Plastid-made biopharmaceuticals treat major metabolic or genetic disorders, including Alzheimer's, diabetes, hypertension, hemophilia, and retinopathy. Booster vaccines made in chloroplasts prevent global infectious diseases, such as tuberculosis, malaria, cholera, and polio, and biological threats, such as anthrax and plague. Recent advances in this field include commercial-scale production of human therapeutic proteins in FDA-approved cGMP facilities, development of tags to deliver protein drugs to targeted human cells or tissues, methods to deliver precise doses, and long-term stability of protein drugs at ambient temperature, maintaining their efficacy. Codon optimization utilizing valuable information from sequenced chloroplast genomes enhanced expression of eukaryotic human or viral genes in chloroplasts and offered unique insights into translation in chloroplasts. Support from major biopharmaceutical companies, development of hydroponic production systems, and evaluation by regulatory agencies, including the CDC, FDA, and USDA, augur well for advancing this novel concept to the clinic and revolutionizing affordable healthcare.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adeniji JA, Faleye TO. 1.  2015. Enterovirus C strains circulating in Nigeria and their contribution to the emergence of recombinant circulating vaccine-derived polioviruses. Arch. Virol. 160:675–83 [Google Scholar]
  2. Arlen PA, Falconer R, Cherukumili S, Cole AM, Oishi KK, Daniell H. 2.  2007. Field production and functional evaluation of chloroplast-derived interferon-α2b. Plant Biotechnol. J. 5:511–25 [Google Scholar]
  3. Arlen PA, Singleton M, Adamovicz JJ, Ding Y, Davoodi-Semiromi A, Daniell H. 3.  2008. Effective plague vaccination via oral delivery of plant cells expressing F1-V antigens in chloroplasts. Infect. Immun. 76:3640–50 [Google Scholar]
  4. Azegami T, Yuki Y, Kiyono H. 4.  2014. Challenges in mucosal vaccines for the control of infectious diseases. Int. Immunol. 26:517–28 [Google Scholar]
  5. Baldauf KJ, Royal JM, Hamorsky KT, Matoba N. 5.  2015. Cholera toxin B: one subunit with many pharmaceutical applications. Toxins 7:974–96 [Google Scholar]
  6. Barkan A. 6.  2011. Expression of plastid genes: organelle-specific elaborations on a prokaryotic scaffold. Plant Physiol. 155:1520–32 [Google Scholar]
  7. Barone P, Zhang XH, Widholm JM. 7.  2009. Tobacco plastid transformation using the feedback-insensitive anthranilate synthase [α]-subunit of tobacco (ASA2) as a new selectable marker. J. Exp. Bot. 60:3195–02 [Google Scholar]
  8. Bowman SM, Patel M, Yerramsetty P, Mure CM, Zielinski AM. 8.  et al. 2013. A novel RNA binding protein affects rbcL gene expression and is specific to bundle sheath chloroplasts in C4 plants. BMC Plant Biol. 13:138 [Google Scholar]
  9. Boyhan D, Daniell H. 9.  2011. Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide. Plant Biotechnol. J. 9:585–98 [Google Scholar]
  10. Burns CC, Diop OM, Sutter RW, Kew OM. 10.  2014. Vaccine-derived polioviruses. J. Infect. Dis. 210:S283–93 [Google Scholar]
  11. Burns CC, Shaw J, Jorba J, Bukbuk D, Adu F. 11.  et al. 2013. Multiple independent emergences of type 2 vaccine–derived polioviruses during a large outbreak in northern Nigeria. J. Virol. 87:4907–22 [Google Scholar]
  12. Carr ME, Tortella BJ. 12.  2015. Emerging and future therapies for hemophilia. J. Blood Med. 6:245–55 [Google Scholar]
  13. 13. Cent. Dis. Control Prev 2014. National diabetes statistics report: estimates of diabetes and its burden in the United States. Atlanta, GA: US Dep. Health Hum. Serv http://www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-report-web.pdf [Google Scholar]
  14. 14. Cent. Dis. Control Prev 2015. Diabetes report card 2014. Atlanta, GA: US Dep. Health Hum. Serv http://www.cdc.gov/diabetes/pdfs/library/diabetesreportcard2014.pdf [Google Scholar]
  15. Chan H-T, Daniell H. 15.  2015. Plant-made oral vaccines against human infectious diseases: Are we there yet?. Plant Biotechnol. J. 13:1056–70 [Google Scholar]
  16. Chan H-T, Xiao Y, Weldon WC, Oberste SM, Chumakov K, Daniell H. 16.  2016. Cold chain and virus free chloroplast-made booster vaccine to confer immunity against different poliovirus serotypes. Plant Biotechnol. J. 14:2190–200 [Google Scholar]
  17. Corneille S, Lutz K, Svab Z, Maliga P. 17.  2001. Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J. 27:171–78 [Google Scholar]
  18. Daniell H. 18.  1993. Foreign gene expression in chloroplasts of higher plants mediated by tungsten particle bombardment. Methods Enzymol. 217:536–56 [Google Scholar]
  19. Daniell H, Datta R, Varma S, Gray S, Lee S-B. 19.  1998. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat. Biotechnol. 16:345–48 [Google Scholar]
  20. Daniell H, Krishnan M, Uma Bai V, Gnanam A. 20.  1986. An efficient and prolonged in vitro translational system from cucumber etioplasts. Biochem. Biophys. Res. Commun. 135:248–55 [Google Scholar]
  21. Daniell H, Lee S-B, Grevich J, Saski C, Quesada-Vargas T. 21.  et al. 2006. Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes. Theor. Appl. Genet. 112:1503–18 [Google Scholar]
  22. Daniell H, Lee S-B, Panchal T, Wiebe PO. 22.  2001. Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J. Mol. Biol. 311:1001–9 [Google Scholar]
  23. Daniell H, Lin C-S, Yu M, Chang W-J. 23.  2016. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol. 17:134 [Google Scholar]
  24. Daniell H, McFadden BA. 24.  1987. Uptake and expression of bacterial and cyanobacterial genes by isolated cucumber etioplasts. PNAS 84:6349–53 [Google Scholar]
  25. Daniell H, Muthukumar B, Lee S-B. 25.  2001. Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr. Genet. 39:109–16 [Google Scholar]
  26. Daniell H, Ruiz G, Denes B, Sandberg L, Langridge W. 26.  2009. Optimization of codon composition and regulatory elements for expression of human insulin like growth factor-1 in transgenic chloroplasts and evaluation of structural identity and function. BMC Biotechnol. 9:33 [Google Scholar]
  27. Daniell H, Vivekananda J, Nielsen BL, Ye GN, Tewari KK, Sanford JC. 27.  1990. Transient foreign gene expression in chloroplasts of cultured tobacco cells after biolistic delivery of chloroplast vectors. PNAS 87:88–92 [Google Scholar]
  28. Daniell H, Wurdack KJ, Kanagaraj A, Lee S-B, Saski C, Jansen RK. 28.  2008. The complete nucleotide sequence of the cassava (Manihot esculenta) chloroplast genome and the evolution of AtpF in Malpighiales: RNA editing and multiple losses of a group II intron. Theor. Appl. Genet. 116:723–37 [Google Scholar]
  29. Davoodi-Semiromi A, Schreiber M, Nalapalli S, Verma D, Singh ND. 29.  et al. 2010. Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol. J. 8:223–42 [Google Scholar]
  30. Day A, Goldschmidt-Clermont M. 30.  2011. The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol. J. 9:540–53 [Google Scholar]
  31. De Cosa B, Moar W, Lee S-B, Miller M, Daniell H. 31.  2001. Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat. Biotechnol. 19:71–74 [Google Scholar]
  32. Desnick RJ, Schuchman EH. 32.  2012. Enzyme replacement therapy for lysosomal diseases: lessons from 20 years of experience and remaining challenges. Annu. Rev. Genom. Hum. Genet. 13:307–35 [Google Scholar]
  33. Dufourmantel N, Dubald M, Matringe M, Canard H, Garcon F. 33.  et al. 2007. Generation and characterization of soybean and marker-free tobacco plastid transformants over-expressing a bacterial 4-hydroxyphenylpyruvate dioxygenase which provides strong herbicide tolerance. Plant Biotechnol. J. 5:118–33 [Google Scholar]
  34. Dufourmantel N, Tissot G, Goutorbe F, Garçon F, Muhr C. 34.  et al. 2005. Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant. Mol. Biol. 58:659–68 [Google Scholar]
  35. Dunne A, Maple-Grødem J, Gargano D, Haslam RP, Napier JA. 35.  et al. 2014. Modifying fatty acid profiles through a new cytokinin-based plastid transformation system. Plant J. 80:1131–38 [Google Scholar]
  36. Eibl C, Zou Z, Beck A, Kim M, Mullet J, Koop HU. 36.  2003. In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. Plant J. 19:333–45 [Google Scholar]
  37. Eidels L, Proia RL, Hart DA. 37.  1983. Membrane receptors for bacterial toxins. Microbiol. Rev. 47:596–620 [Google Scholar]
  38. Famulare M, Hu H. 38.  2015. Extracting transmission networks from phylogeographic data for epidemic and endemic diseases: Ebola virus in Sierra Leone, 2009 H1N1 pandemic influenza and polio in Nigeria. Int. Health 7:130–38 [Google Scholar]
  39. Fernández-San Millán A, Ortigosa SM, Hervás-Stubbs S, Corral Martínez P, Seguí-Simarro JM. 39.  et al. 2008. Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic. Plant Biotechnol. J. 6:427–41 [Google Scholar]
  40. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. 40.  2008. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6:121–31 [Google Scholar]
  41. Giese MJ, Speth RC. 41.  2014. The ocular renin-angiotensin system: a therapeutic target for the treatment of ocular disease. Pharmacol. Ther. 142:11–32 [Google Scholar]
  42. Gisby MF, Mellors P, Madesis P, Ellin M, Laverty H. 42.  et al. 2011. A synthetic gene increases TGF-β3 accumulation by 75-fold in tobacco chloroplasts enabling rapid purification and folding into a biologically active molecule. Plant Biotechnol. J. 9:618–28 [Google Scholar]
  43. Gisby MF, Mudd EA, Day A. 43.  2012. Growth of transplastomic cells expressing d–amino acid oxidase in chloroplasts is tolerant to d-alanine and inhibited by d-valine. Plant Physiol. 160:2219–26 [Google Scholar]
  44. Glenz K, Bouchon B, Stehle T, Wallich R, Simon MM. 44.  et al. 2006. Production of a recombinant bacterial lipoprotein in higher plant chloroplasts. Nat. Biotechnol. 24:76–77 [Google Scholar]
  45. Goldschmidt-Clermont M. 45.  1991. Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker for site-directed transformation of chlamydomonas. Nucleic Acids Res. 19:4083–89 [Google Scholar]
  46. Grabowski GA, Golembo M, Shaaltiel Y. 46.  2014. Taliglucerase alfa: an enzyme replacement therapy using plant cell expression technology. Mol. Genet. Metab. 112:1–8 [Google Scholar]
  47. Grabowski H, Cockburn I, Long G. 47.  2006. The market for follow-on biologics: How will it evolve?. Health Aff. 25:1291–01 [Google Scholar]
  48. Granell A, Fernández-del-Carmen A, Orzáez D. 48.  2010. In planta production of plant-derived and non-plant-derived adjuvants. Expert Rev. Vaccines 9:843–58 [Google Scholar]
  49. Guda C, Lee S-B, Daniell H. 49.  2000. Stable expression of a biodegradable protein-based polymer in tobacco chloroplasts. Plant Cell Rep. 19:257–62 [Google Scholar]
  50. Guetard D, Greco R, Cervantes Gonzalez M, Celli S, Kostrzak A. 50.  et al. 2008. Immunogenicity and tolerance following HIV-1/HBV plant-based oral vaccine administration. Vaccine 26:4477–85 [Google Scholar]
  51. Gupta K, Kotian A, Subramanian H, Daniell H, Ali H. 51.  2015. Activation of human mast cells by retrocyclin and protegrin highlight their immunomodulatory and antimicrobial properties. Oncotarget 6:28573–87 [Google Scholar]
  52. Hammani K, Cook WB, Barkan A. 52.  2012. RNA binding and RNA remodeling activities of the half-a-tetratricopeptide (HAT) protein HCF107 underlie its effects on gene expression. PNAS 109:5651–56 [Google Scholar]
  53. Hede MS, Salimova E, Piszczek A, Perlas E, Winn N. 53.  et al. 2012. E-peptides control bioavailability of IGF-1. PLOS ONE 7:e51152 [Google Scholar]
  54. Holtz BR, Berquist BR, Bennett LD, Kommineni VJM, Munigunti RK. 54.  et al. 2015. Commercial-scale biotherapeutics manufacturing facility for plant-made biopharmaceuticals. Plant Biotechnol. J. 13:1180–90 [Google Scholar]
  55. Horai R, Caspi RR. 55.  2009. Retinal inflammation: uveitis/uveoretinitis. Neuromethods 46 I-H Pang, AF Clark 207–25 New York: Springer [Google Scholar]
  56. Humbert M, Ghofrani H-A. 56.  2016. The molecular targets of approved treatments for pulmonary arterial hypertension. Thorax 71:73–83 [Google Scholar]
  57. Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G. 57.  et al. 2010. Survival in patients with idiopathic, familial and anorexigen-asociated pulmonary arterial hypertension in the modern management era. Circulation 122:156–63 [Google Scholar]
  58. Iamtham S, Day A. 58.  2001. Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat. Biotechnol. 18:1172–2000 [Google Scholar]
  59. Ingolia NT. 59.  2014. Ribosome profiling: new views of translation, from single codons to genome scale. Nat. Rev. Genet. 15:205–13 [Google Scholar]
  60. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS. 60.  2009. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–23 [Google Scholar]
  61. Jin S, Daniell H. 61.  2015. The engineered chloroplast genome just got smarter. Trends Plant Sci. 20:622–40 [Google Scholar]
  62. Kanagaraj AP, Verma D, Daniell H. 62.  2011. Expression of dengue-3 premembrane and envelope polyprotein in lettuce chloroplasts. Plant Mol. Biol. 76:323–33 [Google Scholar]
  63. Kempton CL, Meeks SL. 63.  2014. Toward optimal therapy for inhibitors in hemophilia. Blood 124:3365–72 [Google Scholar]
  64. Kim YJ, Gallien S, El-Khoury V, Goswami P, Sertamo K. 64.  et al. 2015. Quantification of SAA1 and SAA2 in lung cancer plasma using the isotype-specific PRM assays. Proteomics 15:3116–25 [Google Scholar]
  65. Kohli N, Westerveld DR, Ayache AC, Verma A, Shil P. 65.  et al. 2014. Oral delivery of bioencapsulated proteins across blood-brain and blood-retinal barriers. Mol. Ther. 22:535–46 [Google Scholar]
  66. Koya V, Moayeri M, Leppla SH, Daniell H. 66.  2005. Plant-based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge. Infect. Immun. 73:8266–74 [Google Scholar]
  67. Krichevsky A, Meyers B, Vainstein A, Maliga P, Citovsky V. 67.  2010. Autoluminescent plants. PLOS ONE 5:e15461 [Google Scholar]
  68. Kumar S, Dhingra A, Daniell H. 68.  2004. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol. 136:2843–54 [Google Scholar]
  69. Kwon K-C, Daniell H. 69.  2015. Low-cost oral delivery of protein drugs bioencapsulated in plant cells. Plant Biotechnol. J. 13:1017–22 [Google Scholar]
  70. Kwon K-C, Chan H-T, León IR, Williams-Carrier R, Barkan A, Daniell H. 70.  2016. Codon optimization to enhance expression yields insights into chloroplast translation.. Plant Physiol. 172:62–77 [Google Scholar]
  71. Kwon K-C, Daniell H. 71.  2016. Oral delivery of protein drugs bioencapsulated in plant cells. Mol. Ther. 24:1342–50 [Google Scholar]
  72. Kwon K-C, Nityanandam R, New JS, Daniell H. 72.  2013. Oral delivery of bioencapsulated exendin-4 expressed in chloroplasts lowers blood glucose level in mice and stiumulates insulin secretion in β-TC6 cells. Plant Biotechnol. J. 11:77–86 [Google Scholar]
  73. Kwon K-C, Verma D, Singh ND, Herzog R, Daniell H. 73.  2013. Oral delivery of biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells. Adv. Drug Deliv. Rev. 65:782–99 [Google Scholar]
  74. Lakshmi PS, Verma D, Yang X, Lloyd B, Daniell H. 74.  2013. Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro. PLOS ONE 8:e54708 [Google Scholar]
  75. Lamichhane A, Azegamia T, Koyonoa H. 75.  2014. The mucosal immune system for vaccine development. Vaccine 32:6711–23 [Google Scholar]
  76. Ledeen RW, Wu G. 76.  2015. The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem. Sci. 40:407–18 [Google Scholar]
  77. Lee SB, Li B, Jin S, Daniell H. 77.  2011. Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections. Plant Biotechnol. J. 9:100–15 [Google Scholar]
  78. Lenzi P, Scotti N, Alagna F, Tornesello ML, Pompa A. 78.  et al. 2008. Translational fusion of chloroplast-expressed human papillomavirus type 16 L1 capsid protein enhances antigen accumulation in transplastomic tobacco. Transgenic Res. 17:1091–102 [Google Scholar]
  79. Liao M-C, Ahmed M, Smith SO, Van Nostrand WE. 79.  2009. Degradation of amyloid β protein by purified myelin basic protein. J. Biol. Chem. 284:28917–25 [Google Scholar]
  80. Lim S, Ashida H, Watanabe R, Inai K, Kim Y-S. 80.  et al. 2011. Production of biologically active human thioredoxin 1 protein in lettuce chloroplasts. Plant Mol. Biol. 76:335–44 [Google Scholar]
  81. Limaye A, Koya V, Samsam M, Daniell H. 81.  2006. Receptor-mediated oral delivery of a bioencapsulated green fluorescent protein expressed in transgenic chloroplasts into the mouse circulatory system. FASEB J. 20:959–61 [Google Scholar]
  82. Lössl AG, Waheed MT. 82.  2011. Chloroplast-derived vaccines against human diseases: achievements, challenges and scopes. Plant Biotechnol. J. 9:527–39 [Google Scholar]
  83. Mäger I, Roberts TC, Wood MJA, El Andaloussi S. 83.  2014. From gut to brain: bioencapsulated therapeutic protein reduces amyloid load upon oral delivery. Mol. Ther. 22:485–86 [Google Scholar]
  84. Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M. 84.  et al. 2011. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLOS Biol. 9:e1001221 [Google Scholar]
  85. Morton BR. 85.  1993. Chloroplast DNA codon usage: evidence for selection at the psbA locus based on tRNA availability. J. Mol. Evol. 37:273–80 [Google Scholar]
  86. Mucida D, Kutchukhidze N, Agustin Erazo A, Russo M, Lafaille JJ. 86.  et al. 2005. Oral tolerance in the absence of naturally occurring Tregs. J. Clin. Investig. 115:1923–33 [Google Scholar]
  87. Nakamura M, Sugiura M. 87.  2007. Translation efficiencies of synonymous codons are not always correlated with codon usage in tobacco chloroplasts. Plant J. 49:128–34 [Google Scholar]
  88. 88. Natl. Inst. Aging 2015. Alzheimer's disease fact sheet. Bethesda, MD: NIA https://www.nia.nih.gov/alzheimers/publication/alzheimers-disease-fact-sheet [Google Scholar]
  89. Okayasu H, Sutter RW, Jafari HS, Takane M, Aylward RB. 89.  2014. Affordable inactivated poliovirus vaccine: strategies and progress. J. Infect. Dis. 210:S459–64 [Google Scholar]
  90. Oldenburg DJ, Bendich AJ. 90.  2015. DNA maintenance in plastids and mitochondria of plants. Front. Plant Sci. 6:883 [Google Scholar]
  91. Oliveira RP, Santiago AF, Ficker SM, Gomes-Santos AC, Faria AM. 91.  2015. Antigen administration by continuous feeding enhances oral tolerance and leads to long-lasting effects. J. Immunol. Methods 421:36–43 [Google Scholar]
  92. Pascolini D, Mariotti SPM. 92.  2012. Global estimates of visual impairment: 2010. Br. J. Ophthalmol. 96:614–18 [Google Scholar]
  93. Pasoreck EK, Su J, Silverman IS, Gosai SJ, Gregory BD. 93.  et al. 2016. Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signaling. Plant Biotechnol. J. 14:1862–75 [Google Scholar]
  94. Philippou A, Barton ER. 94.  2014. Optimizing IGF-1 for skeletal muscle therapeutics. Growth Horm. IGF Res. 24:157–63 [Google Scholar]
  95. Pniewski T, Kapusta J, Bociazg P, Wojciechowicz J, Kostrzak A. 95.  et al. 2011. Low-dose oral immunization with lyophilized tissue of herbicide-resistant lettuce expressing hepatitis B surface antigen for prototype plant-derived vaccine tablet formulation. J. Appl. Genet. 52:125–36 [Google Scholar]
  96. 96. Glob. Polio Erad. Initiat 2015. Fact sheet: vaccine-derived poliovirus. Geneva, Switz.: Glob. Polio Erad. Initiat http://polioeradication.org/wp-content/uploads/2016/09/CVDPVFactSheetMarch2015.pdf [Google Scholar]
  97. Quesada-Vargas T, Ruiz ON, Daniell H. 97.  2005. Characterization of heterologous multigene operons in transgenic chloroplasts. Transcription, processing, and translation. Plant Physol. 138:1746–62 [Google Scholar]
  98. Rask C, Holmgren J, Fredriksson M, Nordstrom I, Sun JB, Czerkinsky C. 98.  2000. Prolonged oral treatment with low doses of allergen conjugated to cholera toxin B subunit suppresses immunoglobulin E antibody responses in sensitized mice. Clin. Exp. Allergy 30:1024–32 [Google Scholar]
  99. Rauniyar N. 99.  2015. Parallel reaction monitoring: a targeted experiment performed using high resolution and high mass accuracy mass spectrometry. Int. J. Mol. Sci. 16:28566–81 [Google Scholar]
  100. Reiss BB. 100.  2003. Homologous recombination and gene targeting in plant cells. Int. Rev. Cytol. 228:85–139 [Google Scholar]
  101. Ronsein GE, Pamir N, von Halle PD, Kim DS, Oda MN. 101.  et al. 2015. Parallel reaction monitoring (PRM) and selected reaction monitoring (SRM) exhibit comparable linearity, dynamic range and precision for targeted quantitative HDL proteomics. J. Proteom. 113:388–99 [Google Scholar]
  102. Rosales-Mendoza S, Alpuche-Solis AG, Soria-Guerra RE, Moreno-Fierros L, Martínez-González L. 102.  et al. 2009. Expression of an Escherichia coli antigenic fusion protein comprising the heat labile toxin B subunit and the heat stable toxin, and its assembly as a functional oligomer in transplastomic tobacco plants. Plant J. 57:45–54 [Google Scholar]
  103. Rubio-Infante N, Govea-Alonso DO, Alpuche-Solís ÁG, García-Hernández AL, Soria Guerra RE. 103.  et al. 2012. A chloroplast-derived C4V3 polypeptide from the human immunodeficiency virus (HIV) is orally immunogenic in mice. Plant Mol. Biol. 78:337–49 [Google Scholar]
  104. Rubio-Infante N, Govea-Alonso DO, Romero-Maldonado A, García-Hernández AL, Ilhuicatzi-Alvarado D. 104.  et al. 2015. A plant-derived multi-HIV antigen induces broad immune responses in orally immunized mice. Mol. Biotechnol. 57:662–74 [Google Scholar]
  105. Ruhlman T, Ahangari R, Devine A, Samsam M, Daniell H. 105.  2007. Expression of cholera toxin B–proinsulin fusion protein in lettuce and tobacco chloroplasts: oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnol. J. 5:495–510 [Google Scholar]
  106. Ruhlman T, Lee S-B, Jansen RK, Hostetler JB, Tallon LJ. 106.  et al. 2006. Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogeny of angiosperms. BMC Genom. 7:222 [Google Scholar]
  107. Ruhlman T, Verma D, Samson N, Daniell H. 107.  2010. The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol. 152:2088–104 [Google Scholar]
  108. Rybicki E. 108.  2014. Plant-based vaccines against viruses. Virol. J. 11:205 [Google Scholar]
  109. Samson N, Bausher MG, Lee S-B, Jansen RK, Daniell H. 109.  2007. The complete nucleotide sequence of the coffee (Coffea arabica L.) chloroplast genome: organization and implications for biotechnology and phylogenetic relationships amongst angiosperms. Plant Biotechnol. J. 5:339–53 [Google Scholar]
  110. Santos RAS, Ferreira AJ, Verano-Braga T, Bader M. 110.  2012. Angiotensin-converting enzyme 2, angiotensin-(1–7) and Mas: new players of the renin-angiotensin system. J. Endocrinol. 216:R1–17 [Google Scholar]
  111. Sanz-Barrio R, Millán AF, Corral-Martínez P, Seguí-Simarro JM, Farran I. 111.  2011. Tobacco plastidial thioredoxins as modulators of recombinant protein production in transgenic chloroplasts. Plant Biotechnol. J. 9:639–50 [Google Scholar]
  112. Saski C, Lee S-B, Fjellheim S, Guda C, Jansen RK. 112.  et al. 2007. Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theor. Appl. Genet. 115:571–90 [Google Scholar]
  113. Saslowsky DE, te Welscher YM, Chinnapen DJ-F, Wagner JS, Wan J. 113.  et al. 2013. Ganglioside GM1-mediated transcytosis of cholera toxin bypasses the retrograde pathway and depends on the structure of the ceramide domain. J. Biol. Chem. 288:25804–9 [Google Scholar]
  114. Schermuly RT, Ghofrani HA, Wilkins MR, Grimminger F. 114.  2011. Mechanisms of disease: pulmonary arterial hypertension. Nat. Rev. Cardiol. 8:433–55 [Google Scholar]
  115. Shakya AK, Chowdhury MYE, Tao W, Gill HS. 115.  2016. Mucosal vaccine delivery: current state and a pediatric perspective. J. Control. Release 240:394–413 [Google Scholar]
  116. Shao M, Kumar S, Thomson JG. 116.  2014. Precise excision of plastid DNA by the large serine recombinase Bxb1. Plant Biotechnol. J. 12:322–29 [Google Scholar]
  117. Shenoy V, Kwon K-C, Rathinasabapathy A, Lin S, Jin G. 117.  et al. 2014. Oral delivery of angiotensin-converting enzyme 2 and angiotensin-(1–7) bioencapsulated in plant cells attenuates pulmonary hypertension. Hypertension 64:1248–59 [Google Scholar]
  118. Sherman A, Su J, Lin S, Wang X, Herzog RW, Daniell H. 118.  2014. Suppression of inhibitor formation against FVIII in a murine model of hemophilia A by oral delivery of antigens bioencapsulated in plant cells. Blood 124:1659–68 [Google Scholar]
  119. Shil PK, Kwon C-K, Zhu P, Verma A, Daniell H, Li Q. 119.  2014. Oral delivery of ACE2/Ang(1–7) bioencapsulated in plant cells protects against experimental uveitis and autoimmune uveoretinitis. Mol. Ther. 22:2069–82 [Google Scholar]
  120. Sowers JL, Mirfattah B, Xu P, Tang H, Park IY. 120.  et al. 2015. Quantification of histone modifications by parallel-reaction monitoring: a method validation. Anal. Chem. 87:10006–14 [Google Scholar]
  121. Spök A, Karner S, Stein AJ, Rodríguez-Cerezo E. 121.  2008. Plant molecular farming. Opportunities and challenges. JRC Sci. Tech. Rep., Joint Res. Cent., Inst. Prospect. Technol. Stud., Seville, Spain [Google Scholar]
  122. Staub JM, Garcia B, Graves J, Hajdukiewicz PT, Hunter P. 122.  et al. 2000. High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat. Biotechnol. 18:333–38 [Google Scholar]
  123. Su J, Sherman A, Doerfler PA, Byrne BJ, Herzog RW, Daniell H. 123.  2015. Oral delivery of acid alpha glucosidase epitopes expressed in plant chloroplasts suppresses antibody formation in treatment of Pompe mice. Plant Biotechnol. J. 13:1023–32 [Google Scholar]
  124. Su J, Zhu L, Sherman A, Wang X, Lin S. 124.  et al. 2015. Low cost industrial production of coagulation factor IX bioencapsulated in lettuce cells for oral tolerance induction in hemophilia B. Biomaterials 70:84–93 [Google Scholar]
  125. Sugiura M. 125.  2014. Plastid mRNA translation. Methods of Molecular Biology 1132 P Maliga 73–91 New York: Springer [Google Scholar]
  126. Sun JB, Czerkinsky C, Holmgren J. 126.  2010. Mucosally induced immunological tolerance, regulatory T cells and the adjuvant effect by cholera toxin B subunit. Scand. J. Immunol. 71:1–11 [Google Scholar]
  127. Svab Z, Maliga P. 127.  1993. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. PNAS 90:913–17 [Google Scholar]
  128. Tangphatsornruang S, Birch-Machin I, Newell CA, Gray JC. 128.  2011. The effect of different 3′ untranslated regions on the accumulation and stability of transcripts of a gfp transgene in chloroplasts of transplastomic tobacco. Plant Mol. Biol. 76:385–96 [Google Scholar]
  129. Taylor JP, Hardy J, Fischbeck KH. 129.  2002. Toxic proteins in neurodegenerative disease. Science 296:1991–95 [Google Scholar]
  130. Thanavala Y, Mahoney M, Pal S, Scott A, Richter L. 130.  et al. 2005. Immunogenicity in humans of an edible vaccine for hepatitis B. PNAS 102:3378–82 [Google Scholar]
  131. Thomas S, Harlan R, Chen J, Aiyetan P, Liu Y. 131.  et al. 2015. Multiplexed targeted mass spectrometry–based assays for the quantification of N-linked glycosite-containing peptides in serum. Anal. Chem. 87:10830–38 [Google Scholar]
  132. Tsuchiya H, Tanaka K, Saeki Y. 132.  2013. The parallel reaction monitoring method contributes to a highly sensitive polyubiquitin chain quantification. Biochem. Biophys. Res. Commun. 436:223–29 [Google Scholar]
  133. 133. US Food Drug Admin 2014. Common ingredients in U.S. licensed vaccines. Silver Spring, MD: US Food Drug Admin http://www.fda.gov/BiologicsBloodVaccines/SafetyAvailability/VaccineSafety/ucm187810.htm [Google Scholar]
  134. 134. US Food Drug Admin 2015. FDA approves first seasonal influenza vaccine containing an adjuvant Silver Spring, MD: US Food Drug Admin http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm474295.htm [Google Scholar]
  135. Verma D, Maghimi B, LoDuca PA, Singh HD, Hoffman BE. 135.  et al. 2010. Oral delivery of bioencapsuated coagulation factor IX prevents inhibitor formation and fatal anaphylaxis in hemophilia B mice. PNAS 107:7101–6 [Google Scholar]
  136. Verma D, Samson NP, Koya V, Daniell H. 136.  2008. A protocol for expression of foreign genes in chloroplasts. Nat. Protoc. 3:739–58 [Google Scholar]
  137. Waheed MT, Ismail H, Gottschamel J, Mirza B, Lössl AG. 137.  2015. Plastids: the green frontiers for vaccine production. Front. Plant Sci. 6:1005 [Google Scholar]
  138. Waheed MT, Thönes N, Müller M, Hassan SW, Razavi NM. 138.  et al. 2011. Transplastomic expression of a modified human papillomavirus L1 protein leading to the assembly of capsomeres in tobacco: a step towards cost-effective second-generation vaccines. Transgenic Res. 20:271–82 [Google Scholar]
  139. Walsh G. 139.  2014. Biopharmaceutical benchmarks 2014. Nat. Biotechnol. 32:992–1000 [Google Scholar]
  140. Wang X, Sherman A, Liao G, Leong KW, Daniell H. 140.  et al. 2013. Mechanism of oral tolerance induction to therapeutic proteins. Adv. Drug Deliv. Rev. 65:759–73 [Google Scholar]
  141. Wang X, Su J, Sherman A, Rogers GL, Liao G. 141.  et al. 2015. Plant-based oral tolerance to hemophilia therapy employs a complex immune regulatory response including LAP+CD4+ T cells. Blood 125:2418–27 [Google Scholar]
  142. Wang X, Terhorst C, Herzog RW. 142.  2015. In vivo induction of regulatory T cells for immune tolerance in hemophilia. Cell. Immunol. 301:18–29 [Google Scholar]
  143. Wasinger VC, Zeng M, Yau Y. 143.  2013. Current status and advances in quantitative proteomic mass spectrometry. Int. J. Proteom. 2013:180605 [Google Scholar]
  144. Weiner HL, da Cunha AP, Quintana F, Wu H. 144.  2011. Oral tolerance. Immunol. Rev. 241:241–59 [Google Scholar]
  145. Xiao Y, Kwon K-C, Hoffman BE, Kamesh A, Jones NT. 145.  et al. 2016. Low cost delivery of proteins bioencapsulated in plant cells to human non-immune or immune modulatory cells. Biomaterials 80:68–79 [Google Scholar]
  146. Ye GN, Daniell H, Sanford JC. 146.  1990. Optimization of delivery of foreign DNA into higher plant chloroplasts. Plant Mol. Biol. 15:809–20 [Google Scholar]
  147. Yoon CK. 147.  2000. EPA announces new rules on genetically altered corn. New York Times Jan. 17. http://www.nytimes.com/2000/01/17/us/epa-announces-new-rules-on-genetically-altered-corn.html [Google Scholar]
  148. Zoschke R, Barkan A. 148.  2015. Genome-wide analysis of thylakoid-bound ribosomes in maize reveals principles of cotranslational targeting to the thylakoid membrane. PNAS 112:E1678–87 [Google Scholar]
  149. Zoschke R, Watkins KP, Barkan A. 149.  2013. A rapid ribosome profiling method elucidates chloroplast ribosome behavior in vivo. Plant Cell 25:2265–75 [Google Scholar]
  150. Zou Z, Eibl C, Koop H-U. 150.  2003. The stem-loop region of the tobacco psbA 5′ UTR is an important determinant of mRNA stability and translation efficiency. Mol. Gen. Genom. 269:340–49 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error