1932

Abstract

Methods of transcriptional profiling have made it possible to compare gene expression between females and males on a genome-wide scale. Such studies have revealed that sex-biased gene expression is abundant in many species, although its extent may vary greatly among tissues or developmental stages. In species with genetic sex determination, sex chromosome–specific processes, such as dosage compensation, also may influence sex-biased gene expression. Sex-biased genes, especially those with male-biased expression, often show elevated rates of both protein sequence and gene expression divergence between species, which could have a number of causes, including sexual selection, sexual antagonism, and relaxed selective constraint. Here, we review our current knowledge of sex-biased gene expression in both model and nonmodel organisms, as well as the biological and technical factors that should be considered when analyzing sex-biased expression. We also discuss current approaches to uncover the evolutionary forces that govern the evolution of sex-biased genes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120215-035429
2016-11-23
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/genet/50/1/annurev-genet-120215-035429.html?itemId=/content/journals/10.1146/annurev-genet-120215-035429&mimeType=html&fmt=ahah

Literature Cited

  1. Albritton SE, Kranz A-L, Rao P, Kramer M, Dieterich C, Ercan S. 1.  2014. Sex-biased gene expression and evolution of the X chromosomes in nematodes. Genetics 197:865–83 [Google Scholar]
  2. Alekseyenko AA, Larschan E, Lai WR, Park PJ, Kuroda MI. 2.  2006. High-resolution ChIP-chip analysis reveals that the Drosophila MSL complex selectively identifies active genes on the male X chromosome. Genes Dev. 20:848–57 [Google Scholar]
  3. Antonovics J. 3.  2005. Plant venereal diseases: insights from a messy metaphor. New Phytol. 165:71–80 [Google Scholar]
  4. Arunkumar R, Josephs EB, Williamson RJ, Wright SI. 4.  2013. Pollen-specific, but not sperm-specific, genes show stronger purifying selection and higher rates of positive selection than sporophytic genes in Capsella grandiflora. Mol. Biol. Evol. 30:2475–86 [Google Scholar]
  5. Assis R, Zhou Q, Bachtrog D. 5.  2012. Sex-biased transcriptome evolution in Drosophila. Genome Biol. Evol. 4:1189–200 [Google Scholar]
  6. Avila V, Campos JL, Charlesworth B. 6.  2015. The effects of sex-biased gene expression and X-linkage on rates of adaptive protein sequence evolution in Drosophila. Biol. Lett. 11:20150117 [Google Scholar]
  7. Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP. 7.  et al. 2014. Sex determination: Why so many ways of doing it?. PLOS Biol. 12:e1001899 [Google Scholar]
  8. Bachtrog D, Toda NR, Lockton S. 8.  2010. Dosage compensation and demasculinization of X chromosomes in Drosophila. Curr. Biol. 20:1476–81 [Google Scholar]
  9. Baines JF, Harr B. 9.  2007. Reduced X-linked diversity in derived populations of house mice. Genetics 175:1911–21 [Google Scholar]
  10. Baines JF, Sawyer SA, Hartl DL, Parsch J. 10.  2008. Effects of X-linkage and sex-biased gene expression on the rate of adaptive protein evolution in Drosophila. Mol. Biol. Evol. 25:1639–50 [Google Scholar]
  11. Baker DA, Nolan T, Fischer B, Pinder A, Crisanti A, Russell S. 11.  2011. A comprehensive gene expression atlas of sex- and tissue-specificity in the malaria vector, Anopheles gambiae. BMC Genom. 12:296 [Google Scholar]
  12. Begun DJ, Holloway AK, Stevens K, Hillier LW, Poh YP. 12.  et al. 2007. Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans. PLOS Biol. 5:e310 [Google Scholar]
  13. Beukeboom LW, Perrin N. 13.  2014. Evolution of Sex Determination Oxford: Oxford Univ. Press [Google Scholar]
  14. Bird A. 14.  2002. DNA methylation patterns and epigenetic memory. Genes Dev. 16:6–21 [Google Scholar]
  15. Bonasio R. 15.  2015. The expanding epigenetic landscape of non-model organisms. J. Exp. Biol. 218:114–22 [Google Scholar]
  16. Brawand D, Soumillon M, Necsulea A, Julien P, Csárdi G. 16.  et al. 2011. The evolution of gene expression levels in mammalian organs. Nature 478:343–48 [Google Scholar]
  17. Caballero A. 17.  1995. On the effective size of populations with separate sexes, with particular reference to sex-linked genes. Genetics 139:1007–11 [Google Scholar]
  18. Catalán A, Hutter S, Parsch J. 18.  2012. Population and sex differences in Drosophila melanogaster brain gene expression. BMC Genom. 13:654 [Google Scholar]
  19. Chang PL, Dunham JP, Nuzhdin SV, Arbeitman MN. 19.  2011. Somatic sex-specific transcriptome differences in Drosophila revealed by whole transcriptome sequencing. BMC Genom. 12:364 [Google Scholar]
  20. Charlesworth B, Coyne JA, Barton NH. 20.  1987. The relative rates of evolution of sex chromosomes and autosomes. Am. Nat. 130:113–46 [Google Scholar]
  21. Charlesworth D. 21.  2002. Plant sex determination and sex chromosomes. Heredity 88:94–101 [Google Scholar]
  22. Charlesworth D. 22.  2016. Plant sex chromosomes. Annu. Rev. Plant Biol. 67:397–420 [Google Scholar]
  23. Colbourne J, Eads B, Shaw J, Bohuski E, Bauer D, Andrews J. 23.  2007. Sampling Daphnia's expressed genes: preservation, expansion and invention of crustacean genes with reference to insect genomes. BMC Genom. 8:217 [Google Scholar]
  24. Connallon T, Clark AG. 24.  Association between sex-biased gene expression and mutations with sex-specific phenotypic consequences in Drosophila. Genome Biol. Evol. 3:151–55 [Google Scholar]
  25. Coolon JD, Stevenson KR, McManus CJ, Yang B, Graveley BR, Wittkopp PJ. 25.  2015. Molecular mechanisms and evolutionary processes contributing to accelerated divergence of gene expression on the Drosophila X chromosome. Mol. Biol. Evol. 32:2605–15 [Google Scholar]
  26. Cutter AD, Ward S. 26.  2005. Sexual and temporal dynamics of molecular evolution in C. elegans development. Mol. Biol. Evol. 22:178–88 [Google Scholar]
  27. Darwin C. 27.  1871. The Descent of Man, and Selection in Relation to Sex London: John Murray [Google Scholar]
  28. Dean R, Harrison PW, Wright AE, Zimmer F, Mank JE. 28.  2015. Positive selection underlies faster-Z evolution of gene expression in birds. Mol. Biol. Evol. 32:2646–56 [Google Scholar]
  29. Disteche CM. 29.  2012. Dosage compensation of the sex chromosomes. Annu. Rev. Genet. 46:537–60 [Google Scholar]
  30. Eads BD, Colbourne JK, Bohuski E, Andrews J. 30.  2007. Profiling sex-biased gene expression during parthenogenetic reproduction in Daphnia pulex. BMC Genom. 8:464 [Google Scholar]
  31. Elango N, Hunt BG, Goodisman MAD, Yi SV. 31.  2009. DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. PNAS 106:11206–11 [Google Scholar]
  32. Ellegren H, Parsch J. 32.  2007. The evolution of sex-biased genes and sex-biased gene expression. Nat. Rev. Genet. 8:689–98 [Google Scholar]
  33. Engelstädter J, Hurst GDD. 33.  2009. The ecology and evolution of microbes that manipulate host reproduction. Annu. Rev. Ecol. Evol. Syst. 40:127–49 [Google Scholar]
  34. Ercan S. 34.  2015. Mechanisms of X chromosome dosage compensation. J. Genom. 3:1–19 [Google Scholar]
  35. Eyre-Walker A, Keightley PD. 35.  2009. Estimating the rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change. Mol. Biol. Evol. 26:2097–108 [Google Scholar]
  36. Finnegan EJ, Genger RK, Peacock WJ, Dennis ES. 36.  1998. DNA methylation in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:223–47 [Google Scholar]
  37. Gilks WP, Abbott JK, Morrow EH. 37.  2014. Sex differences in disease genetics: evidence, evolution, and detection. Trends Genet. 30:453–63 [Google Scholar]
  38. Gnad F, Parsch J. 38.  2006. Sebida: a database for the functional and evolutionary analysis of genes with sex-biased expression. Bioinformatics 22:2577–79 [Google Scholar]
  39. Goldman TD, Arbeitman MN. 39.  2007. Genomic and functional studies of Drosophila sex hierarchy regulated gene expression in adult head and nervous system tissues. PLOS Genet. 3:e216 [Google Scholar]
  40. Gossmann TI, Schmid MW, Grossniklaus U, Schmid KJ. 40.  2014. Selection-driven evolution of sex-biased genes is consistent with sexual selection in Arabidopsis thaliana. Mol. Biol. Evol. 31:574–83 [Google Scholar]
  41. Grath S, Parsch J. 41.  2012. Rate of amino acid substitution is influenced by the degree and conservation of male-biased transcription over 50 Myr of Drosophila evolution. Genome Biol. Evol. 4:346–59 [Google Scholar]
  42. Harrison PW, Wright AE, Zimmer F, Dean R, Montgomery SH. 42.  et al. 2015. Sexual selection drives evolution and rapid turnover of male gene expression. PNAS 112:4393–98 [Google Scholar]
  43. Hollis B, Houle D, Yan Z, Kawecki TJ, Keller L. 43.  2014. Evolution under monogamy feminizes gene expression in Drosophila melanogaster. Nat. Commun. 5:3482 [Google Scholar]
  44. Huylmans AK, Parsch J. 44.  2014. Population- and sex-biased gene expression in the excretion organs of Drosophila melanogaster. G3 (Bethesda) 4:2307–15 [Google Scholar]
  45. Huylmans AK, Parsch J. 45.  2014. Variation in the X: autosome distribution of male-biased genes among Drosophila melanogaster tissues and its relationship with dosage compensation. Genome Biol Evol. 7:1960–71 [Google Scholar]
  46. Innocenti P, Morrow EH. 46.  2010. The sexually antagonistic genes of Drosophila melanogaster. PLOS Biol. 8:e1000335 [Google Scholar]
  47. Jaquiéry J, Rispe C, Roze D, Legeai F, Le Trionnaire G. 47.  et al. 2013. Masculinization of the X chromosome in the pea aphid. PLOS Genet. 9:e1003690 [Google Scholar]
  48. Jacquiéry J, Stoeckel S, Rispe C, Mieuzet L, Legeai F. 48.  et al. 2012. Accelerated evolution of sex chromosomes in aphids, an X0 system. Mol. Biol. Evol. 29:837–47 [Google Scholar]
  49. Jiang ZF, Machado CA. 49.  2009. Evolution of sex-dependent gene expression in three recently diverged species of Drosophila. Genetics 183:1175–85 [Google Scholar]
  50. Jin W, Riley RM, Wolfinger RD, White KP, Passador-Gurgel G, Gibson G. 50.  2001. The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nat. Genet. 29:389–95 [Google Scholar]
  51. Kayserili MA, Gerrard DT, Tomancak P, Kalinka AT. 51.  2012. An excess of gene expression divergence on the X chromosome in Drosophila embryos: implications for the faster-X hypothesis. PLOS Genet. 8:e1003200 [Google Scholar]
  52. Khaitovich P, Hellmann I, Enard W, Nowick K, Leinweber M. 52.  et al. 2005. Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science 309:1850–54 [Google Scholar]
  53. Kucharski R, Maleszka J, Foret S, Maleszka R. 53.  2008. Nutritional control of reproductive status in honeybees via DNA methylation. Science 319:1827–30 [Google Scholar]
  54. Laporte V, Charlesworth B. 54.  2002. Effective population size and population subdivisions in demographically structured populations. Genetics 162:501–19 [Google Scholar]
  55. Lipinska A, Cormier A, Luthringer R, Peters AF, Corre E. 55.  et al. 2015. Sexual dimorphism and the evolution of sex-biased gene expression in the brown alga Ectocarpus. Mol. Biol. Evol. 32:1581–97 [Google Scholar]
  56. Llopart A. 56.  2012. The rapid evolution of X-linked male-biased gene expression and the large-X effect in Drosophila yakuba, D. santomea, and their hybrids. Mol. Biol. Evol. 29:3873–86 [Google Scholar]
  57. Lucchesi JC, Kuroda MI. 57.  2015. Dosage compensation in Drosophila. Cold Spring Harb. Perspect. Biol. 7:a019398 [Google Scholar]
  58. Mank JE. 58.  2013. Sex chromosome dosage compensation: definitely not for everyone. Trends Genet. 29:677–83 [Google Scholar]
  59. Mank JE, Axelsson E, Ellegren H. 59.  2007. Fast-X on the Z: rapid evolution of sex-linked genes in birds. Genome Res. 17:618–24 [Google Scholar]
  60. Mank JE, Ellegren H. 60.  2009. Are sex-biased genes more dispensable?. Biol. Lett. 5:409–12 [Google Scholar]
  61. Mank JE, Hultin-Rosenberg L, Webster MT, Ellegren H. 61.  2008. The unique genomic properties of sex-biased genes: insights from avian microarray data. BMC Genom. 9:148 [Google Scholar]
  62. Mank JE, Nam K, Brunström B, Ellegren H. 62.  2010. Ontogenetic complexity of sexual dimorphism and sex-specific selection. Mol. Biol. Evol. 27:1570–78 [Google Scholar]
  63. Mank JE, Nam K, Ellegren H. 63.  2010. Faster-Z evolution is predominantly due to genetic drift. Mol. Biol. Evol. 27:661–70 [Google Scholar]
  64. Mank JE, Vicoso B, Berlin S, Charlesworth B. 64.  2010. Effective population size and the faster-X effect: empirical results and their interpretation. Evolution 64:663–74 [Google Scholar]
  65. McCarthy MM, Auger AP, Bale TL, De Vries GJ, Dunn GA. 65.  et al. 2009. The epigenetics of sex differences in the brain. J. Neurosci. 29:12815–23 [Google Scholar]
  66. McDonald JH, Kreitman M. 66.  1991. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–54 [Google Scholar]
  67. Meiklejohn CD, Landeen EL, Cook JM, Kingan SB, Presgraves DC. 67.  2011. Sex chromosome–specific regulation in the Drosophila male germline but little evidence for chromosomal dosage compensation or meiotic inactivation. PLOS Biol. 9:e1001126 [Google Scholar]
  68. Meiklejohn CD, Parsch J, Ranz JM, Hartl DL. 68.  2003. Rapid evolution of male-biased gene expression in Drosophila. PNAS 100:9894–99 [Google Scholar]
  69. Meiklejohn CD, Presgraves DC. 69.  2012. Little evidence for demasculinization of the Drosophila X chromosome among genes expressed in the male germline. Genome Biol. Evol. 4:1007–16 [Google Scholar]
  70. Meisel RP. 70.  2011. Towards a more nuanced understanding of the relationship between sex-biased gene expression and rates of protein coding sequence evolution. Mol. Biol. Evol. 28:1893–900 [Google Scholar]
  71. Meisel RP, Connallon T. 71.  2013. The faster-X effect: integrating theory and data. Trends Genet. 29:537–44 [Google Scholar]
  72. Meisel RP, Malone JH, Clark AG. 72.  2012. Faster-X evolution of gene expression in Drosophila. PLOS Genet. 8:e1003013 [Google Scholar]
  73. Menger Y, Bettscheider M, Murgatroyd C, Spengler D. 73.  2010. Sex differences in brain epigenetics. Epigenomics 2:807–21 [Google Scholar]
  74. Ming R, Bendahmane A, Renner SS. 74.  2011. Sex chromosomes in land plants. Annu. Rev. Plant Biol. 62:485–514 [Google Scholar]
  75. Moore JC, Pannell JR. 75.  2011. Sexual selection in plants. Curr. Biol. 21:R176–82 [Google Scholar]
  76. Morrow EH. 76.  2015. The evolution of sex differences in disease. Biol. Sex Differ. 6:5 [Google Scholar]
  77. Müller L, Grath S, von Heckel K, Parsch J. 77.  2012. Inter- and intraspecific variation in Drosophila genes with sex-biased expression. Int. J. Evol. Biol. 2012:963976 [Google Scholar]
  78. Nugent BM, Wright CL, Shetty AC, Hodes GE, Lenz KM. 78.  et al. 2015. Brain feminization requires active repression of masculinization via DNA methylation. Nat. Neurosci. 18:690–97 [Google Scholar]
  79. Paris M, Villalta JE, Eisen MB, Lott SE. 79.  2015. Sex bias and maternal contribution to gene expression divergence in Drosophila blastoderm embryos. PLOS Genet. 11:e1005592 [Google Scholar]
  80. Parisi M, Nuttall R, Naiman D, Bouffard G, Malley J, Andrews J. 80.  et al. 2003. Paucity of genes on the Drosophila X chromosome showing male-biased expression. Science 299:697–700 [Google Scholar]
  81. Parsch J, Ellegren H. 81.  2013. The evolutionary causes and consequences of sex-biased gene expression. Nat. Rev. Genet. 14:83–87 [Google Scholar]
  82. Perry JC, Harrison PW, Mank JE. 82.  2014. The ontogeny and evolution of sex-biased gene expression in Drosophila melanogaster. Mol. Biol. Evol. 31:1206–19 [Google Scholar]
  83. Pointer MA, Harrison PW, Wright AE, Mank JE. 83.  2013. Masculinization of gene expression is associated with exaggeration of male sexual dimorphism. PLOS Genet. 9:e1003697 [Google Scholar]
  84. Pröschel M, Zhang Z, Parsch J. 84.  2006. Widespread adaptive evolution of Drosophila genes with sex-biased expression. Genetics 174:893–900 [Google Scholar]
  85. Purandare SR, Bickel RD, Jacquiéry J, Rispe C, Brisson JA. 85.  2014. Accelerated evolution of morph-biased genes in pea aphids. Mol. Biol. Evol. 31:2073–83 [Google Scholar]
  86. Ranz JM, Castillo-Davis CI, Meiklejohn CD, Hartl DL. 86.  2003. Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science 300:1742–45 [Google Scholar]
  87. Reinke V, Gil IS, Ward S, Kazmer K. 87.  2004. Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development 131:311–23 [Google Scholar]
  88. Renner SS. 88.  2015. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 101:1588–96 [Google Scholar]
  89. Rodgers-Gray TP, Smith JE, Ashcroft AE, Isaac RE, Dunn AM. 89.  2004. Mechanisms of parasite-induced sex reversal in Gammarus duebeni. Int. J. Parasitol. 34:747–53 [Google Scholar]
  90. Sawyer SA, Parsch J, Zhang Z, Hartl DL. 90.  2007. Prevalence of positive selection among nearly neutral amino acid replacements in Drosophila. PNAS 104:6504–10 [Google Scholar]
  91. Stamboliyska R, Parsch J. 91.  2011. Dissecting gene expression in mosquito. BMC Genom. 12:297 [Google Scholar]
  92. Straub T, Zabel A, Gilfillan GD, Feller C, Becker P. 92.  2013. Different chromatin interfaces of the Drosophila dosage compensation complex revealed by high-shear ChIP-seq. Genome Res. 23:473–85 [Google Scholar]
  93. Sun L, Johnson AF, Li J, Lambdin AS, Cheng J, Birchler JA. 93.  2013. Differential effect of aneuploidy on the X chromosome and genes with sex-biased expression in Drosophila. PNAS 110:16514–19 [Google Scholar]
  94. Thoemke K, Yi W, Ross JM, Kim S, Reinke V, Zarkower D. 94.  2005. Genome-wide analysis of sex-enriched gene expression during C. elegans larval development. Dev. Biol. 284:500–8 [Google Scholar]
  95. Thomas CG, Li RH, Smith HE, Woodruff GC, Oliver B. 95.  et al. 2012. Simplification and desexualization of gene expression in self-fertile nematodes. Curr. Biol. 22:2167–72 [Google Scholar]
  96. Torgerson DG, Singh RS. 96.  2003. Sex-linked mammalian sperm proteins evolve faster than autosomal ones. Mol. Biol. Evol. 20:1705–9 [Google Scholar]
  97. Uebbing S, Konzer A, Xu L, Backström N, Brunström B. 97.  et al. 2015. Quantitative mass spectrometry reveals partial translational regulation for dosage compensation in chicken. Mol. Biol. Evol. 32:2716–25 [Google Scholar]
  98. Vicoso B, Charlesworth B. 98.  2006. Evolution on the X chromosome: unusual patterns and processes. Nat. Rev. Genet. 7:645–53 [Google Scholar]
  99. Vicoso B, Charlesworth B. 99.  2009. Effective population size and the faster-X effect: an extended model. Evolution 63:2413–26 [Google Scholar]
  100. Vicoso B, Emerson JJ, Zektser Y, Mahajan S, Bachtrog D. 100.  2013. Comparative sex chromosome genomics in snakes: differentiation, evolutionary strata, and lack of global dosage compensation. PLOS Biol. 11:e1001643 [Google Scholar]
  101. Wang X, Werren JH, Clark AG. 101.  2015. Genetic and epigenetic architecture of sex-biased expression in the jewel wasps Nasonia vitripennis and giraulti. PNAS 112:E3545–54 [Google Scholar]
  102. Wong RY, McLeod MM, Godwin J. 102.  2014. Limited sex-biased neural gene expression patterns across strains in zebrafish (Danio rerio). BMC Genom. 15:905 [Google Scholar]
  103. Wright AE, Harrison PW, Zimmer F, Montgomery S, Pointer MA, Mank JE. 103.  2015. Variation in promiscuity and sexual selection drives avian rate of faster-Z evolution. Mol. Ecol. 24:1218–35 [Google Scholar]
  104. Wyman MJ, Agrawal AF, Rowe L. 104.  2010. Condition-dependence of the sexually dimorphic transcriptome in Drosophila melanogaster. Evolution 64:1836–48 [Google Scholar]
  105. Yan H, Bonasio R, Simola DF, Liebig J, Berger SL, Reinberg D. 105.  2015. DNA methylation in social insects: how epigenetics can control behavior and longevity. Annu. Rev. Entomol. 60:435–52 [Google Scholar]
  106. Yang X, Schadt EE, Wang S, Wang H, Arnold AP. 106.  et al. 2006. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 16:995–1004 [Google Scholar]
  107. Zemp N, Tavares R, Widmer A. 107.  2015. Fungal infection induces sex-specific transcriptional changes and alters sexual dimorphism in the dioecious plant Silene latifolia. PLOS Genet. 11:e1005536 [Google Scholar]
  108. Zhang Z, Hambuch TM, Parsch J. 108.  2004. Molecular evolution of sex-biased genes in Drosophila. Mol. Biol. Evol. 21:2130–39 [Google Scholar]
/content/journals/10.1146/annurev-genet-120215-035429
Loading
/content/journals/10.1146/annurev-genet-120215-035429
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error