1932

Abstract

Recent advances in both the technologies used to measure chromatin movement and the biophysical analysis used to model them have yielded a fuller understanding of chromatin dynamics and the polymer structure that underlies it. Changes in nucleosome packing, checkpoint kinase activation, the cell cycle, chromosomal tethers, and external forces acting on nuclei in response to external and internal stimuli can alter the basal mobility of DNA in interphase nuclei of yeast or mammalian cells. Although chromatin movement is assumed to be necessary for many DNA-based processes, including gene activation by distal enhancer–promoter interaction or sequence-based homology searches during double-strand break repair, experimental evidence supporting an essential role in these activities is sparse. Nonetheless, high-resolution tracking of chromatin dynamics has led to instructive models of the higher-order folding and flexibility of the chromatin polymer. Key regulators of chromatin motion in physiological conditions or after damage induction are reviewed here.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120417-031334
2018-11-23
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/genet/52/1/annurev-genet-120417-031334.html?itemId=/content/journals/10.1146/annurev-genet-120417-031334&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Abney JR, Cutler B, Fillbach ML, Axelrod D, Scalettar BA 1997. Chromatin dynamics in interphase nuclei and its implications for nuclear structure. J. Cell Biol. 137:1459–68
    [Google Scholar]
  2. 2.  Abrahamsson S, Chen J, Hajj B, Stallinga S, Katsov AY et al. 2013. Fast multicolor 3D imaging using aberration-corrected multifocus microscopy. Nat. Methods 10:60–63
    [Google Scholar]
  3. 3.  Adam S, Dabin J, Chevallier O, Leroy O, Baldeyron C et al. 2016. Real-time tracking of parental histones reveals their contribution to chromatin integrity following DNA damage. Mol. Cell 64:65–78
    [Google Scholar]
  4. 4.  Agmon N, Liefshitz B, Zimmer C, Fabre E, Kupiec M 2013. Effect of nuclear architecture on the efficiency of double-strand break repair. Nat. Cell Biol. 15:694–99
    [Google Scholar]
  5. 5.  Alleva B, Smolikove S 2017. Moving and stopping: regulation of chromosome movement to promote meiotic chromosome pairing and synapsis. Nucleus 8:613–24
    [Google Scholar]
  6. 6.  Amitai A, Holcman D 2013. Polymer model with long-range interactions: analysis and applications to the chromatin structure. Phys. Rev. E 88:052604
    [Google Scholar]
  7. 7.  Amitai A, Holcman D 2017. Polymer physics of nuclear organization and function. Phys. Rep. 678:1–83
    [Google Scholar]
  8. 8.  Amitai A, Seeber A, Gasser SM, Holcman D 2017. Visualization of chromatin decompaction and break site extrusion as predicted by statistical polymer modeling of single-locus trajectories. Cell Rep 18:1200–14
    [Google Scholar]
  9. 9.  Amitai A, Toulouze M, Dubrana K, Holcman D 2015. Analysis of single locus trajectories for extracting in vivo chromatin tethering interactions. PLOS Comput. Biol. 11:e1004433
    [Google Scholar]
  10. 10.  Annibale P, Gratton E 2015. Single cell visualization of transcription kinetics variance of highly mobile identical genes using 3D nanoimaging. Sci. Rep. 5:9258
    [Google Scholar]
  11. 11.  Anton T, Bultmann S, Leonhardt H, Markaki Y 2014. Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system. Nucleus 5:163–72
    [Google Scholar]
  12. 12.  Aten JA, Stap J, Krawczyk PM, van Oven CH, Hoebe RA et al. 2004. Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science 303:92–95
    [Google Scholar]
  13. 13.  Aymard F, Aguirrebengoa M, Guillou E, Javierre BM, Bugler B et al. 2017. Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes. Nat. Struct. Mol. Biol. 24:353–61
    [Google Scholar]
  14. 14.  Backlund MP, Joyner R, Weis K, Moerner W 2014. Correlations of three-dimensional motion of chromosomal loci in yeast revealed by the double-helix point spread function microscope. Mol. Biol. Cell 25:3619–29
    [Google Scholar]
  15. 15.  Becker A, Durante M, Taucher-Scholz G, Jakob B 2014. ATM alters the otherwise robust chromatin mobility at sites of DNA double-strand breaks (DSBs) in human cells. PLOS ONE 9:e92640
    [Google Scholar]
  16. 16.  Belmont AS 2001. Visualizing chromosome dynamics with GFP. Trends Cell Biol 11:250–57
    [Google Scholar]
  17. 17.  Berg HC 1993. Random Walks in Biology Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  18. 18.  Beuzer P, Quivy J-P, Almouzni G 2014. Establishment of a replication fork barrier following induction of DNA binding in mammalian cells. Cell Cycle 13:1607–16
    [Google Scholar]
  19. 19.  Bonilla CY, Melo JA, Toczyski DP 2008. Colocalization of sensors is sufficient to activate the DNA damage checkpoint in the absence of damage. Mol. Cell 30:267–76
    [Google Scholar]
  20. 20.  Booth-Gauthier EA, Alcoser TA, Yang G, Dahl KN 2012. Force-induced changes in subnuclear movement and rheology. Biophys. J. 103:2423–31
    [Google Scholar]
  21. 21.  Bronshtein I, Kepten E, Kanter I, Berezin S, Lindner M et al. 2015. Loss of lamin A function increases chromatin dynamics in the nuclear interior. Nat. Commun. 6:8044
    [Google Scholar]
  22. 22.  Bruinsma R, Grosberg AY, Rabin Y, Zidovska A 2014. Chromatin hydrodynamics. Biophys. J. 106:1871–81
    [Google Scholar]
  23. 23.  Bunting SF, Callén E, Wong N, Chen H-T, Polato F et al. 2010. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141:243–54
    [Google Scholar]
  24. 24.  Burgess RC, Burman B, Kruhlak MJ, Misteli T 2014. Activation of DNA damage response signaling by condensed chromatin. Cell Rep 9:1703–17
    [Google Scholar]
  25. 25.  Bystricky K, Heun P, Gehlen L, Langowski J, Gasser SM 2004. Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques. PNAS 101:16495–500
    [Google Scholar]
  26. 26.  Bystricky K, Laroche T, van Houwe G, Blaszczyk M, Gasser SM 2005. Chromosome looping in yeast: telomere pairing and coordinated movement reflect anchoring efficiency and territorial organization. J. Cell Biol. 168:375–87
    [Google Scholar]
  27. 27.  Cabal GG, Genovesio A, Rodriguez-Navarro S, Zimmer C, Gadal O et al. 2006. SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441:770–73
    [Google Scholar]
  28. 28.  Casas-Delucchi CS, Becker A, Bolius JJ, Cardoso MC 2012. Targeted manipulation of heterochromatin rescues MeCP2 Rett mutants and re-establishes higher order chromatin organization. Nucleic Acids Res 40:e176
    [Google Scholar]
  29. 29.  Casolari JM, Brown CR, Komili S, West J, Hieronymus H, Silver PA 2004. Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117:427–39
    [Google Scholar]
  30. 30.  Celona B, Weiner A, Di Felice F, Mancuso FM, Cesarini E et al. 2011. Substantial histone reduction modulates genomewide nucleosomal occupancy and global transcriptional output. PLOS Biol 9:e1001086
    [Google Scholar]
  31. 31.  Chang W, Worman HJ, Gundersen GG 2015. Accessorizing and anchoring the LINC complex for multifunctionality. J. Cell Biol. 208:11–22
    [Google Scholar]
  32. 32.  Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W et al. 2013. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–91
    [Google Scholar]
  33. 33.  Chen B, Guan J, Huang B 2016. Imaging specific genomic DNA in living cells. Annu. Rev. Biophys. 45:1–23
    [Google Scholar]
  34. 34.  Chen B, Hu J, Almeida R, Liu H, Balakrishnan S et al. 2016. Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Res 44:e75
    [Google Scholar]
  35. 35.  Chiolo I, Minoda A, Colmenares SU, Polyzos A, Costes SV, Karpen GH 2011. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144:732–44
    [Google Scholar]
  36. 36.  Cho NW, Dilley RL, Lampson MA, Greenberg RA 2014. Interchromosomal homology searches drive directional ALT telomere movement and synapsis. Cell 159:108–21
    [Google Scholar]
  37. 37.  Choi ES, Cheon Y, Kang K, Lee D 2017. The Ino80 complex mediates epigenetic centromere propagation via active removal of histone H3. Nat. Commun. 8:529
    [Google Scholar]
  38. 38.  Chuang C-H, Carpenter AE, Fuchsova B, Johnson T, de Lanerolle P, Belmont AS 2006. Long-range directional movement of an interphase chromosome site. Curr. Biol. 16:825–31
    [Google Scholar]
  39. 39.  Chubb JR, Boyle S, Perry P, Bickmore WA 2002. Chromatin motion is constrained by association with nuclear compartments in human cells. Curr. Biol. 12:439–45
    [Google Scholar]
  40. 40.  Chung DK, Chan JN, Strecker J, Zhang W, Ebrahimi-Ardebili S et al. 2015. Perinuclear tethers license telomeric DSBs for a broad kinesin- and NPC-dependent DNA repair process. Nat. Commun. 6:7742
    [Google Scholar]
  41. 41.  Cremer T, Cremer C 2001. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2:292–301
    [Google Scholar]
  42. 42.  Cremer T, Cremer C, Baumann H, Luedtke E, Sperling K et al. 1982. Rabl's model of the interphase chromosome arrangement tested in Chinese hamster cells by premature chromosome condensation and laser-UV-microbeam experiments. Hum. Genet. 60:46–56
    [Google Scholar]
  43. 43.  Daley JM, Sung P 2014. 53BP1, BRCA1, and the choice between recombination and end joining at DNA double-strand breaks. Mol. Cell. Biol. 34:1380–88
    [Google Scholar]
  44. 44.  De Boni U, Mintz AH 1986. Curvilinear, three-dimensional motion of chromatin domains and nucleoli in neuronal interphase nuclei. Science 234:863–66
    [Google Scholar]
  45. 45.  Dickerson D, Gierliński M, Singh V, Kitamura E, Ball G et al. 2016. High resolution imaging reveals heterogeneity in chromatin states between cells that is not inherited through cell division. BMC Cell Biol 17:33
    [Google Scholar]
  46. 46.  Dimitrova N, Chen Y-CM, Spector DL, de Lange T 2008. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 456:524–28
    [Google Scholar]
  47. 47.  Dion V, Gasser SM 2013. Chromatin movement in the maintenance of genome stability. Cell 152:1355–64
    [Google Scholar]
  48. 48.  Dion V, Kalck V, Horigome C, Towbin BD, Gasser SM 2012. Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat. Cell Biol. 14:502–9
    [Google Scholar]
  49. 49.  Dion V, Kalck V, Seeber A, Schleker T, Gasser SM 2013. Cohesin and the nucleolus constrain the mobility of spontaneous repair foci. EMBO Rep 14:984–91
    [Google Scholar]
  50. 50.  Egecioglu D, Brickner JH 2011. Gene positioning and expression. Curr. Opin. Cell Biol. 23:338–45
    [Google Scholar]
  51. 51.  Escribano-Díaz C, Orthwein A, Fradet-Turcotte A, Xing M, Young JT et al. 2013. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol. Cell 49:872–83
    [Google Scholar]
  52. 52.  Faller R, Müller‐Plathe F 2001. Chain stiffness intensifies the reptation characteristics of polymer dynamics in the melt. ChemPhysChem 2:180–84
    [Google Scholar]
  53. 53.  Fu Y, Rocha PP, Luo VM, Raviram R, Deng Y et al. 2016. CRISPR-dCas9 and sgRNA scaffolds enable dual-colour live imaging of satellite sequences and repeat-enriched individual loci. Nat. Commun. 7:11707
    [Google Scholar]
  54. 54.  Gandhi M, Evdokimova VN, Cuenco KT, Nikiforova MN, Kelly LM et al. 2012. Homologous chromosomes make contact at the sites of double-strand breaks in genes in somatic G0/G1-phase human cells. PNAS 109:9454–59
    [Google Scholar]
  55. 55.  Gartenberg MR, Neumann FR, Laroche T, Blaszczyk M, Gasser SM 2004. Sir-mediated repression can occur independently of chromosomal and subnuclear contexts. Cell 119:955–67
    [Google Scholar]
  56. 56.  Gasser SM 2002. Visualizing chromatin dynamics in interphase nuclei. Science 296:1412–16
    [Google Scholar]
  57. 57.  Gehlen LR, Gasser SM, Dion V 2011. How broken DNA finds its template for repair: a computational approach. Prog. Theor. Phys. Suppl. 191:20–29
    [Google Scholar]
  58. 58.  Germier T, Kocanova S, Walther N, Bancaud A, Shaban HA et al. 2017. Real-time imaging of a single gene reveals transcription-initiated local confinement. Biophys. J. 113:1383–94
    [Google Scholar]
  59. 59.  Gotta M, Laroche T, Formenton A, Maillet L, Scherthan H, Gasser SM 1996. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J. Cell Biol 134:1349–63
    [Google Scholar]
  60. 60.  Haering CH, Jessberger R 2012. Cohesin in determining chromosome architecture. Exp. Cell Res. 318:1386–93
    [Google Scholar]
  61. 61.  Hajjoul H, Kocanova S, Lassadi I, Bystricky K, Bancaud A 2009. Lab-on-chip for fast 3D particle tracking in living cells. Lab Chip 9:3054–58
    [Google Scholar]
  62. 62.  Hajjoul H, Mathon J, Ranchon H, Goiffon I, Mozziconacci J et al. 2013. High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome. Genome Res 23:1829–38
    [Google Scholar]
  63. 63.  Hauer MH, Gasser SM 2017. Chromatin and nucleosome dynamics in DNA damage and repair. Genes Dev 31:2204–21
    [Google Scholar]
  64. 64.  Hauer MH, Seeber A, Singh V, Thierry R, Amitai A et al. 2017. Histone degradation in response to DNA damage triggers general chromatin decompaction. Nat. Struct. Mol. Biol. 24:99–107
    [Google Scholar]
  65. 65.  Hediger F, Berthiau AS, van Houwe G, Gilson E, Gasser SM 2006. Subtelomeric factors antagonize telomere anchoring and Tel1‐independent telomere length regulation. EMBO J 25:857–67
    [Google Scholar]
  66. 66.  Hediger F, Neumann FR, van Houwe G, Dubrana K, Gasser SM 2002. Live imaging of telomeres: yKu and Sir proteins define redundant telomere-anchoring pathways in yeast. Curr. Biol. 12:2076–89
    [Google Scholar]
  67. 67.  Herbert S, Brion A, Arbona JM, Lelek M, Veillet A et al. 2017. Chromatin stiffening underlies enhanced locus mobility after DNA damage in budding yeast. EMBO J 36:2595–608
    [Google Scholar]
  68. 68.  Heun P, Laroche T, Raghuraman M, Gasser SM 2001. The positioning and dynamics of origins of replication in the budding yeast nucleus. J. Cell Biol. 152:385–400
    [Google Scholar]
  69. 69.  Heun P, Laroche T, Shimada K, Furrer P, Gasser SM 2001. Chromosome dynamics in the yeast interphase nucleus. Science 294:2181–86
    [Google Scholar]
  70. 70.  Horigome C, Oma Y, Konishi T, Schmid R, Marcomini I et al. 2014. SWR1 and INO80 chromatin remodelers contribute to DNA double-strand break perinuclear anchorage site choice. Mol. Cell 55:626–39
    [Google Scholar]
  71. 71.  Huertas P, Cortés-Ledesma F, Sartori AA, Aguilera A, Jackson SP 2008. CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455:689–92
    [Google Scholar]
  72. 72.  Hustedt N, Durocher D 2017. The control of DNA repair by the cell cycle. Nat. Cell Biol. 19:1–9
    [Google Scholar]
  73. 73.  Jakob B, Rudolph J, Gueven N, Lavin M, Taucher-Scholz G 2005. Live cell imaging of heavy-ion-induced radiation responses by beamline microscopy. Radiat. Res. 163:681–90
    [Google Scholar]
  74. 74.  Jakob B, Splinter J, Durante M, Taucher-Scholz G 2009. Live cell microscopy analysis of radiation-induced DNA double-strand break motion. PNAS 106:3172–77
    [Google Scholar]
  75. 75.  Janssen A, Breuer GA, Brinkman EK, van der Meulen AI, Borden SV et al. 2016. A single double-strand break system reveals repair dynamics and mechanisms in heterochromatin and euchromatin. Genes Dev 30:1645–57
    [Google Scholar]
  76. 76.  Javer A, Long Z, Nugent E, Grisi M, Siriwatwetchakul K et al. 2013. Short-time movement of E. coli chromosomal loci depends on coordinate and subcellular localization. Nat. Commun. 4:3003
    [Google Scholar]
  77. 77.  Jin Q-W, Fuchs J, Loidl J 2000. Centromere clustering is a major determinant of yeast interphase nuclear organization. J. Cell Sci. 113:1903–12
    [Google Scholar]
  78. 78.  Joyner RP, Tang JH, Helenius J, Dultz E, Brune C et al. 2016. A glucose-starvation response regulates the diffusion of macromolecules. eLife 5:e09376
    [Google Scholar]
  79. 79.  Kalocsay M, Hiller NJ, Jentsch S 2009. Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol. Cell 33:335–43
    [Google Scholar]
  80. 80.  Kapoor P, Chen M, Winkler DD, Luger K, Shen X 2013. Evidence for monomeric actin function in INO80 chromatin remodeling. Nat. Struct. Mol. Biol. 20:426–32
    [Google Scholar]
  81. 81.  Kapoor P, Shen X 2014. Mechanisms of nuclear actin in chromatin-remodeling complexes. Trends Cell Biol 24:238–46
    [Google Scholar]
  82. 82.  Kepten E, Bronshtein I, Garini Y 2013. Improved estimation of anomalous diffusion exponents in single-particle tracking experiments. Phys. Rev. E 87:052713
    [Google Scholar]
  83. 83.  Kepten E, Weron A, Bronstein I, Burnecki K, Garini Y 2015. Uniform contraction-expansion description of relative centromere and telomere motion. Biophys. J. 109:1454–62
    [Google Scholar]
  84. 84.  Kepten E, Weron A, Sikora G, Burnecki K, Garini Y 2015. Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments. PLOS ONE 10:e0117722
    [Google Scholar]
  85. 85.  Khanna N, Hu Y, Belmont AS 2014. HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation. Curr. Biol. 24:1138–44
    [Google Scholar]
  86. 86.  Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB et al. 2015. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350:823–26
    [Google Scholar]
  87. 87.  Krawczyk P, Borovski T, Stap J, Cijsouw T, ten Cate R et al. 2012. Chromatin mobility is increased at sites of DNA double-strand breaks. J. Cell Sci. 125:2127–33
    [Google Scholar]
  88. 88.  Kruhlak MJ, Celeste A, Dellaire G, Fernandez-Capetillo O, Müller WG et al. 2006. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J. Cell Biol. 172:823–34
    [Google Scholar]
  89. 89.  Lawrimore J, Barry TM, Barry RM, York AC, Friedman B et al. 2017. Microtubule dynamics drive enhanced chromatin motion and mobilize telomeres in response to DNA damage. Mol. Biol. Cell 28:1701–11
    [Google Scholar]
  90. 90.  Levi V, Gratton E 2008. Chromatin dynamics during interphase explored by single-particle tracking. Chromosome Res 16:439–49
    [Google Scholar]
  91. 91.  Levi V, Ruan Q, Plutz M, Belmont AS, Gratton E 2005. Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope. Biophys. J. 89:4275–85
    [Google Scholar]
  92. 92.  Lieber MR 2010. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79:181–211
    [Google Scholar]
  93. 93.  Lindhout BI, Fransz P, Tessadori F, Meckel T, Hooykaas PJ, van der Zaal BJ 2007. Live cell imaging of repetitive DNA sequences via GFP-tagged polydactyl zinc finger proteins. Nucleic Acids Res 35:e107
    [Google Scholar]
  94. 94.  Lisby M, Rothstein R, Mortensen UH 2001. Rad52 forms DNA repair and recombination centers during S phase. PNAS 98:8276–82
    [Google Scholar]
  95. 95.  Liu J, Vidi P-A, Lelièvre SA, Irudayaraj JM 2015. Nanoscale histone localization in live cells reveals reduced chromatin mobility in response to DNA damage. J. Cell Sci. 128:599–604
    [Google Scholar]
  96. 96.  Liu Z, Lavis LD, Betzig E 2015. Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58:644–59
    [Google Scholar]
  97. 97.  Lobachev K, Vitriol E, Stemple J, Resnick MA, Bloom K 2004. Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex. Curr. Biol. 14:2107–12
    [Google Scholar]
  98. 98.  Lottersberger F, Karssemeijer RA, Dimitrova N, de Lange T 2015. 53BP1 and the LINC complex promote microtubule-dependent DSB mobility and DNA repair. Cell 163:880–93
    [Google Scholar]
  99. 99.  Luijsterburg MS, de Krijger I, Wiegant WW, Shah RG, Smeenk G et al. 2016. PARP1 links CHD2-mediated chromatin expansion and H3.3 deposition to DNA repair by non-homologous end-joining. Mol. Cell 61:547–62
    [Google Scholar]
  100. 100.  Luijsterburg MS, Lindh M, Acs K, Vrouwe MG, Pines A et al. 2012. DDB2 promotes chromatin decondensation at UV-induced DNA damage. J. Cell Biol. 197:267–81
    [Google Scholar]
  101. 101.  Ma H, Naseri A, Reyes-Gutierrez P, Wolfe SA, Zhang S, Pederson T 2015. Multicolor CRISPR labeling of chromosomal loci in human cells. PNAS 112:3002–7
    [Google Scholar]
  102. 102.  Ma H, Reyes-Gutierrez P, Pederson T 2013. Visualization of repetitive DNA sequences in human chromosomes with transcription activator-like effectors. PNAS 110:21048–53
    [Google Scholar]
  103. 103.  Ma H, Tu L-C, Naseri A, Huisman M, Zhang S et al. 2016. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat. Biotechnol. 34:528–30
    [Google Scholar]
  104. 104.  Maass PG, Barutcu AR, Shechner DM, Weiner CL, Melé M, Rinn JL 2018. Spatiotemporal allele organization by allele-specific CRISPR live-cell imaging (SNP-CLING). Nat. Struct. Mol. Biol. 25:176–84
    [Google Scholar]
  105. 105.  Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF et al. 2008. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5:155–57
    [Google Scholar]
  106. 106.  Manzo C, Garcia-Parajo MF 2015. A review of progress in single particle tracking: from methods to biophysical insights. Rep. Prog. Phys. 78:124601
    [Google Scholar]
  107. 107.  Marshall WF, Fung JC, Sedat JW 1997. Deconstructing the nucleus: global architecture from local interactions. Curr. Opin. Genet. Dev. 7:259–63
    [Google Scholar]
  108. 108.  Marshall WF, Straight A, Marko JF, Swedlow J, Dernburg A et al. 1997. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. 7:930–39
    [Google Scholar]
  109. 109.  Martin RM, Görisch SM, Leonhardt H, Cardoso MC 2007. An unexpected link between energy metabolism, calcium, chromatin condensation and cell cycle. Cell Cycle 6:2422–24
    [Google Scholar]
  110. 110.  Martin SG, Laroche T, Suka N, Grunstein M, Gasser SM 1999. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97:621–33
    [Google Scholar]
  111. 111.  Melamed C, Kupiec M 1992. Effect of donor copy number on the rate of gene conversion in the yeast Saccharomyces cerevisiae. Mol. Gen. Genet 235:97–103
    [Google Scholar]
  112. 112.  Michaelis C, Ciosk R, Nasmyth K 1997. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91:35–45
    [Google Scholar]
  113. 113.  Miné-Hattab J, Recamier V, Izeddin I, Rothstein R, Darzacq X 2017. Multi-scale tracking reveals scale-dependent chromatin dynamics after DNA damage. Mol. Biol. Cell 28:3323–32
    [Google Scholar]
  114. 114.  Miné-Hattab J, Rothstein R 2012. Increased chromosome mobility facilitates homology search during recombination. Nat. Cell Biol. 14:510–17
    [Google Scholar]
  115. 115.  Miyanari Y, Ziegler-Birling C, Torres-Padilla M-E 2013. Live visualization of chromatin dynamics with fluorescent TALEs. Nat. Struct. Mol. Biol 20:1321–24
    [Google Scholar]
  116. 116.  Morton WM, Ayscough KR, McLaughlin PJ 2000. Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nat. Cell Biol. 2:376–78
    [Google Scholar]
  117. 117.  Neumaier T, Swenson J, Pham C, Polyzos A, Lo AT et al. 2012. Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells. PNAS 109:443–48
    [Google Scholar]
  118. 118.  Neumann FR, Dion V, Gehlen LR, Tsai-Pflugfelder M, Schmid R et al. 2012. Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev 26:369–83
    [Google Scholar]
  119. 119.  Orthwein A, Noordermeer SM, Wilson MD, Landry S, Enchev RI et al. 2015. A mechanism for the suppression of homologous recombination in G1 cells. Nature 528:422–26
    [Google Scholar]
  120. 120.  Oza P, Jaspersen SL, Miele A, Dekker J, Peterson CL 2009. Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev 23:912–27
    [Google Scholar]
  121. 121.  Panier S, Boulton SJ 2014. Double-strand break repair: 53BP1 comes into focus. Nat. Rev. Mol. Cell Biol. 15:7–18
    [Google Scholar]
  122. 122.  Parada LA, Misteli T 2002. Chromosome positioning in the interphase nucleus. Trends Cell Biol 12:425–32
    [Google Scholar]
  123. 123.  Parvinen M, Söderström K-O 1976. Chromosome rotation and formation of synapsis. Nature 260:534–35
    [Google Scholar]
  124. 124.  Patel A, Malinovska L 2017. ATP as a biological hydrotrope. Science. 356753–56
  125. 125.  Petesch SJ, Lis JT 2012. Overcoming the nucleosome barrier during transcript elongation. Trends Genet 28:285–94
    [Google Scholar]
  126. 126.  Pliss A, Malyavantham K, Bhattacharya S, Zeitz M, Berezney R 2009. Chromatin dynamics is correlated with replication timing. Chromosoma 118:459–70
    [Google Scholar]
  127. 127.  Poli J, Gerhold C-B, Tosi A, Hustedt N, Seeber A et al. 2016. Mec1, INO80, and the PAF1 complex cooperate to limit transcription replication conflicts through RNAPII removal during replication stress. Genes Dev 30:337–54
    [Google Scholar]
  128. 128.  Pombo A, Dillon N 2015. Three-dimensional genome architecture: players and mechanisms. Nat. Rev. Mol. Cell Biol. 16:245–57
    [Google Scholar]
  129. 129.  Qin P, Parlak M, Kuscu C, Bandaria J, Mir M et al. 2017. Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat. Commun. 8:14725
    [Google Scholar]
  130. 130.  Ramey CJ, Howar S, Adkins M, Linger J, Spicer J, Tyler JK 2004. Activation of the DNA damage checkpoint in yeast lacking the histone chaperone anti-silencing function 1. Mol. Cell. Biol. 24:10313–27
    [Google Scholar]
  131. 131.  Renkawitz J, Lademann CA, Kalocsay M, Jentsch S 2013. Monitoring homology search during DNA double-strand break repair in vivo. Mol. Cell 50:261–72
    [Google Scholar]
  132. 132.  Robinett CC, Straight A, Li G, Willhelm C, Sudlow G et al. 1996. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135:1685–700
    [Google Scholar]
  133. 133.  Roukos V, Misteli T 2014. The biogenesis of chromosome translocations. Nat. Cell Biol. 16:293–300
    [Google Scholar]
  134. 134.  Roukos V, Voss TC, Schmidt CK, Lee S, Wangsa D, Misteli T 2013. Spatial dynamics of chromosome translocations in living cells. Science 341:660–64
    [Google Scholar]
  135. 135.  Ryu T, Spatola B, Delabaere L, Bowlin K, Hopp H et al. 2015. Heterochromatic breaks move to the nuclear periphery to continue recombinational repair. Nat. Cell Biol. 17:1401–11
    [Google Scholar]
  136. 136.  Saad H, Gallardo F, Dalvai M, Tanguy-le-Gac N, Lane D, Bystricky K 2014. DNA dynamics during early double-strand break processing revealed by non-intrusive imaging of living cells. PLOS Genet 10:e1004187
    [Google Scholar]
  137. 137.  Sage D, Neumann FR, Hediger F, Gasser SM, Unser M 2005. Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics. IEEE Trans. Image Proc. 14:1372–83
    [Google Scholar]
  138. 138.  Saxton MJ, Jacobson K 1997. Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26:373–99
    [Google Scholar]
  139. 139.  Schoenenberger C-A, Buchmeier S, Boerries M, Sütterlin R, Aebi U, Jockusch B 2005. Conformation-specific antibodies reveal distinct actin structures in the nucleus and the cytoplasm. J. Struct. Biol. 152:157–68
    [Google Scholar]
  140. 140.  Seeber A, Dion V, Gasser SM 2013. Checkpoint kinases and the INO80 nucleosome remodeling complex enhance global chromatin mobility in response to DNA damage. Genes Dev 27:1999–2008
    [Google Scholar]
  141. 141.  Seeber A, Hauer M, Gasser SM 2013. Nucleosome remodelers in double-strand break repair. Curr. Opin. Genet. Dev. 23:174–84
    [Google Scholar]
  142. 142.  Seeber A, Hegnauer AM, Hustedt N, Deshpande I, Poli J et al. 2016. RPA mediates recruitment of MRX to forks and double-strand breaks to hold sister chromatids together. Mol. Cell 64:951–66
    [Google Scholar]
  143. 143.  Shao S, Zhang W, Hu H, Xue B, Qin J et al. 2016. Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res 44:e86
    [Google Scholar]
  144. 144.  Shechtman Y, Gustavsson A-K, Petrov PN, Dultz E, Lee MY et al. 2017. Observation of live chromatin dynamics in cells via 3D localization microscopy using tetrapod point spread functions. Biomed. Opt. Express 8:5735–48
    [Google Scholar]
  145. 145.  Shen H, Tauzin LJ, Baiyasi R, Wang W, Moringo N et al. 2017. Single particle tracking: from theory to biophysical applications. Chem. Rev. 117:7331–76
    [Google Scholar]
  146. 146.  Shukron O, Hauer M, Holcman D 2017. Two loci single particle trajectories analysis: constructing a first passage time statistics of local chromatin exploration. Sci. Rep. 7:10346
    [Google Scholar]
  147. 147.  Soutoglou E, Dorn JF, Sengupta K, Jasin M, Nussenzweig A et al. 2007. Positional stability of single double-strand breaks in mammalian cells. Nat. Cell Biol. 9:675–82
    [Google Scholar]
  148. 148.  Spagnol ST, Dahl KN 2014. Active cytoskeletal force and chromatin condensation independently modulate intranuclear network fluctuations. Integr. Biol. 6:523–31
    [Google Scholar]
  149. 149.  Spichal M, Brion A, Herbert S, Cournac A, Marbouty M et al. 2016. Evidence for a dual role of actin in regulating chromosome organization and dynamics in yeast. J. Cell Sci. 129:681–92
    [Google Scholar]
  150. 150.  Stillman DJ 2010. Nhp6: a small but powerful effector of chromatin structure in Saccharomyces cerevisiae. Biochim. Biophys. Acta Gene Regul. Mech 1799:175–80
    [Google Scholar]
  151. 151.  Straight AF, Belmont AS, Robinett CC, Murray AW 1996. GFP tagging of budding yeast chromosomes reveals that protein–protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6:1599–608
    [Google Scholar]
  152. 152.  Strecker J, Gupta GD, Zhang W, Bashkurov M, Landry M-C et al. 2016. DNA damage signalling targets the kinetochore to promote chromatin mobility. Nat. Cell Biol. 18:281–90
    [Google Scholar]
  153. 153.  Taddei A, Gasser SM 2012. Structure and function in the budding yeast nucleus. Genetics 192:107–29
    [Google Scholar]
  154. 154.  Taddei A, Hediger F, Neumann FR, Bauer C, Gasser SM 2004. Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. EMBO J 23:1301–12
    [Google Scholar]
  155. 155.  Taddei A, van Houwe G, Hediger F, Kalck V, Cubizolles F et al. 2006. Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441:774–78
    [Google Scholar]
  156. 156.  Thanisch K, Schneider K, Morbitzer R, Solovei I, Lahaye T et al. 2013. Targeting and tracing of specific DNA sequences with dTALEs in living cells. Nucleic Acids Res 42:e38
    [Google Scholar]
  157. 157.  Torres-Rosell J, Sunjevaric I, De Piccoli G, Sacher M, Eckert-Boulet N et al. 2007. The Smc5–Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat. Cell Biol. 9:923–31
    [Google Scholar]
  158. 158.  van Attikum H, Fritsch O, Gasser SM 2007. Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J 26:4113–25
    [Google Scholar]
  159. 159.  Verdaasdonk JS, Vasquez PA, Barry RM, Barry T, Goodwin S et al. 2013. Centromere tethering confines chromosome domains. Mol. Cell 52:819–31
    [Google Scholar]
  160. 160.  Verschure PJ, van der Kraan I, Manders EM, Hoogstraten D, Houtsmuller AB, van Driel R 2003. Condensed chromatin domains in the mammalian nucleus are accessible to large macromolecules. EMBO Rep 4:861–86
    [Google Scholar]
  161. 161.  Visvanathan A, Ahmed K, Even-Faitelson L, Lleres D, Bazett-Jones DP, Lamond AI 2013. Modulation of higher order chromatin conformation in mammalian cell nuclei can be mediated by polyamines and divalent cations. PLOS ONE 8:e67689
    [Google Scholar]
  162. 162.  Vivante A, Brozgol E, Bronshtein I, Garini Y 2017. Genome organization in the nucleus: from dynamic measurements to a functional model. Methods 123:128–37
    [Google Scholar]
  163. 163.  Wang S, Su J-H, Zhang F, Zhuang X 2016. An RNA-aptamer-based two-color CRISPR labeling system. Sci. Rep. 6:26857
    [Google Scholar]
  164. 164.  Wang X, Kam Z, Carlton PM, Xu L, Sedat JW, Blackburn EH 2008. Rapid telomere motions in live human cells analyzed by highly time-resolved microscopy. Epigenet. Chromatin 1:4
    [Google Scholar]
  165. 165.  Weber SC, Spakowitz AJ, Theriot JA 2010. Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. Phys. Rev. Lett. 104:238102
    [Google Scholar]
  166. 166.  Weber SC, Spakowitz AJ, Theriot JA 2012. Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci. PNAS 109:7338–43
    [Google Scholar]
  167. 167.  Weiss M, Elsner M, Kartberg F, Nilsson T 2004. Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys. J. 87:3518–24
    [Google Scholar]
  168. 168.  Wilson JH, Leung W-Y, Bosco G, Dieu D, Haber JE 1994. The frequency of gene targeting in yeast depends on the number of target copies. PNAS 91:177–81
    [Google Scholar]
  169. 169.  Yuan K, Shermoen AW, O'Farrell PH 2014. Illuminating DNA replication during Drosophila development using TALE-lights. Curr. Biol. 24:R144–45
    [Google Scholar]
  170. 170.  Zidovska A, Weitz DA, Mitchison TJ 2013. Micron-scale coherence in interphase chromatin dynamics. PNAS 110:15555–60
    [Google Scholar]
  171. 171.  Zimmer C, Fabre E 2011. Principles of chromosomal organization: lessons from yeast. J. Cell Biol. 192:723–33
    [Google Scholar]
/content/journals/10.1146/annurev-genet-120417-031334
Loading
/content/journals/10.1146/annurev-genet-120417-031334
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error