strains transfer a single-strand form of T-DNA (T-strands) and Virulence (Vir) effector proteins to plant cells. Following transfer, T-strands likely form complexes with Vir and plant proteins that traffic through the cytoplasm and enter the nucleus. T-strands may subsequently randomly integrate into plant chromosomes and permanently express encoded transgenes, a process known as stable transformation. The molecular processes by which T-strands integrate into the host genome remain unknown. Although integration resembles DNA repair processes, the requirement of known DNA repair pathways for integration is controversial. The configuration and genomic position of integrated T-DNA molecules likely affect transgene expression, and control of integration is consequently important for basic research and agricultural biotechnology applications. This article reviews our current knowledge of the process of T-DNA integration and proposes ways in which this knowledge may be manipulated for genome editing and synthetic biology purposes.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H. 1.  et al. 2003. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–57 [Google Scholar]
  2. Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP. 2.  et al. 2016. Advancing crop transformation in the era of genome editing. Plant Cell 28:1510–20 [Google Scholar]
  3. An S, Park S, Jeong D-H, Lee D-Y, Kang H-G. 3.  et al. 2003. Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol 133:2040–47 [Google Scholar]
  4. Anand A, Krichevsky A, Schomack S, Lahaye T, Tzfira T. 4.  et al. 2007. Arabidopsis VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in plants. Plant Cell 19:1695–708 [Google Scholar]
  5. Anand A, Vaghchhipawala Z, Ryu C-M, Kang L, Wang K. 5.  et al. 2007. Identification and characterization of plant genes involved in Agrobacterium-mediated plant transformation by virus-induced gene silencing. Mol. Plant-Microbe Interact. 20:41–52 [Google Scholar]
  6. Bakó L, Umeda M, Tiburcio AF, Schell J, Koncz C. 6.  2003. The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. PNAS 100:10108–13 [Google Scholar]
  7. Bochardt A, Hodal L, Palmgren G, Mattsson O, Okkels FT. 7.  1992. DNA methylation is involved in maintenance of an unusual expression pattern of an introduced gene. Plant Physiol 99:409–14 [Google Scholar]
  8. Brandle JE, McHugh SG, James L, Labbé H, Miki BL. 8.  1995. Instability of transgene expression in field grown tobacco carrying the csr1–1 gene for sulfonylurea herbicide resistance. Bio/Technology 13:994–98 [Google Scholar]
  9. Breyne P, Gheysen G, Jacobs A, Depicker A. 9.  1992. Effect of T-DNA configuration on transgene expression. Mol. Gen. Genet. 235:389–96 [Google Scholar]
  10. Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LMA. 10.  et al. 2005. Gene transfer to plants by diverse species of bacteria. Nature 433:629–33 [Google Scholar]
  11. Brunaud V, Balzergue S, Dubreucq B, Aubourg S, Samson F. 11.  et al. 2002. T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO Rep 3:1152–57 [Google Scholar]
  12. Char SN, Unger-Wallace E, Frame B, Briggs SA, Main M. 12.  et al. 2015. Heritable site-specific mutagenesis using TALENs in maize. Plant Biotechnol. J. 13:1002–10 [Google Scholar]
  13. Chen S, Jin W, Wang M, Zhang F, Zhou J. 13.  et al. 2003. Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J 36:105–13 [Google Scholar]
  14. Chilton M-D, Que Q. 14.  2003. Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: New insights on the mechanism of T-DNA integration. Plant Physiol 133:956–65 [Google Scholar]
  15. Citovsky V, Zupan J, Warnick D, Zambryski P. 15.  1992. Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256:1802–5 [Google Scholar]
  16. Clark KA, Krysan PJ. 16.  2010. Chromosomal translocations are a common phenomenon in Arabidopsis thaliana T-DNA insertion lines. Plant J 64:990–1001This paper describes the observation that chromosomal translocations are common following Agrobacterium-mediated transformation. [Google Scholar]
  17. Cluster PD, O'Dell M, Metzlaff M, Flavell RB. 17.  1996. Details of T-DNA structural organization from a transgenic Petunia population exhibiting co-suppression. Plant Mol. Biol. 32:1197–203 [Google Scholar]
  18. Crane YM, Gelvin SB. 18.  2007. RNAi-mediated gene silencing reveals involvement of Arabidopsis chromatin-related genes in Agrobacterium-mediated root transformation. PNAS 104:15156–61This paper describes several plant chromatin proteins important for efficient T-DNA integration. [Google Scholar]
  19. Day CD, Lee E, Kobayashi J, Holappa LD, Albert H, Ow DW. 19.  2000. Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev 14:2869–80 [Google Scholar]
  20. De Buck S, Jacobs A, Van Montagu M, Depicker A. 20.  1998. Agrobacterium tumefaciens transformation and cotransformation frequencies of Arabidopsis thaliana root explants and tobacco protoplasts. Mol. Plant-Microbe Interact. 11:449–57 [Google Scholar]
  21. De Buck S, Jacobs A, Van Montagu M, Depicker A. 21.  1999. The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J 20:295–304 [Google Scholar]
  22. De Neve M, De Buck S, Jacobs A, Van Montagu M, Depicker A. 22.  1997. T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J 11:15–29 [Google Scholar]
  23. De Vos G, Zambryski P. 23.  1989. Expression of Agrobacterium nopaline-specific VirD1, VirD2, and VirC1 proteins and their requirement for T-strand production in E. coli. Mol. Plant-Microbe Interact. 2:43–52 [Google Scholar]
  24. Deriano L, Roth DB. 24.  2013. Modernizing the nonhomologous end-joining repertoire: Alternative and classical NHEJ share the stage. Annu. Rev. Genet. 47:433–55 [Google Scholar]
  25. Domínguez A, Fagoaga C, Navarro L, Moreno P, Peña L. 25.  2002. Regeneration of transgenic citrus plants under non selective conditions results in high-frequency recovery of plants with silenced transgenes. Mol. Genet. Genom. 267:544–56 [Google Scholar]
  26. Dürrenberger F, Crameri A, Hohn B, Koukoliková-Nicola Z. 26.  1989. Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation. PNAS 86:9154–58 [Google Scholar]
  27. Elmayan T, Vaucheret H. 27.  1996. Expression of single copies of a strongly expressed 35S transgene can be silenced post-transcriptionally. Plant J 9:787–97 [Google Scholar]
  28. Endo M, Ishikawa Y, Osakabe K, Nakayama S, Kaya H. 28.  et al. 2006. Increased frequency of homologous recombination and T-DNA integration in Arabidopsis CAF-1 mutants. EMBO J 25:5579–90 [Google Scholar]
  29. Feng Z, Mao Y, Xu N, Zhang B, Wei P. 29.  et al. 2014. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. PNAS 111:4632–37 [Google Scholar]
  30. Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C. 30.  et al. 2002. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22 [Google Scholar]
  31. Francis KE, Spiker S. 31.  2005. Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations. Plant J 41:464–77 [Google Scholar]
  32. Friesner J, Britt AB. 32.  2003. Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. Plant J 34:427–40 [Google Scholar]
  33. Gaj T, Gersbach CA, Barbas CF. 33.  2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405 [Google Scholar]
  34. Gallego ME, Bleuyard J-Y, Daoudal-Cotterell S, Jallut N, White CI. 34.  2003. Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. Plant J 35:557–65 [Google Scholar]
  35. Gelvin SB. 35.  2010. Finding a way to the nucleus. Curr. Opin. Microbiol. 13:53–58 [Google Scholar]
  36. Gelvin SB. 36.  2010. Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu. Rev. Phytopathol. 48:45–68 [Google Scholar]
  37. Gelvin SB. 37.  2012. Traversing the cell: Agrobacterium T-DNA's journey to the host genome. Front. Plant Sci. 3:52 [Google Scholar]
  38. Gelvin SB, Kim S-I. 38.  2007. Effect of chromatin upon Agrobacterium T-DNA integration and transgene expression. Biochim. Biophys. Acta 1769:410–21 [Google Scholar]
  39. Gheysen G, Villarroel R, Van Montagu M. 39.  1991. Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev 5:287–97 [Google Scholar]
  40. Gohlke J, Deeken R. 40.  2014. Plant responses to Agrobacterium tumefaciens and crown gall development. Front. Plant Sci. 5:155 [Google Scholar]
  41. Hamilton CM. 41.  1997. A binary-BAC system for plant transformation with high-molecular- weight DNA. Gene 200:107–16 [Google Scholar]
  42. Hanin M, Volrath S, Bogucki A, Briker M, Ward E, Paszkowski J. 42.  2001. Gene targeting in Arabidopsis. Plant J 28:671–77 [Google Scholar]
  43. Harpster MH, Townsend JA, Jones JDG, Bedbrook J, Dunsmuir P. 43.  1988. Relative strengths of the 35S cauliflower mosaic virus, 1′, 2′, and nopaline synthase promoters in transformed tobacco sugarbeet and oilseed rape callus tissue. Mol. Gen. Genet. 212:182–90 [Google Scholar]
  44. Henneberry TJ, Forlow Jech L, de la Torre T, Faulconer S, Hill JJ. 44.  2000. Pink bollworm egg infestations and larval survival in NuCOTN 33b and Deltapine cottons in Arizona Coll. Agric. Rep. AZ1170, Univ. Ariz., Tucson, AZ [Google Scholar]
  45. Herrera-Estrella A, Chen Z-m, Van Montagu M, Wang K. 45.  1988. VirD proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA–protein complex at the 5′ terminus of T-strand molecules. EMBO J 7:4055–62 [Google Scholar]
  46. Herrera-Estrella A, Van Montagu M, Wang K. 46.  1990. A bacterial peptide acting as a plant nuclear targeting signal: The amino-terminal portion of Agrobacterium VirD2 protein directs a β-galactosidase fusion protein into tobacco nuclei. PNAS 87:9534–37 [Google Scholar]
  47. Hobbs SLA, Kpodar P, DeLong CMO. 47.  1990. The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol. Biol. 15:851–64 [Google Scholar]
  48. Hodges LD, Cuperus J, Ream W. 48.  2004. Agrobacterium rhizogenes GALLS protein substitutes for Agro-bacterium tumefaciens single-stranded DNA-binding protein VirE2. J. Bacteriol. 186:3065–77 [Google Scholar]
  49. Hooykaas PJJ, Klapwijk PM, Nuti MP, Schilperoort RA, Rörsch A. 49.  1977. Transfer of the Agrobacterium tumefaciens TI plasmid to avirulent Agrobacteria and to Rhizobium ex planta. J. Gen. Microbiol. 98:477–84 [Google Scholar]
  50. Howard E, Citovsky V. 50.  1990. The emerging structure of the Agrobacterium T-DNA transfer complex. BioEssays 12:103–8 [Google Scholar]
  51. Hsing Y-I, Chern C-G, Fan M-J, Lu P-C, Chen K-T. 51.  et al. 2007. A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol. Biol. 63:351–64 [Google Scholar]
  52. Iglesias VA, Moscone EA, Papp I, Neuhuber F, Michalowski S. 52.  et al. 1997. Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell 9:1251–64 [Google Scholar]
  53. Iwakawa H, Carter BC, Bishop BC, Ogas J, Gelvin SB. 53.  2017. Perturbation of H3K27me3-associated epigenetic processes increases Agrobacterium-mediated transformation. Mol. Plant-Microbe Interact. 30:35–44 [Google Scholar]
  54. Jeong D-H, An S, Kang H-G, Moon S, Han J-J. 54.  et al. 2002. T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130:1636–44 [Google Scholar]
  55. Jeong D-H, An S, Park S, Kang H-G, Park G-G. 55.  et al. 2006. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J 45:123–32 [Google Scholar]
  56. Jia Q, Bundock P, Hooykaas PJJ, de Pater S. 56.  2012. Agrobacterium tumefaciens T-DNA integration and gene targeting in Arabidopsis thaliana non-homologous end-joining mutants. J. Bot. 2012:989272 [Google Scholar]
  57. Kilby NJ, Leyser HMO, Furner IJ. 57.  1992. Promoter methylation and progressive transgene inactivation in Arabidopsis. Plant Mol. Biol. 20:103–12 [Google Scholar]
  58. Kim S-I, Veena, Gelvin SB. 58.  2007. Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J. 51:779–91This paper describes the observation that, under nonselective conditions, T-DNA integrates randomly into the plant genome. [Google Scholar]
  59. Kleinboelting N, Huep G, Appelhagen I, Viehoever P, Li Y, Weisshaar B. 59.  2015. The structural features of thousands of T-DNA insertion sites are consistent with a double-strand break repair-based insertion mechanism. Mol. Plant 8:1651–64This paper details the rearrangements and origin of filler DNA at the junctions of numerous T-DNA insertions. [Google Scholar]
  60. Köhler F, Cardon G, Pöhlman M, Gill R, Schieder O. 60.  1989. Enhancement of transformation rates in higher plants by low-dose irradiation: Are DNA repair systems involved in the incorporation of exogenous DNA into the plant genome?. Plant Mol. Biol. 12:189–99 [Google Scholar]
  61. Kononov ME, Bassuner B, Gelvin SB. 61.  1997. Integration of T-DNA binary vector ‘backbone’ sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J 11:945–57 [Google Scholar]
  62. Lacroix B, Citovsky V. 62.  2016. A functional bacterium-to-plant DNA transfer machinery of Rhizobium etli. PLOS Pathog 12:3e1005502 [Google Scholar]
  63. Lacroix B, Loyter A, Citovsky V. 63.  2008. Association of the Agrobacterium T-DNA–protein complex with plant nucleosomes. PNAS 105:15429–34 [Google Scholar]
  64. Lacroix B, Tzfira T, Vainstein A, Citovsky V. 64.  2006. A case of promiscuity: Agrobacterium’s endless hunt for new partners. Trends Genet 22:29–37 [Google Scholar]
  65. Lechtenberg B, Schubert D, Forsbach A, Gils M, Schmidt R. 65.  2003. Neither inverted repeat T-DNA configurations nor arrangements of tandemly repeated transgenes are sufficient to trigger transgene silencing. Plant J 34:507–17 [Google Scholar]
  66. Lee L-Y, Wu F-H, Hsu C-T, Shen S-C, Yeh H-Y. 66.  et al. 2012. Screening a cDNA library for protein–protein interactions directly in planta. Plant Cell 24:1746–59 [Google Scholar]
  67. Levy AA. 67.  2016. T-DNA integration: Pol θ controls T-DNA integration. Nat. Plants 2:16170 [Google Scholar]
  68. Li J, Vaidya M, White C, Vainstein A, Citovsky V, Tzfira T. 68.  2005. Involvement of Ku80 in T-DNA integration in plant cells. PNAS 102:19231–36 [Google Scholar]
  69. Li J-F, Norville JE, Aach J, McCormack M, Zhang D. 69.  et al. 2013. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31:688–91 [Google Scholar]
  70. Li J-F, Zhang D, Sheen J. 70.  2014. Cas9-based genome editing in Arabidopsis and tobacco. Methods Enzymol 546:459–72 [Google Scholar]
  71. Liang Z, Tzfira T. 71.  2013. In vivo formation of double-stranded T-DNA molecules by T-strand priming. Nat. Commun. 4:2253 [Google Scholar]
  72. Liu L, Fan X-D. 72.  2014. CRISPR–Cas system: a powerful tool for genome engineering. Plant Mol. Biol 85209–18 [Google Scholar]
  73. Loyter A, Rosenbluh J, Zakai N, Li J, Kozlovsky SV. 73.  et al. 2005. The plant VirE2 interacting protein 1. A molecular link between the Agrobacterium T-complex and the host cell chromatin?. Plant Physiol 138:1318–21 [Google Scholar]
  74. Magori S, Citovsky V. 74.  2012. The role of the ubiquitin-proteasome system in Agrobacterium tumefaciens-mediated genetic transformation of plants. Plant Physiol 160:65–71 [Google Scholar]
  75. Mahfouz MM, Piatek A, Stewart CN. 75.  2014. Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnol. J. 12:1006–14 [Google Scholar]
  76. Majhi BB, Shah JM, Veluthambi K. 76.  2014. A novel T-DNA integration in rice involving two interchromosomal translocations. Plant Cell Rep 33:929–44 [Google Scholar]
  77. Martineau B, Voelker TA, Sanders RA. 77.  1994. On defining T-DNA. Plant Cell 6:1032–33 [Google Scholar]
  78. Mayerhofer R, Koncz-Kalman Z, Nawrath C, Bakkeren G, Cramer A. 78.  et al. 1991. T-DNA integration: a mode of illegitimate recombination in plants. EMBO J 10:697–704 [Google Scholar]
  79. Mestiri I, Norre F, Gallego ME, White CI. 79.  2014. Multiple host-cell recombination pathways act in Agrobacterium-mediated transformation of plant cells. Plant J 77511–20This paper shows that T-DNA integration can occur even when four different DNA repair/recombination pathways are simultaneously inactivated. [Google Scholar]
  80. Meza TJ, Stangeland B, Mercy IS, Skårn M, Nymoen DA. 80.  et al. 2002. Analyses of single-copy Arabidopsis T-DNA-transformed lines show that the presence of vector backbone sequences, short inverted repeats and DNA methylation is not sufficient or necessary for the induction of transgene silencing. Nucleic Acids Res 30:4556–66 [Google Scholar]
  81. Miranda A, Janssen G, Hodges L, Peralta EG, Ream W. 81.  1992. Agrobacterium tumefaciens transfers extremely long T-DNAs by a unidirectional mechanism. J. Bacteriol. 174:2288–97 [Google Scholar]
  82. Mladenov E, Iliakis G. 82.  2011. Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat. Res. 711:61–72 [Google Scholar]
  83. Mlynárová L, Keizer LCP, Stiekema WJ, Nap J-P. 83.  1996. Approaching the lower limits of transgene variability. Plant Cell 8:1589–99 [Google Scholar]
  84. Mlynárová L, Loonen A, Heldens J, Jansen RC, Keizer P. 84.  et al. 1994. Reduced position effect in mature transgenic plants conferred by the chicken lysozyme matrix-associated region. Plant Cell 6:417–26 [Google Scholar]
  85. Mysore KS, Bassuner B, Deng X, Darbinian NS, Motchoulski A. 85.  et al. 1998. Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration. Mol. Plant-Microbe Interact. 11:668–683 [Google Scholar]
  86. Mysore KS, Nam J, Gelvin SB. 86.  2000. An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. PNAS 97:948–53 [Google Scholar]
  87. Nam J, Matthysse AG, Gelvin SB. 87.  1997. Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell 9:317–33 [Google Scholar]
  88. Narasimhulu SB, Deng X, Sarria R, Gelvin SB. 88.  1996. Early transcription of Agrobacterium T-DNA genes in tobacco and maize. Plant Cell 8:873–86 [Google Scholar]
  89. Ni M, Cui D, Einstein J, Narasimhulu S, Vergara CE, Gelvin SB. 89.  1995. Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes. Plant J 7:661–76 [Google Scholar]
  90. Nishizawa-Yokoi A, Nonaka S, Saika H, Kwon Y-I, Osakabe K, Toki S. 90.  2012. Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice. New Phytol 196:1048–59 [Google Scholar]
  91. Oltmanns H, Frame B, Lee L-Y, Johnson S, Li B. 91.  et al. 2010. Generation of backbone-free, low transgene copy plants by launching T-DNA from the Agrobacterium chromosome. Plant Physiol 152:1158–66 [Google Scholar]
  92. Ordon J, Gantner J, Kemna J, Schwalgun L, Reschke M. 92.  et al. 2017. Generation of chromosomal deletions in dicotyledonous plants employing a user-friendly genome editing toolkit. Plant J 89:155–68 [Google Scholar]
  93. Pansegrau W, Schoumacher F, Hohn B, Lanka E. 93.  1993. Site-specific cleavage and joining of single-stranded DNA by VirD2 protein of Agrobacterium tumefaciens Ti plasmids: analogy to bacterial conjugation. PNAS 90:11538–42 [Google Scholar]
  94. Park S-Y, Vaghchhipawala Z, Vasudevan B, Lee L-Y, Shen Y. 94.  et al. 2015. Agrobacterium T-DNA integration into the plant genome can occur without the activity of key non-homologous end-joining proteins. Plant J 81:934–46This paper shows that mutation of genes involved in NHEJ can result in increased T-DNA integration into the plant genome. [Google Scholar]
  95. Peach C, Velten J. 95.  1991. Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol. Biol. 17:49–60 [Google Scholar]
  96. Puchta H, Fauser F. 96.  2014. Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J 78:727–41 [Google Scholar]
  97. Rossi L, Hohn B, Tinland B. 97.  1996. Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. PNAS 93:126–30 [Google Scholar]
  98. Ruprecht C, Carroll A, Persson S. 98.  2014. T-DNA-induced chromosomal translocation in feronia and anxur2 mutants reveal implications for the mechanism of collapsed pollen due to chromosomal rearrangements. Mol. Plant 7:1591–94 [Google Scholar]
  99. Saika H, Nishizawa-Yokoi A, Toki S. 99.  2014. The non-homologous end-joining pathway is involved in stable transformation in rice. Front. Plant Sci. 5:560 [Google Scholar]
  100. Sallaud C, Gay C, Larmande P, Bès M, Piffanelli P. 100.  et al. 2004. High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J 39:450–64 [Google Scholar]
  101. Salomon S, Puchta H. 101.  1998. Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17:6086–95This paper shows that T-DNA can be captured into induced double-strand DNA breaks. [Google Scholar]
  102. Samson F, Brunaud V, Balzergue S, Dubreucq B, Lepiniec L. 102.  et al. 2002. FLAGdb/FST: a database of mapped flanking insertion sites (FSTs) of Arabidopsis thaliana T-DNA transformants. Nucleic Acids Res 30:94–97 [Google Scholar]
  103. Schiml S, Fauser F, Puchta H. 103.  2014. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80:1139–50 [Google Scholar]
  104. Schubert D, Lechtenberg B, Forsbach A, Gils M, Bahadur S, Schmidt R. 104.  2004. Silencing in Arabidopsis T-DNA transformants: the predominant role of a gene-specific RNA sensing mechanism versus position effects. Plant Cell 16:2561–72 [Google Scholar]
  105. Shan Q, Wang Y, Li J, Gao C. 105.  2014. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 9:2395–410 [Google Scholar]
  106. Shi Y, Lee L-Y, Gelvin SB. 106.  2014. Is VIP1 important for Agrobacterium-mediated transformation?. Plant J 79:848–60 [Google Scholar]
  107. Shurvinton CE, Hodges L, Ream W. 107.  1992. A nuclear localization signal and the C-terminal omega sequence in the Agrobacterium tumefaciens VirD2 endonuclease are important for tumor formation. PNAS 89:11837–41 [Google Scholar]
  108. Simpson RB, O'Hara PJ, Kwok W, Montoya AL, Lichtenstein C. 108.  et al. 1982. DNA from the A6S/2 crown gall tumor contains scrambled Ti-plasmid sequences near its junctions with plant DNA. Cell 29:1005–14 [Google Scholar]
  109. Singer K, Shiboleth YM, Li J, Tzfira T. 109.  2012. Formation of complex extrachromosomal T-DNA structures in Agrobacterium tumefaciens-infected plants. Plant Physiol 160:511–22This paper shows that T-DNA circles can form in planta. [Google Scholar]
  110. Sivamani E, Li X, Nalapalli S, Barron Y, Prairie A. 110.  et al. 2015. Strategies to improve low copy transgenic events in Agrobacterium-mediated transformation of maize. Transgen. Res. 24:1017–27 [Google Scholar]
  111. Song J, Bent AF. 111.  2014. Microbial pathogens trigger host DNA double-strand breaks whose abundance is reduced by plant defense responses. PLOS Pathog 10:4e1004030 [Google Scholar]
  112. Stachel SE, Messens E, Van Montagu M Zambryski P. 112.  1985. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–29 [Google Scholar]
  113. Stachel SE, Nester EW. 113.  1986. The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J 5:1445–54 [Google Scholar]
  114. Stachel SE, Timmerman B, Zambryski P. 114.  1987. Activation of Agrobacterium tumefaciens vir gene expression generates multiple single-stranded T-strand molecules from the pTiA6 T-region: requirement for 5′ virD gene products. EMBO J 6:857–63 [Google Scholar]
  115. Strizhov N, Li Y, Rosso MG, Viehoever P, Dekker KA, Weisshaar B. 115.  2003. High-throughput generation of sequence indexes from T-DNA mutagenized Arabidopsis thaliana lines. BioTechniques 35:1164–68 [Google Scholar]
  116. Szabados L, Kovács I, Oberschall A, Abrahám E, Kerekes I. 116.  et al. 2002. Distribution of 1000 sequenced T-DNA tags in the Arabidopsis genome. Plant J 32:233–42 [Google Scholar]
  117. Tax FE, Vernon DM. 117.  2001. T-DNA-associated duplication/translocations in Arabidopsis. Implications for mutant analysis and functional genomics. Plant Physiol 126:1527–38 [Google Scholar]
  118. Tenea GN, Spantzel J, Lee L-Y, Zhu Y, Lin K. 118.  et al. 2009. Overexpression of several Arabidopsis histone genes increases Agrobacterium-mediated transformation and transgene expression in plants. Plant Cell 21:3350–67This paper shows that overexpression of specific histone proteins can enhance stable Agrobacterium-mediated transformation. [Google Scholar]
  119. Thole V, Worland B, Wright J, Bevan MW, Vain P. 119.  2010. Distribution and characterization of more than 1000 T-DNA tags in the genome of Brachypodium distachyon community standard line Bd21. Plant Biotechnol. J. 8:734–47 [Google Scholar]
  120. Tinland B, Hohn B, Puchta H. 120.  1994. Agrobacterium tumefaciens transfers single-stranded transferred DNA (T-DNA) into the plant cell nucleus. PNAS 91:8000–4 [Google Scholar]
  121. Tzfira T, Frankman LR, Vaidya M, Citovsky V. 121.  2003. Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates. Plant Physiol 133:1011–23 [Google Scholar]
  122. Tzfira T, Li J, Lacroix B, Citovsky V. 122.  2004. Agrobacterium T-DNA integration: molecules and models. Trends Genet 20:375–83 [Google Scholar]
  123. Tzfira T, Vaidya M, Citovsky V. 123.  2001. VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20:3596–607 [Google Scholar]
  124. Tzfira T, Vaidya M, Citovsky V. 124.  2004. Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431:87–92 [Google Scholar]
  125. Tzfira T, Weinthal D, Marton I, Zeevi V, Zuker A, Vainstein A. 125.  2012. Genome modifications in plant cells by custom-made restriction enzymes. Plant Biotechnol. J. 10:373–89 [Google Scholar]
  126. Ülker B, Li Y, Rosso MG, Logemann E, Somssich IE, Weisshaar B. 126.  2008. T-DNA-mediated transfer of Agrobacterium tumefaciens chromosomal DNA into plants. Nat. Biotechnol. 26:1015–17 [Google Scholar]
  127. Vaghchhipawala ZE, Vasudevan B, Lee S, Morsy MR, Mysore KS. 127.  2012. Agrobacterium may delay plant nonhomologous end-joining DNA repair via XRCC4 to favor T-DNA integration. Plant Cell 24:4110–23 [Google Scholar]
  128. van Attikum H Bundock P, Hooykaas PJJ. 128.  2001. Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration. EMBO J 20:6550–58 [Google Scholar]
  129. van Attikum H Bundock P, Overmeer RM, Lee L-Y, Gelvin SB, Hooykaas PJJ. 129.  2003. The Arabidopsis AtLIG4 gene is required for the repair of DNA damage, but not for the integration of Agrobacterium T-DNA. Nucleic Acids Res 31:4247–55 [Google Scholar]
  130. van Kregten M, de Pater S, Romeijn R, van Schendel R, Hooykaas PJJ, Tijsterman M. 130.  2016. T-DNA integration in plants results from polymerase-θ-mediated DNA repair. Nat. Plants 2:16164This paper shows that DNA polymerase θ is required for T-DNA integration into the Arabidopsis genome. [Google Scholar]
  131. Veluthambi K, Ream W, Gelvin SB. 131.  1988. Virulence genes, borders, and overdrive generate single-stranded T-DNA molecules from the A6 Ti plasmid of Agrobacterium tumefaciens. J. Bacteriol. 170:1523–32 [Google Scholar]
  132. Vergunst AC, Hooykaas PJJ. 132.  1998. Cre/lox-mediated site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana by transient expression of cre. Plant Mol. Biol. 38:393–406 [Google Scholar]
  133. Vergunst AC, Jansen LET, Hooykaas PJJ. 133.  1998. Site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana mediated by Cre recombinase. Nucleic Acids Res 26:2729–34 [Google Scholar]
  134. Ward ER, Barnes WM. 134.  1988. VirD2 protein of Agrobacterium tumefaciens very tightly linked to the 5′ end of T-strand DNA. Science 242:927–30 [Google Scholar]
  135. Waterworth WM, Masnavi G, Bhardwaj RM, Jiang Q, Bray CM, West CE. 135.  2010. A plant DNA ligase is an important determinant of seed longevity. Plant J 63:848–60 [Google Scholar]
  136. Wei F-J, Kuang L-Y, Oung H-M, Cheng S-Y, Wu H-P. 136.  et al. 2016. Somaclonal variation does not preclude the use of rice transformants for genetic screening. Plant J 85:648–59 [Google Scholar]
  137. Weising K, Bohn H, Kahl G. 137.  1990. Chromatin structure of transferred genes in transgenic plants. Dev. Genet. 11:233–47 [Google Scholar]
  138. Wenck A, Czakó M, Kanevski I, Márton L. 138.  1997. Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation. Plant Mol. Biol. 34:913–22 [Google Scholar]
  139. Wendt T, Doohan F, Winckelmann D, Mullins E. 139.  2011. Gene transfer into Solanum tuberosum via Rhizobium spp. Transgenic Res 20:377–86 [Google Scholar]
  140. Winans SC. 140.  1992. Two-way chemical signaling in Agrobacterium-plant interactions. Microbiol. Rev. 56:12–31 [Google Scholar]
  141. Windels P, De Buck S, Van Bockstaele E, De Loose M, Depicker A. 141.  2003. T-DNA integration in Arabidopsis chromosomes. Presence and origin of filler DNA sequences. Plant Physiol 133:2061–68 [Google Scholar]
  142. Wolterink-van Loo S, Escamilla Ayala AA, Hooykaas PJJ, van Heudsden GPH. 142.  2015. Interaction of the Agrobacterium tumefaciens virulence protein VirD2 with histones. Microbiology 161:401–10 [Google Scholar]
  143. Yadav NS, Vanderleyden J, Bennett DR, Barnes WM, Chilton M-D. 143.  1982. Short direct repeats flank the T-DNA on a nopaline Ti plasmid. PNAS 79:6322–26 [Google Scholar]
  144. Yusibov VM, Steck TR, Gupta V, Gelvin SB. 144.  1994. Association of single-stranded transferred DNA from Agrobacterium tumefaciens with tobacco cells. PNAS 91:2994–98 [Google Scholar]
  145. Zaltsman A, Krichevsky A, Kozlovsky SV, Yasmin F, Citovsky V. 145.  2010. Plant defense pathways subverted by Agrobacterium for genetic transformation. Plant Signal. Behav. 5:1245–48 [Google Scholar]
  146. Zaltsman A, Lacroix B, Gafni Y, Citovsky V. 146.  2013. Disassembly of synthetic Agrobacterium T-DNA–protein complexes via the host SCFVBF ubiquitin–ligase complex pathway. PNAS 110:169–74 [Google Scholar]
  147. Zhi L, TeRonde S, Meyer S, Arling ML, Register JC. 147.  et al. 2015. Effect of Agrobacterium strain and plasmid copy number on transformation frequency, event quality and usable event quality in an elite maize cultivar. Plant Cell Rep 34:745–54 [Google Scholar]
  148. Zhu Y, Nam J, Humara JM, Mysore KS, Lee L-Y. 148.  et al. 2003. Identification of Arabidopsis rat mutants. Plant Physiol 132:494–505 [Google Scholar]
  149. Ziemienowicz A, Tinland B, Bryant J, Gloeckler V, Hohn B. 149.  2000. Plant enzymes but not Agrobacterium VirD2 mediate T-DNA ligation in vitro. Mol. Cell. Biol. 20:6317–22 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error