1932

Abstract

Smc5 and Smc6, together with the kleisin Nse4, form the heart of the enigmatic and poorly understood Smc5/6 complex, which is frequently viewed as a cousin of cohesin and condensin with functions in DNA repair. As novel functions for cohesin and condensin complexes in the organization of long-range chromatin architecture have recently emerged, new unsuspected roles for Smc5/6 have also surfaced. Here, I aim to provide a comprehensive overview of our current knowledge of the Smc5/6 complex, including its long-established function in genome stability, its multiple roles in DNA repair, and its recently discovered connection to the transcription inhibition of hepatitis B virus genomes. In addition, I summarize new research that is beginning to tease out the molecular details of Smc5/6 structure and function, knowledge that will illuminate the nuclear activities of Smc5/6 in the stability and dynamics of eukaryotic genomes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120417-031353
2018-11-23
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/genet/52/1/annurev-genet-120417-031353.html?itemId=/content/journals/10.1146/annurev-genet-120417-031353&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Albritton SE, Ercan S 2018. Caenorhabditis elegans dosage compensation: insights into condensin-mediated gene regulation. Trends Genet 34:41–53
    [Google Scholar]
  2. 2.  Almedawar S, Colomina N, Bermúdez-López M, Pociño-Merino I, Torres-Rosell J 2012. A SUMO-dependent step during establishment of sister chromatid cohesion. Curr. Biol. 22:1576–81
    [Google Scholar]
  3. 3.  Alt A, Dang HQ, Wells OS, Polo LM, Smith MA et al. 2017. Specialized interfaces of Smc5/6 control hinge stability and DNA association. Nat. Commun. 8:14011
    [Google Scholar]
  4. 4.  Ampatzidou E, Irmisch A, O'Connell MJ, Murray JM 2006. Smc5/6 is required for repair at collapsed replication forks. Mol. Cell. Biol. 26:9387–401
    [Google Scholar]
  5. 5.  Anderson DE, Losada A, Erickson HP, Hirano T 2002. Condensin and cohesin display different arm conformations with characteristic hinge angles. J. Cell Biol. 156:419–24
    [Google Scholar]
  6. 6.  Andrews EA, Palecek J, Sergeant J, Taylor E, Lehmann AR, Watts FZ 2005. Nse2, a component of the Smc5–6 complex, is a SUMO ligase required for the response to DNA damage. Mol. Cell. Biol. 25:185–96
    [Google Scholar]
  7. 7.  Aragon L, Martinez-Perez E, Merkenschlager M 2013. Condensin, cohesin and the control of chromatin states. Curr. Opin. Genet. Dev. 23:204–11
    [Google Scholar]
  8. 8.  Bermúdez-López M, Ceschia A, de Piccoli G, Colomina N, Pasero P et al. 2010. The Smc5/6 complex is required for dissolution of DNA-mediated sister chromatid linkages. Nucleic Acids Res 38:6502–12
    [Google Scholar]
  9. 9.  Bermúdez-López M, Pociño-Merino I, Sánchez H, Bueno A, Guasch C et al. 2015. ATPase-dependent control of the Mms21 SUMO ligase during DNA repair. PLOS Biol 13:e1002089
    [Google Scholar]
  10. 10.  Bermúdez-López M, Villoria MT, Esteras M, Jarmuz A, Torres-Rosell J et al. 2016. Sgs1’s roles in DNA end resection, HJ dissolution, and crossover suppression require a two-step SUMO regulation dependent on Smc5/6. Genes Dev 30:1339–56
    [Google Scholar]
  11. 11.  Bickel JS, Chen L, Hayward J, Yeap SL, Alkers AE, Chan RC 2010. Structural maintenance of chromosomes (SMC) proteins promote homolog-independent recombination repair in meiosis crucial for germ cell genomic stability. PLOS Genet 6:e1001028
    [Google Scholar]
  12. 12.  Bloom K 2017. Liberating cohesin from cohesion. Genes Dev 31:2113–14
    [Google Scholar]
  13. 13.  Bonner JN, Choi K, Xue X, Torres NP, Szakal B et al. 2016. Smc5/6 mediated sumoylation of the Sgs1–Top3–Rmi1 complex promotes removal of recombination intermediates. Cell Rep 16:368–78
    [Google Scholar]
  14. 14.  Branzei D, Sollier J, Liberi G, Zhao X, Maeda D et al. 2006. Ubc9- and Mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 127:509–22
    [Google Scholar]
  15. 15.  Brewer BJ, Fangman WL 1988. A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell 55:637–43
    [Google Scholar]
  16. 16.  Carlborg KK, Kanno T, Carter SD, Sjögren C 2015. Mec1-dependent phosphorylation of Mms21 modulates its SUMO ligase activity. DNA Repair 28:83–92
    [Google Scholar]
  17. 17.  Cesare AJ, Reddel RR 2010. Alternative lengthening of telomeres: models, mechanisms and implications. Nat. Rev. Genet. 11:319–30
    [Google Scholar]
  18. 18.  Chavez A, Agrawal V, Johnson FB 2011. Homologous recombination-dependent rescue of deficiency in the structural maintenance of chromosomes (Smc) 5/6 complex. J. Biol. Chem. 286:5119–25
    [Google Scholar]
  19. 19.  Chavez A, George V, Agrawal V, Johnson FB 2010. Sumoylation and the structural maintenance of chromosomes (Smc) 5/6 complex slow senescence through recombination intermediate resolution. J. Biol. Chem. 285:11922–30
    [Google Scholar]
  20. 20.  Chen Y-H, Choi K, Szakal B, Arenz J, Duan X et al. 2009. Interplay between the Smc5/6 complex and the Mph1 helicase in recombinational repair. PNAS 106:21252–57
    [Google Scholar]
  21. 21.  Chen Y-H, Szakal B, Castellucci F, Branzei D, Zhao X 2013. DNA damage checkpoint and recombinational repair differentially affect the replication stress tolerance of smc6 mutants. Mol. Biol. Cell 24:2431–41
    [Google Scholar]
  22. 22.  Choi K, Szakal B, Chen Y-H, Branzei D, Zhao X 2010. The Smc5/6 complex and Esc2 influence multiple replication-associated recombination processes in Saccharomyces cerevisiae. Mol. Biol. Cell 21:2306–14
    [Google Scholar]
  23. 23.  Chuang P-T, Albertson DG, Meyer BJ 1994. DPY-27: a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome. Cell 79:459–74
    [Google Scholar]
  24. 24.  Cobbe N, Heck MM 2004. The evolution of SMC proteins: phylogenetic analysis and structural implications. Mol. Biol. Evol. 21:332–47
    [Google Scholar]
  25. 25.  Copsey A, Tang S, Jordan PW, Blitzblau HG, Newcombe S et al. 2013. Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions. PLOS Genet 9:e1004071
    [Google Scholar]
  26. 26.  Cortés-Ledesma F, Aguilera A 2006. Double-strand breaks arising by replication through a nick are repaired by cohesin-dependent sister-chromatid exchange. EMBO Rep 7:919–26
    [Google Scholar]
  27. 27.  Cost GJ, Cozzarelli NR 2006. Smc5p promotes faithful chromosome transmission and DNA repair in Saccharomyces cerevisiae. Genetics 172:2185–200
    [Google Scholar]
  28. 28.  Cuylen S, Metz J, Haering CH 2011. Condensin structures chromosomal DNA through topological links. Nat. Struct. Mol. Biol. 18:894–901
    [Google Scholar]
  29. 29.  De Piccoli G, Cortés-Ledesma F, Ira G, Torres-Rosell J, Uhle S et al. 2006. Smc5–Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nat. Cell Biol. 8:1032–34
    [Google Scholar]
  30. 30.  De Piccoli G, Torres-Rosell J, Aragón L 2009. The unnamed complex: What do we know about Smc5–Smc6?. Chromosome Res 17:251–63
    [Google Scholar]
  31. 31.  Decorsière A, Mueller H, van Breugel PC, Abdul F, Gerossier L et al. 2016. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature 531:386–89
    [Google Scholar]
  32. 32.  Doyle JM, Gao J, Wang J, Yang M, Potts PR 2010. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol. Cell 39:963–74
    [Google Scholar]
  33. 33.  Duan X, Sarangi P, Liu X, Rangi GK, Zhao X, Ye H 2009. Structural and functional insights into the roles of the Mms21 subunit of the Smc5/6 complex. Mol. Cell 35:657–68
    [Google Scholar]
  34. 34.  Duan X, Yang Y, Chen Y-H, Arenz J, Rangi GK et al. 2009. Architecture of the Smc5/6 complex of Saccharomyces cerevisiae reveals a unique interaction between the Nse5–6 subcomplex and the hinge regions of Smc5 and Smc6. J. Biol. Chem. 284:8507–15
    [Google Scholar]
  35. 35.  Farcas AM, Uluocak P, Helmhart W, Nasmyth K 2011. Cohesin's concatenation of sister DNAs maintains their intertwining. Mol. Cell 44:97–107
    [Google Scholar]
  36. 36.  Farmer S, San-Segundo PA, Aragón L 2011. The Smc5–Smc6 complex is required to remove chromosome junctions in meiosis. PLOS ONE 6:e20948
    [Google Scholar]
  37. 37.  Fousteri MI, Lehmann AR 2000. A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair protein. EMBO J 19:1691–702
    [Google Scholar]
  38. 38.  Fujioka Y, Kimata Y, Nomaguchi K, Watanabe K, Kohno K 2002. Identification of a novel non-structural maintenance of chromosomes (SMC) component of the SMC5-SMC6 complex involved in DNA repair. J. Biol. Chem. 277:21585–91
    [Google Scholar]
  39. 39.  Funabiki H, Yamano H, Kumada K, Nagao K, Hunt T, Yanagida M 1996. Cut2 proteolysis required for sister-chromatid separation in fission yeast. Nature 381:438–41
    [Google Scholar]
  40. 40.  Gallego-Paez LM, Tanaka H, Bando M, Takahashi M, Nozaki N et al. 2014. Smc5/6-mediated regulation of replication progression contributes to chromosome assembly during mitosis in human cells. Mol. Biol. Cell 25:302–17
    [Google Scholar]
  41. 41.  Gómez R, Jordan PW, Viera A, Alsheimer M, Fukuda T et al. 2013. Dynamic localization of SMC5/6 complex proteins during mammalian meiosis and mitosis suggests functions in distinct chromosome processes. J. Cell Sci. 126:4239–52
    [Google Scholar]
  42. 42.  Gruber S, Arumugam P, Katou Y, Kuglitsch D, Helmhart W et al. 2006. Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge. Cell 127:523–37
    [Google Scholar]
  43. 43.  Guacci V, Koshland D, Strunnikov A 1997. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91:47–57
    [Google Scholar]
  44. 44.  Guerineau M, Kriz Z, Kozakova L, Bednarova K, Janos P, Palecek J 2012. Analysis of the Nse3/MAGE-binding domain of the Nse4/EID family proteins. PLOS ONE 7:e35813
    [Google Scholar]
  45. 45.  Haering CH, Farcas AM, Arumugam P, Metson J, Nasmyth K 2008. The cohesin ring concatenates sister DNA molecules. Nature 454:297–301
    [Google Scholar]
  46. 46.  Hirano T 2005. SMC proteins and chromosome mechanics: from bacteria to humans. Philos. Trans. R. Soc. B 360:507–14
    [Google Scholar]
  47. 47.  Hirano T 2016. Condensin-based chromosome organization from bacteria to vertebrates. Cell 164:847–57
    [Google Scholar]
  48. 48.  Hirano T, Kobayashi R, Hirano M 1997. Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89:511–21
    [Google Scholar]
  49. 49.  Huang L, Yang S, Zhang S, Liu M, Lai J et al. 2009. The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root. Plant J 60:666–78
    [Google Scholar]
  50. 50.  Hudson DF, Vagnarelli P, Gassmann R, Earnshaw WC 2003. Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes. Dev. Cell 5:323–36
    [Google Scholar]
  51. 51.  Hudson JJ, Bednarova K, Kozakova L, Liao C, Guerineau M et al. 2011. Interactions between the Nse3 and Nse4 components of the SMC5–6 complex identify evolutionarily conserved interactions between MAGE and EID families. PLOS ONE 6:e17270
    [Google Scholar]
  52. 52.  Hwang G, Sun F, O'Brien M, Eppig JJ, Handel MA, Jordan PW 2017. SMC5/6 is required for the formation of segregation-competent bivalent chromosomes during meiosis I in mouse oocytes. Development 144:1648–60
    [Google Scholar]
  53. 53.  Irmisch A, Ampatzidou E, Mizuno K, O'Connell MJ, Murray JM 2009. Smc5/6 maintains stalled replication forks in a recombination-competent conformation. EMBO J 28:144–55
    [Google Scholar]
  54. 54.  Ishida T, Fujiwara S, Miura K, Stacey N, Yoshimura M et al. 2009. SUMO E3 ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in Arabidopsis. Plant Cell 21:2284–97
    [Google Scholar]
  55. 55.  Jacome A, Gutierrez-Martinez P, Schiavoni F, Tenaglia E, Martinez P et al. 2015. NSMCE2 suppresses cancer and aging in mice independently of its SUMO ligase activity. EMBO J 34:2604–19
    [Google Scholar]
  56. 56.  Jeppsson K, Carlborg KK, Nakato R, Berta DG, Lilienthal I et al. 2014. The chromosomal association of the Smc5/6 complex depends on cohesion and predicts the level of sister chromatid entanglement. PLOS Genet 10:e1004680
    [Google Scholar]
  57. 57.  Kanno T, Berta DG, Sjögren C 2015. The Smc5/6 complex is an ATP-dependent intermolecular DNA linker. Cell Rep 12:1471–82
    [Google Scholar]
  58. 58.  Kauppi L, Barchi M, Lange J, Baudat F, Jasin M, Keeney S 2013. Numerical constraints and feedback control of double-strand breaks in mouse meiosis. Genes Dev 27:873–86
    [Google Scholar]
  59. 59.  Kegel A, Betts-Lindroos H, Kanno T, Jeppsson K, Strom L et al. 2011. Chromosome length influences replication-induced topological stress. Nature 471:392–96
    [Google Scholar]
  60. 60.  Kim D-H, Harris B, Wang F, Seidel C, McCroskey S, Gerton JL 2016. Mms21 SUMO ligase activity promotes nucleolar function in Saccharomyces cerevisiae. Genetics 204:645–58
    [Google Scholar]
  61. 61.  Kornberg RD 1974. Chromatin structure: a repeating unit of histones and DNA. Science 184:868–71
    [Google Scholar]
  62. 62.  Kwak JS, Son GH, Kim S-I, Song JT, Seo HS 2016. Arabidopsis HIGH PLOIDY2 sumoylates and stabilizes Flowering Locus C through its E3 ligase activity. Front. Plant Sci. 7:530
    [Google Scholar]
  63. 63.  Laflamme G, Tremblay-Boudreault T, Roy M-A, Andersen P, Bonneil É et al. 2014. Structural maintenance of chromosome (SMC) proteins link microtubule stability to genome integrity. J. Biol. Chem. 289:27418–31
    [Google Scholar]
  64. 64.  Langmore JP, Schutt C 1980. The higher order structure of chicken erythrocyte chromosomes in vivo. Nature 288:620–22
    [Google Scholar]
  65. 65.  Lehmann AR, Walicka M, Griffiths DJ, Murray JM, Watts FZ et al. 1995. The rad18 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair. Mol. Cell. Biol. 15:7067–80
    [Google Scholar]
  66. 66.  Li G, Zou W, Jian L, Qian J, Deng Y, Zhao J 2017. Non-SMC elements 1 and 3 are required for early embryo and seedling development in Arabidopsis. J. Exp. Bot. 68:1039–54
    [Google Scholar]
  67. 67.  Liberi G, Maffioletti G, Lucca C, Chiolo I, Baryshnikova A et al. 2005. Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev 19:339–50
    [Google Scholar]
  68. 68.  Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–93
    [Google Scholar]
  69. 69.  Lilienthal I, Kanno T, Sjögren C 2013. Inhibition of the Smc5/6 complex during meiosis perturbs joint molecule formation and resolution without significantly changing crossover or non-crossover levels. PLOS Genet 9:e1003898
    [Google Scholar]
  70. 70.  Lim JH, Oh BH 2009. Structural and functional similarities between two bacterial chromosome compacting machineries. Biochem. Biophys. Res. Commun. 386:415–19
    [Google Scholar]
  71. 71.  Lindroos HB, Strom L, Itoh T, Katou Y, Shirahige K, Sjögren C 2006. Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways. Mol. Cell 22:755–67
    [Google Scholar]
  72. 72.  Liu M, Shi S, Zhang S, Xu P, Lai J et al. 2014. SUMO E3 ligase AtMMS21 is required for normal meiosis and gametophyte development in Arabidopsis. BMC Plant Biol 14:153
    [Google Scholar]
  73. 73.  Lu C-Y, Tsai C-H, Brill SJ, Teng S-C 2010. Sumoylation of the BLM ortholog, Sgs1, promotes telomere–telomere recombination in budding yeast. Nucleic Acids Res. 38:488–98
    [Google Scholar]
  74. 74.  McAleenan A, Cordon-Preciado V, Clemente-Blanco A, Liu I-C, Sen N et al. 2012. SUMOylation of the α-kleisin subunit of cohesin is required for DNA damage-induced cohesion. Curr. Biol. 22:1564–75
    [Google Scholar]
  75. 75.  McDonald WH, Pavlova Y, Yates JR III, Boddy MN 2003. Novel essential DNA repair proteins Nse1 and Nse2 are subunits of the fission yeast Smc5-Smc6 complex. J. Biol. Chem. 278:45460–67
    [Google Scholar]
  76. 76.  Menolfi D, Delamarre A, Lengronne A, Pasero P, Branzei D 2015. Essential roles of the Smc5/6 complex in replication through natural pausing sites and endogenous DNA damage tolerance. Mol. Cell 60:835–46
    [Google Scholar]
  77. 77.  Michaelis C, Ciosk R, Nasmyth K 1997. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91:35–45
    [Google Scholar]
  78. 78.  Miranda EI 2010. MAGE, biological functions and potential clinical applications. Leuk. Res. 34:1121–22
    [Google Scholar]
  79. 79.  Moradi-Fard S, Sarthi J, Tittel-Elmer M, Lalonde M, Cusanelli E et al. 2016. Smc5/6 is a telomere-associated complex that regulates Sir4 binding and TPE. PLOS Genet 12:e1006268
    [Google Scholar]
  80. 80.  Murphy CM, Xu Y, Li F, Nio K, Reszka-Blanco N et al. 2016. Hepatitis B virus X protein promotes degradation of SMC5/6 to enhance HBV replication. Cell Rep 16:2846–54
    [Google Scholar]
  81. 81.  Nasim A, Smith BP 1975. Genetic control of radiation sensitivity in Schizosaccharomyces pombe. Genetics 79:573–82
    [Google Scholar]
  82. 82.  Nasmyth K 2011. Cohesin: a catenase with separate entry and exit gates?. Nat. Cell Biol. 13:1170–77
    [Google Scholar]
  83. 83.  Nasmyth K, Haering CH 2005. The structure and function of SMC and kleisin complexes. Annu. Rev. Biochem. 74:595–648
    [Google Scholar]
  84. 84.  Neuwald AF, Hirano T 2000. HEAT repeats associated with condensins, cohesins, and other complexes involved in chromosome-related functions. Genome Res 10:1445–52
    [Google Scholar]
  85. 85.  Noël JF, Wellinger RJ 2011. Abrupt telomere losses and reduced end-resection can explain accelerated senescence of Smc5/6 mutants lacking telomerase. DNA Repair 10:271–82
    [Google Scholar]
  86. 86.  Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T 2003. Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115:109–21
    [Google Scholar]
  87. 87.  Onoda F, Takeda M, Seki M, Maeda D, Tajima J et al. 2004. SMC6 is required for MMS-induced interchromosomal and sister chromatid recombinations in Saccharomyces cerevisiae. DNA Repair 3:429–39
    [Google Scholar]
  88. 88.  Outwin EA, Irmisch A, Murray JM, O'Connell MJ 2009. Smc5-Smc6-dependent removal of cohesin from mitotic chromosomes. Mol. Cell. Biol. 29:4363–75
    [Google Scholar]
  89. 89.  Ouyang KJ, Woo LL, Zhu J, Huo D, Matunis MJ, Ellis NA 2009. SUMO modification regulates BLM and RAD51 interaction at damaged replication forks. PLOS Biol 7:e1000252
    [Google Scholar]
  90. 90.  Palecek J, Vidot S, Feng M, Doherty AJ, Lehmann AR 2006. The Smc5-Smc6 DNA repair complex. Bridging of the Smc5-Smc6 heads by the kleisin, Nse4, and non-kleisin subunits. J. Biol. Chem. 281:36952–59
    [Google Scholar]
  91. 91.  Palecek JJ, Gruber S 2015. Kite proteins: a superfamily of SMC/kleisin partners conserved across bacteria, archaea, and eukaryotes. Structure 23:2183–90
    [Google Scholar]
  92. 92.  Payne F, Colnaghi R, Rocha N, Seth A, Harris J et al. 2014. Hypomorphism in human NSMCE2 linked to primordial dwarfism and insulin resistance. J. Clin. Investig. 124:4028–38
    [Google Scholar]
  93. 93.  Pebernard S, Perry JJP, Tainer JA, Boddy MN 2008. Nse1 RING-like domain supports functions of the Smc5-Smc6 holocomplex in genome stability. Mol. Biol. Cell 19:4099–109
    [Google Scholar]
  94. 94.  Pebernard S, Schaffer L, Campbell D, Head SR, Boddy MN 2008. Localization of Smc5/6 to centromeres and telomeres requires heterochromatin and SUMO, respectively. EMBO J 27:3011–23
    [Google Scholar]
  95. 95.  Pebernard S, Wohlschlegel J, McDonald WH, Yates JR III, Boddy MN 2006. The Nse5-Nse6 dimer mediates DNA repair roles of the Smc5-Smc6 complex. Mol. Cell. Biol. 26:1617–30
    [Google Scholar]
  96. 96.  Peng XP, Lim S, Li S, Marjavaara L, Chabes A, Zhao X 2018. Acute Smc5/6 depletion reveals its primary role in rDNA replication by restraining recombination at fork pausing sites. PLOS Genet 14:e1007129
    [Google Scholar]
  97. 97.  Pezic D, Weeks SL, Hadjur S 2017. More to cohesin than meets the eye: complex diversity for fine-tuning of function. Curr. Opin. Genet. Dev. 43:93–100
    [Google Scholar]
  98. 98.  Potts PR, Porteus MH, Yu H 2006. Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J 25:3377–88
    [Google Scholar]
  99. 99.  Potts PR, Yu H 2005. Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol. Cell. Biol. 25:7021–32
    [Google Scholar]
  100. 100.  Potts PR, Yu H 2007. The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat. Struct. Mol. Biol. 14:581–90
    [Google Scholar]
  101. 101.  Prakash S, Prakash L 1977. Increased spontaneous mitotic segregation in MMS-sensitive mutants of Saccharomyces cerevisiae. Genetics 87:229–36
    [Google Scholar]
  102. 102.  Rana V, Bosco G 2017. Condensin regulation of genome architecture. J. Cell. Physiol. 232:1617–25
    [Google Scholar]
  103. 103.  Rattner JB, Hamkalo BA 1978. Higher order structure in metaphase chromosomes. I. The 250 Å fiber. Chromosoma 69:363–72
    [Google Scholar]
  104. 104.  Ribeiro SA, Gatlin JC, Dong Y, Joglekar A, Cameron L et al. 2009. Condensin regulates the stiffness of vertebrate centromeres. Mol. Biol. Cell 20:2371–80
    [Google Scholar]
  105. 105.  Robellet X, Vanoosthuyse V, Bernard P 2017. The loading of condensin in the context of chromatin. Curr. Genet. 63:577–89
    [Google Scholar]
  106. 106.  Roy MA, D'Amours D 2011. DNA-binding properties of Smc6, a core component of the Smc5–6 DNA repair complex. Biochem. Biophys. Res. Commun. 416:80–85
    [Google Scholar]
  107. 107.  Roy MA, Dhanaraman T, D'Amours D 2015. The Smc5-Smc6 heterodimer associates with DNA through several independent binding domains. Sci. Rep. 5:9797
    [Google Scholar]
  108. 108.  Roy MA, Siddiqui N, D'Amours D 2011. Dynamic and selective DNA-binding activity of Smc5, a core component of the Smc5-Smc6 complex. Cell Cycle 10:690–700
    [Google Scholar]
  109. 109.  Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z et al. 2000. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–16
    [Google Scholar]
  110. 110.  Santos-Pereira JM, Aguilera A 2015. R loops: new modulators of genome dynamics and function. Nat. Rev. Genet. 16:583–97
    [Google Scholar]
  111. 111.  Schürer KA, Rudolph C, Ulrich HD, Kramer W 2004. Yeast MPH1 gene functions in an error-free DNA damage bypass pathway that requires genes from homologous recombination, but not from postreplicative repair. Genetics 166:1673–86
    [Google Scholar]
  112. 112.  Sen N, Leonard J, Torres R, Garcia-Luis J, Palou-Marin G, Aragón L 2016. Physical proximity of sister chromatids promotes Top2-dependent intertwining. Mol. Cell 64:134–47
    [Google Scholar]
  113. 113.  Sergeant J, Taylor E, Palecek J, Fousteri M, Andrews EA et al. 2005. Composition and architecture of the Schizosaccharomyces pombe Rad18 (Smc5–6) complex. Mol. Cell. Biol. 25:172–84
    [Google Scholar]
  114. 114.  Sheedy DM, Dimitrova D, Rankin JK, Bass KL, Lee KM et al. 2005. Brc1-mediated DNA repair and damage tolerance. Genetics 171:457–68
    [Google Scholar]
  115. 115.  Simpson-Lavy KJ, Bronstein A, Kupiec M, Johnston M 2015. Cross-talk between carbon metabolism and the DNA damage response in S. cerevisiae. Cell Rep 12:1865–75
    [Google Scholar]
  116. 116.  Soh Y-M, Bürmann F, Shin H-C, Oda T, Jin KS et al. 2015. Molecular basis for SMC rod formation and its dissolution upon DNA binding. Mol. Cell 57:290–303
    [Google Scholar]
  117. 117.  Sollier J, Driscoll R, Castellucci F, Foiani M, Jackson SP, Branzei D 2009. The Saccharomyces cerevisiae Esc2 and Smc5–6 proteins promote sister chromatid junction-mediated intra-S repair. Mol. Biol. Cell 20:1671–82
    [Google Scholar]
  118. 118.  Stephan AK, Kliszczak M, Dodson H, Cooley C, Morrison CG 2011. Roles of vertebrate Smc5 in sister chromatid cohesion and homologous recombinational repair. Mol. Cell. Biol. 31:1369–81
    [Google Scholar]
  119. 119.  Strom L, Lindroos HB, Shirahige K, Sjögren C 2004. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol. Cell 16:1003–15
    [Google Scholar]
  120. 120.  Taylor EM, Copsey AC, Hudson JJ, Vidot S, Lehmann AR 2008. Identification of the proteins, including MAGEG1, that make up the human SMC5–6 protein complex. Mol. Cell. Biol. 28:1197–206
    [Google Scholar]
  121. 121.  Taylor EM, Moghraby JS, Lees JH, Smit B, Moens PB, Lehmann AR 2001. Characterization of a novel human SMC heterodimer homologous to the Schizosaccharomyces pombe Rad18/Spr18 complex. Mol. Biol. Cell 12:1583–94
    [Google Scholar]
  122. 122.  Torres-Rosell J, De Piccoli G, Cordon-Preciado V, Farmer S, Jarmuz A et al. 2007. Anaphase onset before complete DNA replication with intact checkpoint responses. Science 315:1411–15
    [Google Scholar]
  123. 123.  Torres-Rosell J, Machín F, Farmer S, Jarmuz A, Eydmann T et al. 2005. SMC5 and SMC6 genes are required for the segregation of repetitive chromosome regions. Nat. Cell Biol. 7:412–19
    [Google Scholar]
  124. 124.  Torres-Rosell J, Sunjevaric I, De Piccoli G, Sacher M, Eckert-Boulet N et al. 2007. The Smc5–Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat. Cell Biol. 9:923–31
    [Google Scholar]
  125. 125.  Ünal E, Arbel-Eden A, Sattler U, Shroff R, Lichten M et al. 2004. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell 16:991–1002
    [Google Scholar]
  126. 126.  Urban S, Schulze A, Dandri M, Petersen J 2010. The replication cycle of hepatitis B virus. J. Hepatol. 52:282–84
    [Google Scholar]
  127. 127.  van der Crabben SN, Hennus MP, McGregor GA, Ritter DI, Nagamani SC et al. 2016. Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease. J. Clin. Investig. 126:2881–92
    [Google Scholar]
  128. 128.  Verkade HM, Bugg SJ, Lindsay HD, Carr AM, O'Connell MJ 1999. Rad18 is required for DNA repair and checkpoint responses in fission yeast. Mol. Biol. Cell 10:2905–18
    [Google Scholar]
  129. 129.  Verver DE, van Pelt AMM, Repping S, Hamer G 2013. Role for rodent Smc6 in pericentromeric heterochromatin domains during spermatogonial differentiation and meiosis. Cell Death Dis 4:e749
    [Google Scholar]
  130. 130.  Watanabe K, Pacher M, Dukowic S, Schubert V, Puchta H, Schubert I 2009. The STRUCTURAL MAINTENANCE OF CHROMOSOMES 5/6 complex promotes sister chromatid alignment and homologous recombination after DNA damage in Arabidopsis thaliana. Plant Cell 21:2688–99
    [Google Scholar]
  131. 131.  Wehrkamp-Richter S, Hyppa RW, Prudden J, Smith GR, Boddy MN 2012. Meiotic DNA joint molecule resolution depends on Nse5–Nse6 of the Smc5–Smc6 holocomplex. Nucleic Acids Res 40:9633–46
    [Google Scholar]
  132. 132.  Whitby MC 2010. The FANCM family of DNA helicases/translocases. DNA Repair 9:224–36
    [Google Scholar]
  133. 133.  Wu N, Kong X, Ji Z, Zeng W, Potts PR et al. 2012. Scc1 sumoylation by Mms21 promotes sister chromatid recombination through counteracting Wapl. Genes Dev 26:1473–85
    [Google Scholar]
  134. 134.  Xaver M, Huang L, Chen D, Klein F 2013. Smc5/6–Mms21 prevents and eliminates inappropriate recombination intermediates in meiosis. PLOS Genet 9:e1004067
    [Google Scholar]
  135. 135.  Yan S, Wang W, Marqués J, Mohan R, Saleh A et al. 2013. Salicylic acid activates DNA damage responses to potentiate plant immunity. Mol. Cell 52:602–10
    [Google Scholar]
  136. 136.  Yoshimura SH, Hirano T 2016. HEAT repeats—versatile arrays of amphiphilic helices working in crowded environments?. J. Cell Sci. 129:3963–70
    [Google Scholar]
  137. 137.  Zabrady K, Adamus M, Vondrova L, Liao C, Skoupilova H et al. 2016. Chromatin association of the SMC5/6 complex is dependent on binding of its NSE3 subunit to DNA. Nucleic Acids Res 44:1064–79
    [Google Scholar]
  138. 138.  Zhang J, Lai J, Wang F, Yang S, He Z et al. 2017. A SUMO ligase AtMMS21 regulates the stability of the chromatin remodeler BRAHMA in root development. Plant Physiol 173:1574–82
    [Google Scholar]
  139. 139.  Zhang S, Qi Y, Liu M, Yang C 2013. SUMO E3 ligase AtMMS21 regulates drought tolerance in Arabidopsis thaliana. J. Integr. Plant Biol. 55:83–95
    [Google Scholar]
  140. 140.  Zhang S, Qi Y, Yang C 2010. Arabidopsis SUMO E3 ligase AtMMS21 regulates root meristem development. Plant Signal. Behav. 5:53–55
    [Google Scholar]
  141. 141.  Zhao X, Blobel G 2005. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. PNAS 102:4777–82
    [Google Scholar]
/content/journals/10.1146/annurev-genet-120417-031353
Loading
/content/journals/10.1146/annurev-genet-120417-031353
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error