1932

Abstract

Investigations over the past eight years of chemical modifications on messenger RNA (mRNA) have revealed a new level of posttranscriptional gene regulation in eukaryotes. Rapid progress in our understanding of these modifications, particularly, 6-methyladenosine (m6A), has revealed their roles throughout the life cycle of an mRNA transcript. m6A methylation provides a rapid mechanism for coordinated transcriptome processing and turnover that is important in embryonic development and cell differentiation. In response to cellular signals, m6A can also regulate the translation of specific pools of transcripts. These mechanisms can be hijacked in human diseases, including numerous cancers and viral infection. Beyond m6A, many other mRNA modifications have been mapped in the transcriptome, but much less is known about their biological functions. As methods continue to be developed, we will be able to study these modifications both more broadly and in greater depth, which will likely reveal a wealth of new RNA biology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120417-031522
2018-11-23
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/genet/52/1/annurev-genet-120417-031522.html?itemId=/content/journals/10.1146/annurev-genet-120417-031522&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Adams JM, Cory S 1975. Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature 255:28–33
    [Google Scholar]
  2. 2.  Alarcon CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF 2015. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. Cell 162:1299–308
    [Google Scholar]
  3. 3.  Alarcon CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF 2015. N6-methyladenosine marks primary microRNAs for processing. Nature 519:482–85
    [Google Scholar]
  4. 4.  Amort T, Rieder D, Wille A, Khokhlova-Cubberley D, Riml C et al. 2017. Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biol 18:1
    [Google Scholar]
  5. 5.  Aschenbrenner J, Werner S, Marchand V, Adam M, Motorin Y et al. 2018. Engineering of a DNA polymerase for direct m6A sequencing. Angew. Chem. Int. Ed. 57:417–21
    [Google Scholar]
  6. 6.  Bailey AS, Batista PJ, Gold RS, Chen YG, de Rooij DG et al. 2017. The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline. eLife 6:e26616
    [Google Scholar]
  7. 7.  Barbieri I, Tzelepis K, Pandolfini L, Shi J, Millan-Zambrano G et al. 2017. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature 552:126–31
    [Google Scholar]
  8. 8.  Batista PJ, Molinie B, Wang J, Qu K, Zhang J et al. 2014. m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15:707–19
    [Google Scholar]
  9. 9.  Beemon K, Keith J 1977. Localization of N6-methyladenosine in the Rous sarcoma virus genome. J. Mol. Biol. 113:165–79
    [Google Scholar]
  10. 10.  Begley U, Dyavaiah M, Patil A, Rooney JP, DiRenzo D et al. 2007. Trm9-catalyzed tRNA modifications link translation to the DNA damage response. Mol. Cell 28:860–70
    [Google Scholar]
  11. 11.  Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B et al. 2018. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res 46:D303–7
    [Google Scholar]
  12. 12.  Bokar JA, Rath-Shambaugh ME, Ludwiczak R, Narayan P, Rottman F 1994. Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J. Biol. Chem. 269:17697–704
    [Google Scholar]
  13. 13.  Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM 1997. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 3:1233–47
    [Google Scholar]
  14. 14.  Bringmann P, Luhrmann R 1987. Antibodies specific for N6-methyladenosine react with intact snRNPs U2 and U4/U6. FEBS Lett 213:309–15
    [Google Scholar]
  15. 15.  Canaani D, Kahana C, Lavi S, Groner Y 1979. Identification and mapping of N6-methyladenosine containing sequences in simian virus 40 RNA. Nucleic Acids Res 6:2879–99
    [Google Scholar]
  16. 16.  Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV 2014. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515:143–46
    [Google Scholar]
  17. 17.  Carroll SM, Narayan P, Rottman FM 1990. N6-methyladenosine residues in an intron-specific region of prolactin pre-mRNA. Mol. Cell Biol. 10:4456–65
    [Google Scholar]
  18. 18.  Cenik C, Chua HN, Singh G, Akef A, Snyder MP et al. 2017. A common class of transcripts with 5′-intron depletion, distinct early coding sequence features, and N1-methyladenosine modification. RNA 23:270–83
    [Google Scholar]
  19. 19.  Choi J, Ieong KW, Demirci H, Chen J, Petrov A et al. 2016. N6-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat. Struct. Mol. Biol. 23:110–15
    [Google Scholar]
  20. 20.  Choi J, Indrisiunaite G, DeMirci H, Ieong KW, Wang J et al. 2018. How 2′-O-methylation in mRNA disrupts tRNA decoding during translation elongation. Nat. Struct. Mol. Biol. 25:208–16
    [Google Scholar]
  21. 21.  Coots RA, Liu XM, Mao Y, Dong L, Zhou J et al. 2017. m6A facilitates eIF4F-independent mRNA translation. Mol. Cell 68:504–14.e7
    [Google Scholar]
  22. 22.  Daffis S, Szretter KJ, Schriewer J, Li J, Youn S et al. 2010. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468:452–56
    [Google Scholar]
  23. 23.  Dai Q, Moshitch-Moshkovitz S, Han D, Kol N, Amariglio N et al. 2017. Nm-seq maps 2′-O-methylation sites in human mRNA with base precision. Nat. Methods 14:695–68
    [Google Scholar]
  24. 24.  Darnell JE, Philipson L, Wall R, Adesnik M 1971. Polyadenylic acid sequences: role in conversion of nuclear RNA into messenger RNA. Science 174:507–10
    [Google Scholar]
  25. 25.  Delatte B, Wang F, Ngoc LV, Collignon E, Bonvin E et al. 2016. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science 351:282–85
    [Google Scholar]
  26. 26.  Desrosiers R, Friderici K, Rottman F 1974. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. PNAS 71:3971–75
    [Google Scholar]
  27. 27.  Dimock K, Stoltzfus CM 1977. Sequence specificity of internal methylation in B77 avian sarcoma virus RNA subunits. Biochemistry 16:471–78
    [Google Scholar]
  28. 28.  Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L et al. 2012. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–6
    [Google Scholar]
  29. 29.  Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N et al. 2016. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature 530:441–46
    [Google Scholar]
  30. 30.  Dominissini D, Rechavi G 2017. Loud and clear epitranscriptomic m1A signals: now in single-base resolution. Mol. Cell 68:825–26
    [Google Scholar]
  31. 31.  Du H, Zhao Y, He J, Zhang Y, Xi H et al. 2016. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat. Commun. 7:12626
    [Google Scholar]
  32. 32.  Dubin DT, Taylor RH 1975. The methylation state of poly A-containing messenger RNA from cultured hamster cells. Nucleic Acids Res 2:1653–68
    [Google Scholar]
  33. 33.  Edmonds M, Vaughan MH Jr., Nakazato H 1971. Polyadenylic acid sequences in the heterogeneous nuclear RNA and rapidly-labeled polyribosomal RNA of HeLa cells: possible evidence for a precursor relationship. PNAS 68:1336–40
    [Google Scholar]
  34. 34.  Edupuganti RR, Geiger S, Lindeboom RGH, Shi H, Hsu PJ et al. 2017. N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nat. Struct. Mol. Biol. 24:870–78
    [Google Scholar]
  35. 35.  Fray RG, Simpson GG 2015. The Arabidopsis epitranscriptome. Curr. Opin. Plant Biol. 27:17–21
    [Google Scholar]
  36. 36.  Garalde DR, Snell EA, Jachimowicz D, Sipos B, Lloyd JH et al. 2018. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 15:201–6
    [Google Scholar]
  37. 37.  Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N et al. 2015. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science 347:1002–6
    [Google Scholar]
  38. 38.  Gilboa E, Mitra SW, Goff S, Baltimore D 1979. A detailed model of reverse transcription and tests of crucial aspects. Cell 18:93–100
    [Google Scholar]
  39. 39.  Gokhale NS, McIntyre ABR, McFadden MJ, Roder AE, Kennedy EM et al. 2016. N6-methyladenosine in flaviviridae viral RNA genomes regulates infection. Cell Host Microbe 20:654–65
    [Google Scholar]
  40. 40.  Grozhik AV, Jaffrey SR 2017. Epitranscriptomics: shrinking maps of RNA modifications. Nature 551:174–76
    [Google Scholar]
  41. 41.  Gustilo EM, Vendeix FA, Agris PF 2008. tRNA's modifications bring order to gene expression. Curr. Opin. Microbiol. 11:134–40
    [Google Scholar]
  42. 42.  Harcourt EM, Ehrenschwender T, Batista PJ, Chang HY, Kool ET 2013. Identification of a selective polymerase enables detection of N6-methyladenosine in RNA. J. Am. Chem. Soc. 135:19079–82
    [Google Scholar]
  43. 43.  Hashimoto SI, Green M 1976. Multiple methylated cap sequences in adenovirus type 2 early mRNA. J. Virol. 20:425–35
    [Google Scholar]
  44. 44.  Haussmann IU, Bodi Z, Sanchez-Moran E, Mongan NP, Archer N et al. 2016. m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. Nature 540:301–4
    [Google Scholar]
  45. 45.  He C 2010. Grand challenge commentary: RNA epigenetics?. Nat. Chem. Biol. 6:863–65
    [Google Scholar]
  46. 46.  Hinnebusch AG, Ivanov IP, Sonenberg N 2016. Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science 352:1413–16
    [Google Scholar]
  47. 47.  Hori H 2014. Methylated nucleosides in tRNA and tRNA methyltransferases. Front. Genet. 5:144
    [Google Scholar]
  48. 48.  Horowitz S, Horowitz A, Nilsen TW, Munns TW, Rottman FM 1984. Mapping of N6-methyladenosine residues in bovine prolactin mRNA. PNAS 81:5667–71
    [Google Scholar]
  49. 49.  Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X et al. 2017. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res 27:1115–27
    [Google Scholar]
  50. 50.  Huang H, Weng H, Sun W, Qin X, Shi H et al. 2018. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20:285–95
    [Google Scholar]
  51. 51.  Hussain S, Aleksic J, Blanco S, Dietmann S, Frye M 2013. Characterizing 5-methylcytosine in the mammalian epitranscriptome. Genome Biol 14:215
    [Google Scholar]
  52. 52.  Hussain S, Sajini AA, Blanco S, Dietmann S, Lombard P et al. 2013. NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep 4:255–61
    [Google Scholar]
  53. 53.  Ivanova I, Much C, Di Giacomo M, Azzi C, Morgan M et al. 2017. The RNA m6A reader YTHDF2 is essential for the post-transcriptional regulation of the maternal transcriptome and oocyte competence. Mol. Cell 67:1059–67.e4
    [Google Scholar]
  54. 54.  Izaurralde E, Lewis J, McGuigan C, Jankowska M, Darzynkiewicz E, Mattaj IW 1994. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78:657–68
    [Google Scholar]
  55. 55.  Jia G, Fu Y, Zhao X, Dai Q, Zheng G et al. 2011. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7:885–87
    [Google Scholar]
  56. 56.  Kane SE, Beemon K 1985. Precise localization of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites: implications for RNA processing. Mol. Cell Biol. 5:2298–306
    [Google Scholar]
  57. 57.  Kane SE, Beemon K 1987. Inhibition of methylation at two internal N6-methyladenosine sites caused by GAC to GAU mutations. J. Biol. Chem. 262:3422–27
    [Google Scholar]
  58. 58.  Karijolich J, Yu YT 2011. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474:395–98
    [Google Scholar]
  59. 59.  Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ et al. 2015. A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev 29:2037–53
    [Google Scholar]
  60. 60.  Ke S, Pandya-Jones A, Saito Y, Fak JJ, Vagbo CB et al. 2017. m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev 31:990–1006
    [Google Scholar]
  61. 61.  Kennedy EM, Bogerd HP, Kornepati AV, Kang D, Ghoshal D et al. 2016. Posttranscriptional m6A editing of HIV-1 mRNAs enhances viral gene expression. Cell Host Microbe 19:675–85
    [Google Scholar]
  62. 62.  Khoddami V, Cairns BR 2013. Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat. Biotechnol. 31:458–64
    [Google Scholar]
  63. 63.  Kiss-Laszlo Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T 1996. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85:1077–88
    [Google Scholar]
  64. 64.  Knuckles P, Carl SH, Musheev M, Niehrs C, Wenger A, Buhler M 2017. RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding. Nat. Struct. Mol. Biol. 24:561–69
    [Google Scholar]
  65. 65.  Krug RM, Morgan MA, Shatkin AJ 1976. Influenza viral mRNA contains internal N6-methyladenosine and 5′-terminal 7-methylguanosine in cap structures. J. Virol. 20:45–53
    [Google Scholar]
  66. 66.  Kumar S, Mapa K, Maiti S 2014. Understanding the effect of locked nucleic acid and 2′-O-methyl modification on the hybridization thermodynamics of a miRNA-mRNA pair in the presence and absence of AfPiwi protein. Biochemistry 53:1607–15
    [Google Scholar]
  67. 67.  Langberg SR, Moss B 1981. Post-transcriptional modifications of mRNA. Purification and characterization of cap I and cap II RNA (nucleoside-2′-)-methyltransferases from HeLa cells. J. Biol. Chem. 256:10054–60
    [Google Scholar]
  68. 68.  Lence T, Akhtar J, Bayer M, Schmid K, Spindler L et al. 2016. m6A modulates neuronal functions and sex determination in Drosophila. Nature 540:242–47
    [Google Scholar]
  69. 69.  Leppek K, Das R, Barna M 2017. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 19:158–74
    [Google Scholar]
  70. 70.  Li A, Chen YS, Ping XL, Yang X, Xiao W et al. 2017. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res 27:444–47
    [Google Scholar]
  71. 71.  Li HB, Tong J, Zhu S, Batista PJ, Duffy EE et al. 2017. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 548:338–42
    [Google Scholar]
  72. 72.  Li M, Zhao X, Wang W, Shi H, Pan Q et al. 2018. Ythdf2-mediated m6A mRNA clearance modulates neural development in mice. Genome Biol 19:69
    [Google Scholar]
  73. 73.  Li X, Xiong X, Wang K, Wang L, Shu X et al. 2016. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nat. Chem. Biol. 12:311–16
    [Google Scholar]
  74. 74.  Li X, Xiong X, Zhang M, Wang K, Chen Y et al. 2017. Base-resolution mapping reveals distinct m1A methylome in nuclear- and mitochondrial-encoded transcripts. Mol. Cell 68:993–1005.e9
    [Google Scholar]
  75. 75.  Li X, Zhu P, Ma S, Song J, Bai J et al. 2015. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat. Chem. Biol. 11:592–97
    [Google Scholar]
  76. 76.  Li Z, Weng H, Su R, Weng X, Zuo Z et al. 2017. FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase. Cancer Cell 31:127–41
    [Google Scholar]
  77. 77.  Lichinchi G, Gao S, Saletore Y, Gonzalez GM, Bansal V et al. 2016. Dynamics of the human and viral m6A RNA methylomes during HIV-1 infection of T cells. Nat. Microbiol. 1:16011
    [Google Scholar]
  78. 78.  Lichinchi G, Zhao BS, Wu Y, Lu Z, Qin Y et al. 2016. Dynamics of human and viral RNA methylation during Zika virus infection. Cell Host Microbe 20:666–73
    [Google Scholar]
  79. 79.  Lin Z, Hsu PJ, Xing X, Fang J, Lu Z et al. 2017. Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis. Cell Res 27:1216–30
    [Google Scholar]
  80. 80.  Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR 2015. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12:767–72
    [Google Scholar]
  81. 81.  Liu J, Yue Y, Han D, Wang X, Fu Y et al. 2014. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10:93–95
    [Google Scholar]
  82. 82.  Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T 2015. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518:560–64
    [Google Scholar]
  83. 83.  Louloupi A, Ntini E, Conrad T, Orom UA 2018. Transient N-6-methyladenosine transcriptome sequencing reveals a regulatory role of m6A in splicing efficiency. bioRxiv 242966. https://doi.org/10.1101/242966
    [Crossref]
  84. 84.  Lovejoy AF, Riordan DP, Brown PO 2014. Transcriptome-wide mapping of pseudouridines: Pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLOS ONE 9:e110799
    [Google Scholar]
  85. 85.  Lu W, Tirumuru N, Koneru PC, Liu C, Kvaratskhelia M et al. 2018. N6-methyladenosine binding proteins negatively regulate HIV-I infectivity and viral production. bioRxiv 257410. https://doi.org/10.1101/257410
    [Crossref]
  86. 86.  Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV et al. 2017. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature 541:371–75
    [Google Scholar]
  87. 87.  Medioni C, Mowry K, Besse F 2012. Principles and roles of mRNA localization in animal development. Development 139:3263–76
    [Google Scholar]
  88. 88.  Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA et al. 2015. 5′ UTR m6A promotes cap-independent translation. Cell 163:999–1010
    [Google Scholar]
  89. 89.  Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR 2012. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–46
    [Google Scholar]
  90. 90.  Motorin Y, Helm M 2011. RNA nucleotide methylation. RNA 2:611–31
    [Google Scholar]
  91. 91.  Nottingham RM, Wu DC, Qin Y, Yao J, Hunicke-Smith S, Lambowitz AM 2016. RNA-seq of human reference RNA samples using a thermostable group II intron reverse transcriptase. RNA 22:597–613
    [Google Scholar]
  92. 92.  Patil DP, Chen CK, Pickering BF, Chow A, Jackson C et al. 2016. m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537:369–73
    [Google Scholar]
  93. 93.  Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y et al. 2017. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169:824–35.e14
    [Google Scholar]
  94. 94.  Perry RP, Kelley DE 1974. Existence of methylated messenger RNA in mouse L cells. Cell 1:37–42
    [Google Scholar]
  95. 95.  Perry RP, Kelley DE, Friderici K, Rottman F 1975. The methylated constituents of L cell messenger RNA: evidence for an unusual cluster at the 5′ terminus. Cell 4:387–94
    [Google Scholar]
  96. 96.  Pillutla RC, Yue Z, Maldonado E, Shatkin AJ 1998. Recombinant human mRNA cap methyltransferase binds capping enzyme/RNA polymerase IIo complexes. J. Biol. Chem. 273:21443–46
    [Google Scholar]
  97. 97.  Ping XL, Sun BF, Wang L, Xiao W, Yang X et al. 2014. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24:177–89
    [Google Scholar]
  98. 98.  Renda MJ, Rosenblatt JD, Klimatcheva E, Demeter LM, Bambara RA, Planelles V 2001. Mutation of the methylated tRNA3Lys residue A58 disrupts reverse transcription and inhibits replication of human immunodeficiency virus type 1. J. Virol. 75:9671–78
    [Google Scholar]
  99. 99.  Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T et al. 2017. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. eLife 6:e31311
    [Google Scholar]
  100. 100.  Safra M, Sas-Chen A, Nir R, Winkler R, Nachshon A et al. 2017. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature 551:251–55
    [Google Scholar]
  101. 101.  Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO 2012. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLOS ONE 7:e30733
    [Google Scholar]
  102. 102.  Schaefer M, Pollex T, Hanna K, Lyko F 2009. RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res 37:e12
    [Google Scholar]
  103. 103.  Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH et al. 2014. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159:148–62
    [Google Scholar]
  104. 104.  Sharma S, Lafontaine DL 2015. ‘View from a bridge’: a new perspective on eukaryotic rRNA base modification. Trends Biochem. Sci. 40:560–75
    [Google Scholar]
  105. 105.  Shen Q, Zhang Q, Shi Y, Shi Q, Jiang Y et al. 2018. Tet2 promotes pathogen infection-induced myelopoiesis through mRNA oxidation. Nature 554:123–27
    [Google Scholar]
  106. 106.  Shi H, Wang X, Lu Z, Zhao BS, Ma H et al. 2017. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res 27:315–28
    [Google Scholar]
  107. 107.  Slobodin B, Han R, Calderone V, Vrielink JA, Loayza-Puch F et al. 2017. Transcription impacts the efficiency of mRNA translation via co-transcriptional N6-adenosine methylation. Cell 169:326–37.e12
    [Google Scholar]
  108. 108.  Sonenberg N, Hinnebusch AG 2009. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–45
    [Google Scholar]
  109. 109.  Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT et al. 2012. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40:5023–33
    [Google Scholar]
  110. 110.  Su R, Dong L, Li C, Nachtergaele S, Wunderlich M et al. 2018. R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling. Cell 172:90–105.e23
    [Google Scholar]
  111. 111.  Tian B, Manley JL 2017. Alternative polyadenylation of mRNA precursors. Nat. Rev. Mol. Cell Biol. 18:18–30
    [Google Scholar]
  112. 112.  Tirumuru N, Zhao BS, Lu W, Lu Z, He C, Wu L 2016. N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression. eLife 5:e15528
    [Google Scholar]
  113. 113.  Tollervey D, Lehtonen H, Jansen R, Kern H, Hurt EC 1993. Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell 72:443–57
    [Google Scholar]
  114. 114.  Tsukamoto T, Shibagaki Y, Niikura Y, Mizumoto K 1998. Cloning and characterization of three human cDNAs encoding mRNA (guanine-7-)-methyltransferase, an mRNA cap methylase. Biochem. Biophys. Res. Commun. 251:27–34
    [Google Scholar]
  115. 115.  Vilfan ID, Tsai YC, Clark TA, Wegener J, Dai Q et al. 2013. Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription. J. Nanobiotechnol. 11:8
    [Google Scholar]
  116. 116.  Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D et al. 2017. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat. Med. 23:1369–76
    [Google Scholar]
  117. 117.  Wang X, Lu Z, Gomez A, Hon GC, Yue Y et al. 2014. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–20
    [Google Scholar]
  118. 118.  Wang X, Zhao BS, Roundtree IA, Lu Z, Han D et al. 2015. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161:1388–99
    [Google Scholar]
  119. 119.  Wang Y, Li Y, Yue M, Wang J, Kumar S et al. 2018. N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nat. Neurosci. 21:195–206
    [Google Scholar]
  120. 120.  Warda AS, Kretschmer J, Hackert P, Lenz C, Urlaub H 2017. Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep 18:2004–14
    [Google Scholar]
  121. 121.  Wei C, Gershowitz A, Moss B 1975. N6, O2′-dimethyladenosine a novel methylated ribonucleoside next to the 5′ terminal of animal cell and virus mRNAs. Nature 257:251–53
    [Google Scholar]
  122. 122.  Wei CM, Gershowitz A, Moss B 1975. Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA. Cell 4:379–86
    [Google Scholar]
  123. 123.  Weng H, Huang H, Wu H, Qin X, Zhao BS et al. 2018. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification. Cell Stem Cell 22:191–205.e9
    [Google Scholar]
  124. 124.  Weng YL, Wang X, An R, Cassin J, Vissers C et al. 2018. Epitranscriptomic m6A regulation of axon regeneration in the adult mammalian nervous system. Neuron 97:313–25.e6
    [Google Scholar]
  125. 125.  Wickramasinghe VO, Laskey RA 2015. Control of mammalian gene expression by selective mRNA export. Nat. Rev. Mol. Cell Biol. 16:431–42
    [Google Scholar]
  126. 126.  Wojtas MN, Pandey RR, Mendel M, Homolka D, Sachidanandam R, Pillai RS 2017. Regulation of m6A transcripts by the 3′→5′ RNA helicase YTHDC2 is essential for a successful meiotic program in the mammalian germline. Mol. Cell 68:374–87.e12
    [Google Scholar]
  127. 127.  Xiang Y, Laurent B, Hsu CH, Nachtergaele S, Lu Z et al. 2017. RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature 543:573–76
    [Google Scholar]
  128. 128.  Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ et al. 2016. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61:507–19
    [Google Scholar]
  129. 129.  Xu L, Liu X, Sheng N, Oo KS, Liang J et al. 2017. Three distinct 3-methylcytidine (m3C) methyltransferases modify tRNA and mRNA in mice and humans. J. Biol. Chem. 292:14695–703
    [Google Scholar]
  130. 130.  Yang X, Yang Y, Sun BF, Chen YS, Xu JW et al. 2017. 5-methylcytosine promotes mRNA export – NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res 27:606–25
    [Google Scholar]
  131. 131.  Yang Y, Fan X, Mao M, Song X, Wu P et al. 2017. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 27:626–41
    [Google Scholar]
  132. 132.  Yoon KJ, Ringeling FR, Vissers C, Jacob F, Pokrass M et al. 2017. Temporal control of mammalian cortical neurogenesis by m6A methylation. Cell 171:877–89.e17
    [Google Scholar]
  133. 133.  You C, Dai X, Wang Y 2017. Position-dependent effects of regioisomeric methylated adenine and guanine ribonucleosides on translation. Nucleic Acids Res 45:9059–67
    [Google Scholar]
  134. 134.  Yu J, Chen M, Huang H, Zhu J, Song H et al. 2017. Dynamic m6A modification regulates local translation of mRNA in axons. Nucleic Acids Res 46:1412–23
    [Google Scholar]
  135. 135.  Zhang C, Chen Y, Sun B, Wang L, Yang Y et al. 2017. m6A modulates haematopoietic stem and progenitor cell specification. Nature 549:273–76
    [Google Scholar]
  136. 136.  Zhang S, Zhao BS, Zhou A, Lin K, Zheng S et al. 2017. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 31:591–606.e6
    [Google Scholar]
  137. 137.  Zhao BS, Wang X, Beadell AV, Lu Z, Shi H et al. 2017. m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 542:475–78
    [Google Scholar]
  138. 138.  Zhao X, Yang Y, Sun BF, Shi Y, Yang X et al. 2014. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res 24:1403–19
    [Google Scholar]
  139. 139.  Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM et al. 2013. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49:18–29
    [Google Scholar]
  140. 140.  Zhou C, Molinie B, Daneshvar K, Pondick JV, Wang J et al. 2017. Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep 20:2262–76
    [Google Scholar]
  141. 141.  Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian SB 2015. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature 526:591–94
    [Google Scholar]
/content/journals/10.1146/annurev-genet-120417-031522
Loading
/content/journals/10.1146/annurev-genet-120417-031522
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error