  et al. 2014. Self-poisoning of Mycobacterium tuberculosis by interrupting siderophore recycling. PNAS 111:1945–50 [Google Scholar]
  70. Jones DG, Suttle NF. 70.  1983. The effect of copper deficiency on the resistance of mice to infection with Pasteurella haemolytica. J. Comp. Pathol. 93:143–49 [Google Scholar]
  71. Juttukonda LJ, Skaar EP. 71.  2015. Manganese homeostasis and utilization in pathogenic bacteria. Mol. Microbiol. 97:216–28 [Google Scholar]
  72. Kehl-Fie TE, Chitayat S, Hood MI, Damo S, Restrepo N. 72.  et al. 2011. Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host Microbe 10:158–64 [Google Scholar]
  73. Kehl-Fie TE, Zhang Y, Moore JL, Farrand AJ, Hood MI. 73.  et al. 2013. MntABC and MntH contribute to systemic Staphylococcus aureus infection by competing with calprotectin for nutrient manganese. Infect. Immun. 81:3395–405 [Google Scholar]
  74. Kim HW, Chan Q, Afton SE, Caruso JA, Lai B. 74.  et al. 2012. Human macrophage ATP7A is localized in the trans-Golgi apparatus, controls intracellular copper levels, and mediates macrophage responses to dermal wounds. Inflammation 35:167–75 [Google Scholar]
  75. Koh EI, Hung CS, Parker KS, Crowley JR, Giblin DE, Henderson JP. 75.  2015. Metal selectivity by the virulence-associated yersiniabactin metallophore system. Metallomics 7:1011–22 [Google Scholar]
  76. Krieg S, Huche F, Diederichs K, Izadi-Pruneyre N, Lecroisey A. 76.  et al. 2009. Heme uptake across the outer membrane as revealed by crystal structures of the receptor-hemophore complex. PNAS 106:1045–50 [Google Scholar]
  77. Lau CK, Krewulak KD, Vogel HJ. 77.  2015. Bacterial ferrous iron transport: the Feo system. FEMS Microbiol. Rev. 40:273–98 [Google Scholar]
  78. Lisher JP, Giedroc DP. 78.  2013. Manganese acquisition and homeostasis at the host-pathogen interface. Front. Cell Infect. Microbiol. 3:91 [Google Scholar]
  79. Liu JZ, Jellbauer S, Poe AJ, Ton V, Pesciaroli M. 79.  et al. 2012. Zinc sequestration by the neutrophil protein calprotectin enhances Salmonella growth in the inflamed gut. Cell Host Microbe 11:227–39 [Google Scholar]
  80. Liu MJ, Bao S, Galvez-Peralta M, Pyle CJ, Rudawsky AC. 80.  et al. 2013. ZIP8 regulates host defense through zinc-mediated inhibition of NF-κB. Cell Rep. 3:386–400 [Google Scholar]
  81. Loomis LD, Raymond KN. 81.  1991. Solution equilibria of enterobactin and metal-enterobactin complexes. Inorg. Chem. 30:906–11 [Google Scholar]
  82. Ma Z, Chandrangsu P, Helmann TC, Romsang A, Gaballa A, Helmann JD. 82.  2014. Bacillithiol is a major buffer of the labile zinc pool in Bacillus subtilis. Mol. Microbiol. 94:756–70 [Google Scholar]
  83. Macomber L, Imlay JA. 83.  2009. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. PNAS 106:8344–49 [Google Scholar]
  84. Maresso AW, Garufi G, Schneewind O. 84.  2008. Bacillus anthracis secretes proteins that mediate heme acquisition from hemoglobin. PLOS Pathog. 4:e1000132 [Google Scholar]
  85. Marvig RL, Damkiaer S, Khademi SM, Markussen TM, Molin S, Jelsbak L. 85.  2014. Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin. mBio 5:e00966–14Independent Pseudomonas aeruginosa isolates from cystic fibrosis patients lost siderophore acquisition, evolving a heme iron preference. [Google Scholar]
  86. Mashruwala AA, Pang YY, Rosario-Cruz Z, Chahal HK, Benson MA. 86.  et al. 2015. Nfu facilitates the maturation of iron-sulfur proteins and participates in virulence in Staphylococcus aureus. Mol. Microbiol. 95:383–409 [Google Scholar]
  87. Mazmanian SK, Skaar EP, Gaspar AH, Humayun M, Gornicki P. 87.  et al. 2003. Passage of heme-iron across the envelope of Staphylococcus aureus. Science 299:906–9 [Google Scholar]
  88. McDevitt CA, Ogunniyi AD, Valkov E, Lawrence MC, Kobe B. 88.  et al. 2011. A molecular mechanism for bacterial susceptibility to zinc. PLOS Pathog. 7:e1002357 [Google Scholar]
  89. McGee DJ, Zabaleta J, Viator RJ, Testerman TL, Ochoa AC, Mendz GL. 89.  2004. Purification and characterization of Helicobacter pylori arginase, RocF: unique features among the arginase superfamily. Eur. J. Biochem. 271:1952–62 [Google Scholar]
  90. McMurray DN, Yetley EA. 90.  1983. Response to Mycobacterium bovis BCG vaccination in protein- and zinc-deficient guinea pigs. Infect. Immun. 39:755–61 [Google Scholar]
  91. Melby K, Slordahl S, Gutteberg TJ, Nordbo SA. 91.  1982. Septicaemia due to Yersinia enterocolitica after oral overdoses of iron. BMJ (Clin. Res. Ed. 285:467–68 [Google Scholar]
  92. Meyer JE, Harder J, Sipos B, Maune S, Kloppel G. 92.  et al. 2008. Psoriasin (S100A7) is a principal antimicrobial peptide of the human tongue. Mucosal Immunol. 1:239–43 [Google Scholar]
  93. Miethke M, Marahiel MA. 93.  2007. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 71:413–51 [Google Scholar]
  94. Mildner M, Stichenwirth M, Abtin A, Eckhart L, Sam C. 94.  et al. 2010. Psoriasin (S100A7) is a major Escherichia coli-cidal factor of the female genital tract. Mucosal Immunol. 3:602–9 [Google Scholar]
  95. Moraes TF, Yu RH, Strynadka NC, Schryvers AB. 95.  2009. Insights into the bacterial transferrin receptor: the structure of transferrin-binding protein B from Actinobacillus pleuropneumoniae. Mol. Cell 35:523–33 [Google Scholar]
  96. Morgenthau A, Pogoutse A, Adamiak P, Moraes TF, Schryvers AB. 96.  2013. Bacterial receptors for host transferrin and lactoferrin: molecular mechanisms and role in host-microbe interactions. Future Microbiol. 8:1575–85 [Google Scholar]
  97. Nairn BL, Lonergan ZR, Wang J, Braymer JJ, Zhang Y, Calcutt MW. 97.  2016. The response of Acinetobacter baumannii to zinc starvation. Cell Host Microbe 19:826–36Identified a putative zinc metallochaperone and the contribution of histidine to the labile zinc pool. [Google Scholar]
  98. Nakashige TG, Zhang B, Krebs C, Nolan EM. 98.  2015. Human calprotectin is an iron-sequestering host-defense protein. Nat. Chem. Biol. 11:765–71 [Google Scholar]
  99. Newberne PM, Hunt CE, Young VR. 99.  1968. The role of diet and the reticuloendothelial system in the response of rats to Salmonella typhilmurium infection. Br. J. Exp. Pathol. 49:448–57 [Google Scholar]
  100. Nolan KJ, McGee DJ, Mitchell HM, Kolesnikow T, Harro JM. 100.  et al. 2002. In vivo behavior of a Helicobacter pylori SS1 nixA mutant with reduced urease activity. Infect. Immun. 70:685–91 [Google Scholar]
  101. Noto JM, Gaddy JA, Lee JY, Piazuelo MB, Friedman DB. 101.  et al. 2013. Iron deficiency accelerates Helicobacter pylori–induced carcinogenesis in rodents and humans. J. Clin. Investig. 123:479–92 [Google Scholar]
  102. Oftung F, Lovik M, Andersen SR, Froholm LO, Bjune G. 102.  1999. A mouse model utilising human transferrin to study protection against Neisseria meningitidis serogroup B induced by outer membrane vesicle vaccination. FEMS Immunol. Med. Microbiol. 26:75–82 [Google Scholar]
  103. Ong CL, Gillen CM, Barnett TC, Walker MJ, McEwan AG. 103.  2014. An antimicrobial role for zinc in innate immune defense against group A Streptococcus. J. Infect. Dis. 209:1500–8Showed zinc mobilization in the neutrophil cytoplasm as one mechanism for host zinc poisoning of pathogens. [Google Scholar]
  104. Ong CL, Walker MJ, McEwan AG. 104.  2015. Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes. Sci. Rep. 5:10799 [Google Scholar]
  105. Oram JD, Reiter B. 105.  1968. Inhibition of bacteria by lactoferrin and other iron-chelating agents. Biochim. Biophys. Acta 170:351–65 [Google Scholar]
  106. Ouyang Z, He M, Oman T, Yang XF, Norgard MV. 106.  2009. A manganese transporter, BB0219 (BmtA), is required for virulence by the Lyme disease spirochete, Borrelia burgdorferi. PNAS 106:3449–54 [Google Scholar]
  107. Palmer K, Coggon D. 107.  1997. Does occupational exposure to iron promote infection?. Occup. Environ. Med. 54:529–34 [Google Scholar]
  108. Perry RD, Craig SK, Abney J, Bobrov AG, Kirillina O. 108.  et al. 2012. Manganese transporters Yfe and MntH are Fur-regulated and important for the virulence of Yersinia pestis. Microbiology 158:804–15 [Google Scholar]
  109. Pishchany G, McCoy AL, Torres VJ, Krause JC, Crowe JE Jr.. 109.  et al. 2010. Specificity for human hemoglobin enhances Staphylococcus aureus infection. Cell Host Microbe 8:544–50 [Google Scholar]
  110. Posey JE, Gherardini FC. 110.  2000. Lack of a role for iron in the Lyme disease pathogen. Science 288:1651–53 [Google Scholar]
  111. Prasad AS. 111.  2013. Discovery of human zinc deficiency: its impact on human health and disease. Adv. Nutr. 4:176–90 [Google Scholar]
  112. Quenee LE, Hermanas TM, Ciletti N, Louvel H, Miller NC. 112.  et al. 2012. Hereditary hemochromatosis restores the virulence of plague vaccine strains. J. Infect. Dis. 206:1050–58 [Google Scholar]
  113. Raffatellu M, George MD, Akiyama Y, Hornsby MJ, Nuccio SP. 113.  et al. 2009. Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 5:476–86 [Google Scholar]
  114. Remy L, Carriere M, Derre-Bobillot A, Martini C, Sanguinetti M, Borezee-Durant E. 114.  2013. The Staphylococcus aureus Opp1 ABC transporter imports nickel and cobalt in zinc-depleted conditions and contributes to virulence. Mol. Microbiol. 87:730–43 [Google Scholar]
  115. Rodionov DA, Hebbeln P, Gelfand MS, Eitinger T. 115.  2006. Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J. Bacteriol. 188:317–27 [Google Scholar]
  116. Rosch JW, Gao G, Ridout G, Wang YD, Tuomanen EI. 116.  2009. Role of the manganese efflux system mntE for signaling and pathogenesis in Streptococcus pneumoniae. Mol. Microbiol. 72:12–25 [Google Scholar]
  117. Ross-Gillespie A, Dumas Z, Kummerli R. 117.  2015. Evolutionary dynamics of interlinked public goods traits: an experimental study of siderophore production in Pseudomonas aeruginosa. J. Evol. Biol. 28:29–39 [Google Scholar]
  118. Ross-Gillespie A, Weigert M, Brown SP, Kummerli R. 118.  2014. Gallium-mediated siderophore quenching as an evolutionarily robust antibacterial treatment. Evol. Med. Public Health 2014:18–29 [Google Scholar]
  119. Rowland JL, Niederweis M. 119.  2013. A multicopper oxidase is required for copper resistance in Mycobacterium tuberculosis. J. Bacteriol. 195:3724–33 [Google Scholar]
  120. Schade AL, Caroline L. 120.  1944. Raw hen egg white and the role of iron in growth inhibition of Shigella dysenteriae, Staphylococcus aureus, Escherichia coli and Saccharomyces cerevisiae. Science 100:14–15 [Google Scholar]
  121. Schade AL, Caroline L. 121.  1946. An iron-binding component in human blood plasma. Science 104:340 [Google Scholar]
  122. Shields-Cutler RR, Crowley JR, Hung CS, Stapleton AE, Aldrich CC. 122.  et al. 2015. Human urinary composition controls antibacterial activity of siderocalin. J. Biol. Chem. 290:15949–60 [Google Scholar]
  123. Skaar EP, Humayun M, Bae T, DeBord KL, Schneewind O. 123.  2004. Iron-source preference of Staphylococcus aureus infections. Science 305:1626–28 [Google Scholar]
  124. Speer A, Rowland JL, Haeili M, Niederweis M, Wolschendorf F. 124.  2013. Porins increase copper susceptibility of Mycobacterium tuberculosis. J. Bacteriol. 195:5133–40 [Google Scholar]
  125. Stahler FN, Odenbreit S, Haas R, Wilrich J, van Vliet AH. 125.  et al. 2006. The novel Helicobacter pylori CznABC metal efflux pump is required for cadmium, zinc, and nickel resistance, urease modulation, and gastric colonization. Infect. Immun. 74:3845–52 [Google Scholar]
  126. Stauff DL, Skaar EP. 126.  2009. Bacillus anthracis HssRS signalling to HrtAB regulates haem resistance during infection. Mol. Microbiol. 72:763–78 [Google Scholar]
  127. Stork M, Grijpstra J, Bos MP, Manas Torres C, Devos N. 127.  et al. 2013. Zinc piracy as a mechanism of Neisseria meningitidis for evasion of nutritional immunity. PLOS Pathog. 9:e1003733Neisseria meningitidis CbpA binds calprotectin and supports zinc-dependent growth, suggesting a potential for zinc piracy. [Google Scholar]
  128. Strand TA, Hollingshead SK, Julshamn K, Briles DE, Blomberg B, Sommerfelt H. 128.  2003. Effects of zinc deficiency and pneumococcal surface protein A immunization on zinc status and the risk of severe infection in mice. Infect. Immun. 71:2009–13 [Google Scholar]
  129. Sun TS, Ju X, Gao HL, Wang T, Thiele DJ. 129.  et al. 2014. Reciprocal functions of Cryptococcus neoformans copper homeostasis machinery during pulmonary infection and meningoencephalitis. Nat. Commun. 5:5550 [Google Scholar]
  130. Troxell B, Hassan HM. 130.  2013. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria. Front. Cell Infect. Microbiol. 3:59 [Google Scholar]
  131. Tullius MV, Harmston CA, Owens CP, Chim N, Morse RP. 131.  et al. 2011. Discovery and characterization of a unique mycobacterial heme acquisition system. PNAS 108:5051–56 [Google Scholar]
  132. Turner AG, Ong CL, Gillen CM, Davies MR, West NP. 132.  et al. 2015. Manganese homeostasis in group A Streptococcus is critical for resistance to oxidative stress and virulence. mBio 6:e00278–15 [Google Scholar]
  133. Van Valen L. 133.  1973. A new evolutionary law. Evol. Theory 1:1–30 [Google Scholar]
  134. Veyrier FJ, Boneca IG, Cellier MF, Taha MK. 134.  2011. A novel metal transporter mediating manganese export (MntX) regulates the Mn to Fe intracellular ratio and Neisseria meningitidis virulence. PLOS Pathog. 7:e1002261 [Google Scholar]
  135. Vidal SM, Pinner E, Lepage P, Gauthier S, Gros P. 135.  1996. Natural resistance to intracellular infections: Nramp1 encodes a membrane phosphoglycoprotein absent in macrophages from susceptible (Nramp1 D169) mouse strains. J. Immunol. 157:3559–68 [Google Scholar]
  136. Vogel HJ. 136.  2012. Lactoferrin, a bird's eye view. Biochem. Cell Biol. 90:233–44 [Google Scholar]
  137. Wakeman CA, Moore JL, Noto MJ, Zhang Y, Singleton MD, Prentice BM. 137.  2016. The innate immune protein calprotectin promotes Pseudomonas aeruginosa and Staphylococcus aureus interaction. Nat. Commun. 7:11951Zinc sequestration by calprotectin promotes coinfection by Pseudomonas aeruginosa and Staphylococcus aureus. [Google Scholar]
  138. Wanachiwanawin W. 138.  2000. Infections in E-β thalassemia. J. Pediatr. Hematol. Oncol. 22:581–87 [Google Scholar]
  139. Wang T, Si M, Song Y, Zhu W, Gao F. 139.  et al. 2015. Type VI secretion system transports Zn2+ to combat multiple stresses and host immunity. PLOS Pathog. 11:e1005020 [Google Scholar]
  140. Weinberg ED. 140.  1975. Nutritional immunity: host's attempt to withhold iron from microbial invaders. JAMA 231:39–41 [Google Scholar]
  141. Weinberg ED. 141.  2009. Iron availability and infection. Biochim. Biophys. Acta 1790:600–5 [Google Scholar]
  142. Wessling-Resnick M. 142.  2015. Nramp1 and other transporters involved in metal withholding during infection. J. Biol. Chem. 290:18984–90 [Google Scholar]
  143. White C, Lee J, Kambe T, Fritsche K, Petris MJ. 143.  2009. A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J. Biol. Chem. 284:33949–56 [Google Scholar]
  144. Wolff N, Izadi-Pruneyre N, Couprie J, Habeck M, Linge J. 144.  et al. 2008. Comparative analysis of structural and dynamic properties of the loaded and unloaded hemophore HasA: functional implications. J. Mol. Biol. 376:517–25 [Google Scholar]
  145. Wolschendorf F, Ackart D, Shrestha TB, Hascall-Dove L, Nolan S. 145.  et al. 2011. Copper resistance is essential for virulence of Mycobacterium tuberculosis. PNAS 108:1621–26 [Google Scholar]
  146. Wright AC, Simpson LM, Oliver JD. 146.  1981. Role of iron in the pathogenesis of Vibrio vulnificus infections. Infect. Immun. 34:503–7 [Google Scholar]
  147. Zaia AA, Sappington KJ, Nisapakultorn K, Chazin WJ, Dietrich EA. 147.  et al. 2009. Subversion of antimicrobial calprotectin (S100A8/S100A9 complex) in the cytoplasm of TR146 epithelial cells after invasion by Listeria monocytogenes. Mucosal Immunol. 2:43–53 [Google Scholar]
  148. Zarantonelli ML, Szatanik M, Giorgini D, Hong E, Huerre M. 148.  et al. 2007. Transgenic mice expressing human transferrin as a model for meningococcal infection. Infect. Immun. 75:5609–14 [Google Scholar]
  149. Zhang YJ, Rubin EJ. 149.  2013. Feast or famine: the host-pathogen battle over amino acids. Cell Microbiol. 15:1079–87 [Google Scholar]
  150. Zimbler DL, Park TM, Arivett BA, Penwell WF, Greer SM. 150.  et al. 2012. Stress response and virulence functions of the Acinetobacter baumannii NfuA Fe-S scaffold protein. J. Bacteriol. 194:2884–93 [Google Scholar]
/content/journals/10.1146/annurev-genet-120215-035146
Loading
/content/journals/10.1146/annurev-genet-120215-035146
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error