1932

Abstract

Fertilization is the culminating event of sexual reproduction, which involves the union of the sperm and egg to form a single, genetically distinct organism. Despite the fundamental role of fertilization, the basic mechanisms involved have remained poorly understood. However, these mechanisms must involve an ordered schedule of cellular recognition events between the sperm and egg to ensure successful fusion. In this article, we review recent progress in our molecular understanding of mammalian fertilization, highlighting the areas in which genetic approaches have been particularly informative and focusing especially on the roles of secreted and cell surface proteins, expressed in a sex-specific manner, that mediate sperm-egg interactions. We discuss how the sperm interacts with the female reproductive tract, zona pellucida, and the oolemma. Finally, we review recent progress made in elucidating the mechanisms that reduce polyspermy and ensure that eggs normally fuse with only a single sperm.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-121415-121834
2016-11-23
2024-12-11
Loading full text...

Full text loading...

/deliver/fulltext/genet/50/1/annurev-genet-121415-121834.html?itemId=/content/journals/10.1146/annurev-genet-121415-121834&mimeType=html&fmt=ahah

Literature Cited

  1. Alfieri JA, Martin AD, Takeda J, Kondoh G, Myles DG, Primakoff P. 1.  2003. Infertility in female mice with an oocyte-specific knockout of GPI-anchored proteins. J. Cell Sci. 116:2149–55 [Google Scholar]
  2. Avella MA, Baibakov B, Dean J. 2.  2014. A single domain of the ZP2 zona pellucida protein mediates gamete recognition in mice and humans. J. Cell Biol. 205:801–9 [Google Scholar]
  3. Avella MA, Xiong B, Dean J. 3.  2013. The molecular basis of gamete recognition in mice and humans. Mol. Hum. Reprod. 19:279–89 [Google Scholar]
  4. Aydin H, Sultana A, Li S, Thavalingam A, Lee JE. 4.  2016. Molecular architecture of the human sperm IZUMO1 and egg JUNO fertilization complex. Nature 534:562–65 [Google Scholar]
  5. Baba T, Azuma S, Kashiwabara S, Toyoda Y. 5.  1994. Sperm from mice carrying a targeted mutation of the acrosin gene can penetrate the oocyte zona pellucida and effect fertilization. J. Biol. Chem. 269:31845–49 [Google Scholar]
  6. Baibakov B, Boggs NA, Yauger B, Baibakov G, Dean J. 6.  2012. Human sperm bind to the N-terminal domain of ZP2 in humanized zonae pellucidae in transgenic mice. J. Cell Biol. 197:897–905 [Google Scholar]
  7. Baker MA, Hetherington L, Weinberg A, Naumovski N, Velkov T. 7.  et al. 2012. Analysis of phosphopeptide changes as spermatozoa acquire functional competence in the epididymis demonstrates changes in the post-translational modification of Izumo1. J. Proteome Res. 11:5252–64 [Google Scholar]
  8. Bedford JM. 8.  1977. Sperm/egg interaction: the specificity of human spermatozoa. Anat. Rec. 188:477–87 [Google Scholar]
  9. Bedford JM. 9.  1981. Why mammalian gametes don't mix. Nature 291:286–88 [Google Scholar]
  10. Bianchi E, Doe B, Goulding D, Wright GJ. 10.  2014. Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature 508:483–87 [Google Scholar]
  11. Bianchi E, Wright GJ. 11.  2015. Cross-species fertilization: the hamster egg receptor, Juno, binds the human sperm ligand, Izumo1. Philos. Trans. R. Soc. Lond. B 370:20140101 [Google Scholar]
  12. Bleil JD, Beall CF, Wassarman PM. 12.  1981. Mammalian sperm-egg interaction: Fertilization of mouse eggs triggers modification of the major zona pellucida glycoprotein, ZP2. Dev. Biol. 86:189–97 [Google Scholar]
  13. Bleil JD, Greve JM, Wassarman PM. 13.  1988. Identification of a secondary sperm receptor in the mouse egg zona pellucida: role in maintenance of binding of acrosome-reacted sperm to eggs. Dev. Biol. 128:376–85 [Google Scholar]
  14. Bleil JD, Wassarman PM. 14.  1980. Mammalian sperm-egg interaction: identification of a glycoprotein in mouse egg zonae pellucidae possessing receptor activity for sperm. Cell 20:873–82 [Google Scholar]
  15. Boldt J, Howe AM, Parkerson JB, Gunter LE, Kuehn E. 15.  1989. Carbohydrate involvement in sperm-egg fusion in mice. Biol. Reprod. 40:887–96 [Google Scholar]
  16. Boldt J, Howe AM, Preble J. 16.  1988. Enzymatic alteration of the ability of mouse egg plasma membrane to interact with sperm. Biol. Reprod. 39:19–27 [Google Scholar]
  17. Burkart AD, Xiong B, Baibakov B, Jimenez-Movilla M, Dean J. 17.  2012. Ovastacin, a cortical granule protease, cleaves ZP2 in the zona pellucida to prevent polyspermy. J. Cell Biol. 197:37–44 [Google Scholar]
  18. Chalbi M, Barraud-Lange V, Ravaux B, Howan K, Rodriguez N. 18.  et al. 2014. Binding of sperm protein Izumo1 and its egg receptor Juno drives Cd9 accumulation in the intercellular contact area prior to fusion during mammalian fertilization. Development 141:3732–39 [Google Scholar]
  19. Chang H, Suarez SS. 19.  2012. Unexpected flagellar movement patterns and epithelial binding behavior of mouse sperm in the oviduct. Biol. Reprod. 86:140,1–8 [Google Scholar]
  20. Chen C, Ke J, Zhou XE, Yi W, Brunzelle JS. 20.  et al. 2013. Structural basis for molecular recognition of folic acid by folate receptors. Nature 500:486–89 [Google Scholar]
  21. Cohen-Dayag A, Tur-Kaspa I, Dor J, Mashiach S, Eisenbach M. 21.  1995. Sperm capacitation in humans is transient and correlates with chemotactic responsiveness to follicular factors. PNAS 92:11039–43 [Google Scholar]
  22. Coonrod SA, Naaby-Hansen S, Shetty J, Shibahara H, Chen M. 22.  et al. 1999. Treatment of mouse oocytes with PI-PLC releases 70-kDa (pI 5) and 35- to 45-kDa (pI 5.5) protein clusters from the egg surface and inhibits sperm-oolemma binding and fusion. Dev. Biol. 207:334–49 [Google Scholar]
  23. Coy P, Garcia-Vazquez FA, Visconti PE, Aviles M. 23.  2012. Roles of the oviduct in mammalian fertilization. Reproduction 144:649–60 [Google Scholar]
  24. Cummins JM, Woodall PF. 24.  1985. On mammalian sperm dimensions. J. Reprod. Fertil. 75:153–75 [Google Scholar]
  25. Dale B. 25.  2014. Is the idea of a fast block to polyspermy based on artifact?. Biochem. Biophys. Res. Commun. 450:1159–65 [Google Scholar]
  26. Demott RP, Suarez SS. 26.  1992. Hyperactivated sperm progress in the mouse oviduct. Biol. Reprod. 46:779–85 [Google Scholar]
  27. Dietzel E, Wessling J, Floehr J, Schafer C, Ensslen S. 27.  et al. 2013. Fetuin-B, a liver-derived plasma protein is essential for fertilization. Dev. Cell 25:106–12 [Google Scholar]
  28. Dixson AF. 28.  2009. Sexual Selection and the Origins of Human Mating Systems Oxford, UK: Oxford Univ. Press [Google Scholar]
  29. Downs SM, Schroeder AC, Eppig JJ. 29.  1986. Serum maintains the fertilizability of mouse oocytes matured in vitro by preventing hardening of the zona pellucida. Gamete Res 15:115–22 [Google Scholar]
  30. Ducibella T, Kurasawa S, Rangarajan S, Kopf GS, Schultz RM. 30.  1990. Precocious loss of cortical granules during mouse oocyte meiotic maturation and correlation with an egg-induced modification of the zona pellucida. Dev. Biol. 137:46–55 [Google Scholar]
  31. Ellerman DA, Pei J, Gupta S, Snell WJ, Myles D, Primakoff P. 31.  2009. Izumo is part of a multiprotein family whose members form large complexes on mammalian sperm. Mol. Reprod. Dev. 76:1188–99 [Google Scholar]
  32. Ensslin MA, Shur BD. 32.  2003. Identification of mouse sperm SED1, a bimotif EGF repeat and discoidin-domain protein involved in sperm-egg binding. Cell 114:405–17 [Google Scholar]
  33. Familiari G, Relucenti M, Heyn R, Micara G, Correr S. 33.  2006. Three-dimensional structure of the zona pellucida at ovulation. Microsc. Res. Tech. 69:415–26 [Google Scholar]
  34. Fraser LR. 34.  1998. Sperm capacitation and the acrosome reaction. Hum. Reprod. Suppl. 1:9–19 [Google Scholar]
  35. Fujihara Y, Okabe M, Ikawa M. 35.  2014. GPI-anchored protein complex, LY6K/TEX101, is required for sperm migration into the oviduct and male fertility in mice. Biol. Reprod. 90:60 [Google Scholar]
  36. Gahlay G, Gauthier L, Baibakov B, Epifano O, Dean J. 36.  2010. Gamete recognition in mice depends on the cleavage status of an egg's zona pellucida protein. Science 329:216–19 [Google Scholar]
  37. Gardner AJ, Evans JP. 37.  2006. Mammalian membrane block to polyspermy: new insights into how mammalian eggs prevent fertilisation by multiple sperm. Reprod. Fertil. Dev. 18:53–61 [Google Scholar]
  38. Granados-Gonzalez V, Aknin-Seifer I, Touraine RL, Chouteau J, Wolf JP, Levy R. 38.  2008. Preliminary study on the role of the human IZUMO gene in oocyte-spermatozoa fusion failure. Fertil. Steril. 90:1246–48 [Google Scholar]
  39. Gupta S, Primakoff P, Myles DG. 39.  2009. Can the presence of wild-type oocytes during insemination rescue the fusion defect of CD9 null oocytes?. Mol. Reprod. Dev. 76:602 [Google Scholar]
  40. Han L, Nishimura K, Sadat Al Hosseini H, Bianchi E, Wright GJ, Jovine L. 40.  2016. Divergent evolution of vitamin B9 binding underlies Juno-mediated adhesion of mammalian gametes. Curr. Biol. 26:R100–1 [Google Scholar]
  41. Hanada A, Chang MC. 41.  1972. Penetration of zone-free eggs by spermatozoa of different species. Biol. Reprod. 6:300–9 [Google Scholar]
  42. Hayasaka S, Terada Y, Inoue N, Okabe M, Yaegashi N, Okamura K. 42.  2007. Positive expression of the immunoglobulin superfamily protein IZUMO on human sperm of severely infertile male patients. Fertil. Steril. 88:214–16 [Google Scholar]
  43. Hemler ME. 43.  2003. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu. Rev. Cell Dev. Biol. 19:397–422 [Google Scholar]
  44. Hirao Y, Yanagimachi R. 44.  1978. Temperature dependence of sperm-egg fusion and post-fusion events in hamster fertilization. J. Exp. Zool. 205:433–37 [Google Scholar]
  45. Holt WV, Fazeli A. 45.  2010. The oviduct as a complex mediator of mammalian sperm function and selection. Mol. Reprod. Dev. 77:934–43 [Google Scholar]
  46. Horvath PM, Kellom T, Caulfield J, Boldt J. 46.  1993. Mechanistic studies of the plasma membrane block to polyspermy in mouse eggs. Mol. Reprod. Dev. 34:65–72 [Google Scholar]
  47. 47. Hum. Fertil. Embryol. Auth. (HFEA) 2014. Fertility treatment in 2013: trends and figures HFEA Rep., Dec. 17. http://www.hfea.gov.uk/docs/HFEA_Fertility_Trends_and_Figures_2013.pdf [Google Scholar]
  48. Ikawa M, Inoue N, Benham AM, Okabe M. 48.  2010. Fertilization: a sperm's journey to and interaction with the oocyte. J. Clin. Investig. 120:984–94 [Google Scholar]
  49. Ikawa M, Inoue N, Okabe M. 49.  2008. Mechanisms of sperm-egg interactions emerging from gene-manipulated animals. Int. J. Dev. Biol. 52:657–64 [Google Scholar]
  50. Inoue M, Wolf DP. 50.  1974. Solubility properties of the murine zona pellucida. Biol. Reprod. 10:512–18 [Google Scholar]
  51. Inoue N, Hagihara Y, Wright D, Suzuki T, Wada I. 51.  2015. Oocyte-triggered dimerization of sperm IZUMO1 promotes sperm-egg fusion in mice. Nat. Commun. 6:8858 [Google Scholar]
  52. Inoue N, Hamada D, Kamikubo H, Hirata K, Kataoka M. 52.  et al. 2013. Molecular dissection of IZUMO1, a sperm protein essential for sperm-egg fusion. Development 140:3221–29 [Google Scholar]
  53. Inoue N, Ikawa M, Isotani A, Okabe M. 53.  2005. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434:234–38 [Google Scholar]
  54. Inoue N, Ikawa M, Okabe M. 54.  2008. Putative sperm fusion protein IZUMO and the role of N-glycosylation. Biochem. Biophys. Res. Commun. 377:910–14 [Google Scholar]
  55. Inoue N, Satouh Y, Ikawa M, Okabe M, Yanagimachi R. 55.  2011. Acrosome-reacted mouse spermatozoa recovered from the perivitelline space can fertilize other eggs. PNAS 108:20008–11 [Google Scholar]
  56. Inoue N, Yamaguchi R, Ikawa M, Okabe M. 56.  2007. Sperm-egg interaction and gene manipulated animals. Soc. Reprod. Fertil. Suppl. 65:363–71 [Google Scholar]
  57. Jaffe LA. 57.  1976. Fast block to polyspermy in sea urchin eggs is electrically mediated. Nature 261:68–71 [Google Scholar]
  58. Jaffe LA, Gould M. 58.  1985. Polyspermy-preventing mechanisms. Biology of Fertilization CB Metz, A Monroy 223–50 New York: Academic [Google Scholar]
  59. Jaffe LA, Sharp AP, Wolf DP. 59.  1983. Absence of an electrical polyspermy block in the mouse. Dev. Biol. 96:317–23 [Google Scholar]
  60. Jegou A, Ziyyat A, Barraud-Lange V, Perez E, Wolf JP. 60.  et al. 2011. CD9 tetraspanin generates fusion competent sites on the egg membrane for mammalian fertilization. PNAS 108:10946–51 [Google Scholar]
  61. Jia Z, Zhao R, Tian Y, Huang Z, Tian Z. 61.  et al. 2009. A novel splice variant of FR4 predominantly expressed in CD4+CD25+ regulatory T cells. Immunol. Investig. 38:718–29 [Google Scholar]
  62. Jin M, Fujiwara E, Kakiuchi Y, Okabe M, Satouh Y. 62.  et al. 2011. Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. PNAS 108:4892–96 [Google Scholar]
  63. Kaji K, Oda S, Shikano T, Ohnuki T, Uematsu Y. 63.  et al. 2000. The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat. Genet. 24:279–82 [Google Scholar]
  64. Kim JH, Jin P, Duan R, Chen EH. 64.  2015. Mechanisms of myoblast fusion during muscle development. Curr. Opin. Genet. Dev. 32:162–70 [Google Scholar]
  65. Kimura M, Kim E, Kang W, Yamashita M, Saigo M. 65.  et al. 2009. Functional roles of mouse sperm hyaluronidases, HYAL5 and SPAM1, in fertilization. Biol. Reprod. 81:939–47 [Google Scholar]
  66. Kryzak CA, Moraine MM, Kyle DD, Lee HJ, Cubenas-Potts C. 66.  et al. 2013. Prophase I mouse oocytes are deficient in the ability to respond to fertilization by decreasing membrane receptivity to sperm and establishing a membrane block to polyspermy. Biol. Reprod. 89:44 [Google Scholar]
  67. Kuzan FB, Fleming AD, Seidel GE Jr. 67.  1984. Successful fertilization in vitro of fresh intact oocytes by perivitelline (acrosome-reacted) spermatozoa of the rabbit. Fertil. Steril. 41:766–70 [Google Scholar]
  68. Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C. 68.  2000. Severely reduced female fertility in CD9-deficient mice. Science 287:319–21 [Google Scholar]
  69. Lefevre B, Wolf JP, Ziyyat A. 69.  2010. Sperm-egg interaction: is there a link between tetraspanin(s) and GPI-anchored protein(s)?. BioEssays 32:143–52 [Google Scholar]
  70. Lefievre L, Conner SJ, Salpekar A, Olufowobi O, Ashton P. 70.  et al. 2004. Four zona pellucida glycoproteins are expressed in the human. Hum. Reprod. 19:1580–86 [Google Scholar]
  71. Levy S, Shoham T. 71.  2005. The tetraspanin web modulates immune-signalling complexes. Nat. Rev. Immunol. 5:136–48 [Google Scholar]
  72. Lewis WH, Wright ES. 72.  1935. On the early development of the mouse egg. Contrib. Embryol. 25:113–44 [Google Scholar]
  73. Liu C, Litscher ES, Mortillo S, Sakai Y, Kinloch RA. 73.  et al. 1996. Targeted disruption of the mZP3 gene results in production of eggs lacking a zona pellucida and infertility in female mice. PNAS 93:5431–36 [Google Scholar]
  74. Liu C, Litscher ES, Wassarman PM. 74.  1995. Transgenic mice with reduced numbers of functional sperm receptors on their eggs reproduce normally. Mol. Biol. Cell 6:577–85 [Google Scholar]
  75. Lu Q, Shur BD. 75.  1997. Sperm from β1,4-galactosyltransferase-null mice are refractory to ZP3-induced acrosome reactions and penetrate the zona pellucida poorly. Development 124:4121–31 [Google Scholar]
  76. Lunn MO, Wright SJ. 76.  2009. Imaging the zona pellucida of canine and feline oocytes using scanning electron microscopy. Microsc. Microanal. 15:2–14 [Google Scholar]
  77. Maecker HT, Todd SC, Levy S. 77.  1997. The tetraspanin superfamily: molecular facilitators. FASEB J 11:428–42 [Google Scholar]
  78. Maleszewski M, Kimura Y, Yanagimachi R. 78.  1996. Sperm membrane incorporation into oolemma contributes to the oolemma block to sperm penetration: evidence based on intracytoplasmic sperm injection experiments in the mouse. Mol. Reprod. Dev. 44:256–59 [Google Scholar]
  79. Martens S, McMahon HT. 79.  2008. Mechanisms of membrane fusion: disparate players and common principles. Nat. Rev. Mol. Cell Biol. 9:543–56 [Google Scholar]
  80. Martin-Deleon PA. 80.  2011. Germ-cell hyaluronidases: their roles in sperm function. Int. J. Androl. 34:e306–18 [Google Scholar]
  81. McAvey BA, Wortzman GB, Williams CJ, Evans JP. 81.  2002. Involvement of calcium signaling and the actin cytoskeleton in the membrane block to polyspermy in mouse eggs. Biol. Reprod. 67:1342–52 [Google Scholar]
  82. Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y. 82.  et al. 2000. Requirement of CD9 on the egg plasma membrane for fertilization. Science 287:321–24 [Google Scholar]
  83. Miyado K, Yoshida K, Yamagata K, Sakakibara K, Okabe M. 83.  et al. 2008. The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. PNAS 105:12921–26 [Google Scholar]
  84. Miyazaki S, Igusa Y. 84.  1981. Fertilization potential in golden hamster eggs consists of recurring hyperpolarizations. Nature 290:702–4 [Google Scholar]
  85. Morales P, Palma V, Salgado AM, Villalon M. 85.  1996. Sperm interaction with human oviductal cells in vitro. Hum. Reprod. 11:1504–9 [Google Scholar]
  86. Nishimura K, Han L, Bianchi E, Wright GJ, de Sanctis D, Jovine L. 86.  2016. The structure of sperm Izumo1 reveals unexpected similarities with Plasmodium invasion proteins. Curr Biol 26:R661–62 [Google Scholar]
  87. Novo S, Barrios L, Ibanez E, Nogues C. 87.  2012. The zona pellucida porosity: three-dimensional reconstruction of four types of mouse oocyte zona pellucida using a dual beam microscope. Microsc. Microanal. 18:1442–49 [Google Scholar]
  88. Odor DL, Blandau RJ. 88.  1949. The frequency of occurrence of supernumerary sperm in rat ova. Anat. Rec. 104:1–9 [Google Scholar]
  89. Ohnami N, Nakamura A, Miyado M, Sato M, Kawano N. 89.  et al. 2012. CD81 and CD9 work independently as extracellular components upon fusion of sperm and oocyte. Biol. Open 1:640–47 [Google Scholar]
  90. Ohto U, Ishida H, Krayukhina E, Uchiyama S, Inoue N, Shimizu T. 90.  2016. Structure of IZUMO1-JUNO reveals sperm-oocyte recognition during mammalian fertilization. Nature 534:566–69 [Google Scholar]
  91. Okabe M, Adachi T, Takada K, Oda H, Yagasaki M. 91.  et al. 1987. Capacitation-related changes in antigen distribution on mouse sperm heads and its relation to fertilization rate in vitro. J. Reprod. Immunol. 11:91–100 [Google Scholar]
  92. Okabe M, Cummins JM. 92.  2007. Mechanisms of sperm-egg interactions emerging from gene-manipulated animals. Cell Mol. Life Sci. 64:1945–58 [Google Scholar]
  93. Okabe M, Yagasaki M, Oda H, Matzno S, Kohama Y, Mimura T. 93.  1988. Effect of a monoclonal anti-mouse sperm antibody (OBF13) on the interaction of mouse sperm with zona-free mouse and hamster eggs. J. Reprod. Immunol. 13:211–19 [Google Scholar]
  94. Olivier E, Soury E, Ruminy P, Husson A, Parmentier F. 94.  et al. 2000. Fetuin-B, a second member of the fetuin family in mammals. Biochem. J. 350:2589–97 [Google Scholar]
  95. Ponce RH, Urch UA, Yanagimachi R. 95.  1994. Inhibition of sperm-egg fusion in the hamster and mouse by carbohydrates. Zygote 2:253–62 [Google Scholar]
  96. Ponce RH, Yanagimachi R, Urch UA, Yamagata T, Ito M. 96.  1993. Retention of hamster oolemma fusibility with spermatozoa after various enzyme treatments: a search for the molecules involved in sperm-egg fusion. Zygote 1:163–71 [Google Scholar]
  97. Rankin TL, Familari M, Lee E, Ginsberg A, Dwyer N. 97.  et al. 1996. Mice homozygous for an insertional mutation in the Zp3 gene lack a zona pellucida and are infertile. Development 122:2903–10 [Google Scholar]
  98. Rankin TL, O'Brien M, Lee E, Wigglesworth K, Eppig J, Dean J. 98.  2001. Defective zonae pellucidae in Zp2-null mice disrupt folliculogenesis, fertility and development. Development 128:1119–26 [Google Scholar]
  99. Rankin TL, Tong ZB, Castle PE, Lee E, Gore-Langton R. 99.  et al. 1998. Human ZP3 restores fertility in Zp3 null mice without affecting order-specific sperm binding. Development 125:2415–24 [Google Scholar]
  100. Rodriguez-Martinez H. 100.  2007. Role of the oviduct in sperm capacitation. Theriogenology 68:Suppl. 1S138–46 [Google Scholar]
  101. Rubinstein E, Ziyyat A, Prenant M, Wrobel E, Wolf JP. 101.  et al. 2006. Reduced fertility of female mice lacking CD81. Dev. Biol. 290:351–58 [Google Scholar]
  102. Runge KE, Evans JE, He ZY, Gupta S, McDonald KL. 102.  et al. 2007. Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev. Biol. 304:317–25 [Google Scholar]
  103. Russell DL, Robker RL. 103.  2007. Molecular mechanisms of ovulation: co-ordination through the cumulus complex. Hum. Reprod. Update 13:289–312 [Google Scholar]
  104. Sala-Valdes M, Ursa A, Charrin S, Rubinstein E, Hemler ME. 104.  et al. 2006. EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins. J. Biol. Chem. 281:19665–75 [Google Scholar]
  105. Satouh Y, Inoue N, Ikawa M, Okabe M. 105.  2012. Visualization of the moment of mouse sperm-egg fusion and dynamic localization of IZUMO1. J. Cell Sci. 125:4985–90 [Google Scholar]
  106. Schroeder AC, Schultz RM, Kopf GS, Taylor FR, Becker RB, Eppig JJ. 106.  1990. Fetuin inhibits zona pellucida hardening and conversion of ZP2 to ZP2f during spontaneous mouse oocyte maturation in vitro in the absence of serum. Biol. Reprod. 43:891–97 [Google Scholar]
  107. Shamsadin R, Adham IM, Nayernia K, Heinlein UA, Oberwinkler H, Engel W. 107.  1999. Male mice deficient for germ-cell cyritestin are infertile. Biol. Reprod. 61:1445–51 [Google Scholar]
  108. Spiegelstein O, Eudy JD, Finnell RH. 108.  2000. Identification of two putative novel folate receptor genes in humans and mouse. Gene 258:117–25 [Google Scholar]
  109. Stauss CR, Votta TJ, Suarez SS. 109.  1995. Sperm motility hyperactivation facilitates penetration of the hamster zona pellucida. Biol. Reprod. 53:1280–85 [Google Scholar]
  110. Suarez SS. 110.  2008. Control of hyperactivation in sperm. Hum. Reprod. Update 14:647–57 [Google Scholar]
  111. Suarez SS, Pacey AA. 111.  2006. Sperm transport in the female reproductive tract. Hum. Reprod. Update 12:23–37 [Google Scholar]
  112. Tang T, Li L, Tang J, Li Y, Lin WY. 112.  et al. 2010. A mouse knockout library for secreted and transmembrane proteins. Nat. Biotechnol. 28:749–55 [Google Scholar]
  113. Tanigawa M, Miyamoto K, Kobayashi S, Sato M, Akutsu H. 113.  et al. 2008. Possible involvement of CD81 in acrosome reaction of sperm in mice. Mol. Reprod. Dev. 75:150–55 [Google Scholar]
  114. Tyler A, Monroy A, Kao CY, Grundfest H. 114.  1956. Membrane potential and resistance of the starfish egg before and after fertilization. Biol. Bull. 111:153–77 [Google Scholar]
  115. Wassarman PM. 115.  1990. Profile of a mammalian sperm receptor. Development 108:1–17 [Google Scholar]
  116. Wassarman PM. 116.  2008. Zona pellucida glycoproteins. J. Biol. Chem. 283:24285–89 [Google Scholar]
  117. Wibowo AS, Singh M, Reeder KM, Carter JJ, Kovach AR. 117.  et al. 2013. Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition. PNAS 110:15180–88 [Google Scholar]
  118. Williams SA, Xia L, Cummings RD, McEver RP, Stanley P. 118.  2007. Fertilization in mouse does not require terminal galactose or N-acetylglucosamine on the zona pellucida glycans. J. Cell Sci. 120:1341–49 [Google Scholar]
  119. Wolf DE, Edidin M, Handyside AH. 119.  1981. Changes in the organization of the mouse egg plasma membrane upon fertilization and first cleavage: indications from the lateral diffusion rates of fluorescent lipid analogs. Dev. Biol. 85:195–98 [Google Scholar]
  120. Wolf DE, Ziomek CA. 120.  1983. Regionalization and lateral diffusion of membrane proteins in unfertilized and fertilized mouse eggs. J. Cell Biol. 96:1786–90 [Google Scholar]
  121. Wolf DP. 121.  1978. The block to sperm penetration in zonal-free mouse eggs. Dev. Biol. 64:1–10 [Google Scholar]
  122. Wortzman-Show GB, Kurokawa M, Fissore RA, Evans JP. 122.  2007. Calcium and sperm components in the establishment of the membrane block to polyspermy: studies of ICSI and activation with sperm factor. Mol. Hum. Reprod. 13:557–65 [Google Scholar]
  123. Wright GJ, Bianchi E. 123.  2016. The challenges involved in elucidating the molecular basis of sperm-egg recognition in mammals and approaches to overcome them. Cell Tissue Res. 363:227–35 [Google Scholar]
  124. Xing WJ, Han BD, Wu Q, Zhao L, Bao XH, Bou S. 124.  2011. Molecular cloning and characterization of Izumo1 gene from sheep and cashmere goat reveal alternative splicing. Mol. Biol. Rep. 38:1995–2006 [Google Scholar]
  125. Yamaguchi R, Muro Y, Isotani A, Tokuhiro K, Takumi K. 125.  et al. 2009. Disruption of ADAM3 impairs the migration of sperm into oviduct in mouse. Biol. Reprod. 81:142–46 [Google Scholar]
  126. Yamaguchi T, Hirota K, Nagahama K, Ohkawa K, Takahashi T. 126.  et al. 2007. Control of immune responses by antigen-specific regulatory T cells expressing the folate receptor. Immunity 27:145–59 [Google Scholar]
  127. Yanagimachi R. 127.  1978. Calcium requirement for sperm-egg fusion in mammals. Biol. Reprod. 19:949–58 [Google Scholar]
  128. Yanagimachi R. 128.  1978. Sperm-egg association in animals. Curr. Top. Dev. Biol. 12:83–105 [Google Scholar]
  129. Yanagimachi R. 129.  1994. Mammalian fertilization. Physiology of Reproduction E Knobil, JD Neil 189–317 New York: Raven Press [Google Scholar]
  130. Yanagimachi R, Chang MC. 130.  1961. Fertilizable life of golden hamster ova and their morphological changes at the time of losing fertilizability. J. Exp. Zool. 148:185–203 [Google Scholar]
  131. Yanagimachi R, Miyashiro LH, Yanagimachi H. 131.  1980. Reversible inhibition of sperm-egg fusion in the hamster by low pH. Dev. Growth Differ. 22:281–88 [Google Scholar]
  132. Yanagimachi R, Yanagimachi H, Rogers BJ. 132.  1976. The use of zona-free animal ova as a test-system for the assessment of the fertilizing capacity of human spermatozoa. Biol. Reprod. 15:471–76 [Google Scholar]
  133. Zhu GZ, Miller BJ, Boucheix C, Rubinstein E, Liu CC. 133.  et al. 2002. Residues SFQ (173–175) in the large extracellular loop of CD9 are required for gamete fusion. Development 129:1995–2002 [Google Scholar]
/content/journals/10.1146/annurev-genet-121415-121834
Loading
/content/journals/10.1146/annurev-genet-121415-121834
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error