Genetic mosaicism arises when a zygote harbors two or more distinct genotypes, typically due to de novo somatic mutation during embryogenesis. The clinical manifestations largely depend on the differentiation status of the mutated cell; earlier mutations target pluripotent cells and generate more widespread disease affecting multiple organ systems. If gonadal tissue is spared—as in somatic genomic mosaicism—the mutation and its effects are limited to the proband, whereas mosaicism also affecting the gametes, such as germline or gonosomal mosaicism, is transmissible. Mosaicism is easily appreciated in cutaneous disorders, as phenotypically distinct mutant cells often give rise to lesions in patterns determined by the affected cell type. Genetic investigation of cutaneous mosaic disorders has identified pathways central to disease pathogenesis, revealing novel therapeutic targets. In this review, we discuss examples of cutaneous mosaicism, approaches to gene discovery in these disorders, and insights into molecular pathobiology that have potential for clinical translation.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K. 1.  et al. 2011. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333:1154–57 [Google Scholar]
  2. Ahuja YR. 2.  1960. A human mosaic involving eye and hair color differences. Acta Genet. Med. Gemellol. (Roma) 9:427–31 [Google Scholar]
  3. Amary MF, Damato S, Halai D, Eskandarpour M, Berisha F. 3.  et al. 2011. Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nat. Genet. 43:1262–65 [Google Scholar]
  4. Aoki Y, Niihori T, Kawame H, Kurosawa K, Ohashi H. 4.  et al. 2005. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat. Genet. 37:1038–40 [Google Scholar]
  5. Arin MJ, Longley MA, Wang XJ, Roop DR. 5.  2001. Focal activation of a mutant allele defines the role of stem cells in mosaic skin disorders. J. Cell Biol. 152:645–49 [Google Scholar]
  6. Arnold AW, Bruckner-Tuderman L, Has C, Happle R. 6.  2012. Conradi-Hünermann-Happle syndrome in males vs. MEND syndrome (male EBP disorder with neurological defects). Br. J. Dermatol. 166:1309–13 [Google Scholar]
  7. Augui S, Nora EP, Heard E. 7.  2011. Regulation of X-chromosome inactivation by the X-inactivation centre. Nat. Rev. Genet. 12:429–42 [Google Scholar]
  8. Ayturk UM, Couto JA, Hann S, Mulliken JB, Williams KL. 8.  et al. 2016. Somatic activating mutations in GNAQ and GNA11 are associated with congenital hemangioma. Am. J. Hum. Genet. 98:789–95 [Google Scholar]
  9. Bachoo S, Gibbons RJ. 9.  1999. Germline and gonosomal mosaicism in the ATR-X syndrome. Eur. J. Hum. Genet. 7:933–36 [Google Scholar]
  10. Badiavas EV, Abedi M, Butmarc J, Falanga V, Quesenberry P. 10.  2003. Participation of bone marrow derived cells in cutaneous wound healing. J. Cell. Physiol. 196:245–50 [Google Scholar]
  11. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ. 11.  et al. 2011. Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. 12:745–55 [Google Scholar]
  12. Bao R, Huang L, Andrade J, Tan W, Kibbe WA. 12.  et al. 2014. Review of current methods, applications, and data management for the bioinformatics analysis of whole exome sequencing. Cancer Inform 13:67–82 [Google Scholar]
  13. Baykal C, Yazganoglu KD. 13.  2014. Clinical Atlas of Skin Tumors New York: Springer
  14. Bennett JT, Tan TY, Alcantara D, Tétrault M, Timms AE. 14.  et al. 2016. Mosaic activating mutations in FGFR1 cause encephalocraniocutaneous lipomatosis. Am. J. Hum. Genet. 98:579–87 [Google Scholar]
  15. Bhattacherjee V, Mukhopadhyay P, Singh S, Roberts EA, Hackmiller RC. 15.  et al. 2004. Laser capture microdissection of fluorescently labeled embryonic cranial neural crest cells. Genesis 39:58–64 [Google Scholar]
  16. Biesecker LG, Spinner NB. 16.  2013. A genomic view of mosaicism and human disease. Nat. Rev. Genet. 14:307–20 [Google Scholar]
  17. Blaschko A. 17.  1901. Die Nervenverteilung in der Haut in ihrer Beziehung zu den Erkrankungen der Haut Breslau, Ger.: W. Braumüller
  18. Bonilla X, Parmentier L, King B, Bezrukov F, Kaya G. 18.  et al. 2016. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat. Genet. 48:398–406 [Google Scholar]
  19. Braverman N, Lin P, Moebius FF, Obie C, Moser A. 19.  et al. 1999. Mutations in the gene encoding 3β-hydroxysteroid-Δ87-isomerase cause X-linked dominant Conradi-Hünermann syndrome. Nat. Genet. 22:291–94 [Google Scholar]
  20. Bridges CB. 20.  1925. Elimination of chromosomes due to a mutant (Minute-n) in Drosophila melanogaster. PNAS 11:701–6 [Google Scholar]
  21. Campbell IM, Shaw CA, Stankiewicz P, Lupski JR. 21.  2015. Somatic mosaicism: implications for disease and transmission genetics. Trends Genet 31:382–92 [Google Scholar]
  22. Castellanos E, Bielsa I, Carrato C, Rosas I, Solanes A. 22.  et al. 2015. Segmental neurofibromatosis type 2: discriminating two hit from four hit in a patient presenting multiple schwannomas confined to one limb. BMC Med. Genom 8:2 [Google Scholar]
  23. Centerwall WR, Benirschke K. 23.  1973. Male tortoiseshell and calico (T-C) cats. Animal models of sex chromosome mosaics, aneuploids, polyploids, and chimerics. J. Hered. 64:272–78 [Google Scholar]
  24. Cheever MA, Disis ML, Bernhard H, Gralow JR, Hand SL. 24.  et al. 1995. Immunity to oncogenic proteins. Immunol. Rev. 145:33–59 [Google Scholar]
  25. Choate KA, Lu Y, Zhou J, Choi M, Elias PM. 25.  et al. 2010. Mitotic recombination in patients with ichthyosis causes reversion of dominant mutations in KRT10. Science 330:94–97 [Google Scholar]
  26. Choate KA, Lu Y, Zhou J, Elias PM, Zaidi S. 26.  et al. 2015. Frequent somatic reversion of KRT1 mutations in ichthyosis with confetti. J. Clin. Investig. 125:1703–7 [Google Scholar]
  27. Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR. 27.  et al. 2009. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. PNAS 106:19096–101 [Google Scholar]
  28. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D. 28.  et al. 2013. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31:213–19 [Google Scholar]
  29. Clark RP, Goff MR, MacDermot KD. 29.  1990. Identification of functioning sweat pores and visualization of skin temperature patterns in X-linked hypohidrotic ectodermal dysplasia by whole body thermography. Hum. Genet. 86:7–13 [Google Scholar]
  30. Clarke A, Burn J. 30.  1991. Sweat testing to identify female carriers of X linked hypohidrotic ectodermal dysplasia. J. Med. Genet 28:330–33 [Google Scholar]
  31. Conlin LK, Thiel BD, Bonnemann CG, Medne L, Ernst LM. 31.  et al. 2010. Mechanisms of mosaicism, chimerism and uniparental disomy identified by single nucleotide polymorphism array analysis. Hum. Mol. Genet. 19:1263–75 [Google Scholar]
  32. Consoli C, Moss C, Green S, Balderson D, Cooper DN, Upadhyaya M. 32.  2005. Gonosomal mosaicism for a nonsense mutation (R1947X) in the NF1 gene in segmental neurofibromatosis type 1. J. Investig. Dermatol. 125:463–66 [Google Scholar]
  33. Couto JA, Vivero MP, Kozakewich HP, Taghinia AH, Mulliken JB. 33.  et al. 2015. A somatic MAP3K3 mutation is associated with verrucous venous malformation. Am. J. Hum. Genet. 96:480–86 [Google Scholar]
  34. Curran S, McKay JA, McLeod HL, Murray GI. 34.  2000. Laser capture microscopy. Mol. Pathol. 53:64–68 [Google Scholar]
  35. De S. 35.  2011. Somatic mosaicism in healthy human tissues. Trends Genet 27:217–23 [Google Scholar]
  36. Denayer E, Peeters H, Sevenants L, Derbent M, Fryns JP, Legius E. 36.  2012. NRAS mutations in Noonan syndrome. Mol. Syndromol. 3:34–38 [Google Scholar]
  37. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR. 37.  et al. 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43:491–98 [Google Scholar]
  38. Desai V, Donsante A, Swoboda KJ, Martensen M, Thompson J, Kaler SG. 38.  2011. Favorably skewed X-inactivation accounts for neurological sparing in female carriers of Menkes disease. Clin. Genet. 79:176–82 [Google Scholar]
  39. Ellis NA, Lennon DJ, Proytcheva M, Alhadeff B, Henderson EE, German J. 39.  1995. Somatic intragenic recombination within the mutated locus BLM can correct the high sister-chromatid exchange phenotype of Bloom syndrome cells. Am. J. Hum. Genet. 57:1019–27 [Google Scholar]
  40. Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z. 40.  et al. 1996. Laser capture microdissection. Science 274:998–1001 [Google Scholar]
  41. Evans DG, Wallace AJ, Wu CL, Trueman L, Ramsden RT, Strachan T. 41.  1998. Somatic mosaicism: a common cause of classic disease in tumor-prone syndromes? Lessons from type 2 neurofibromatosis. Am. J. Hum. Genet. 63:727–36 [Google Scholar]
  42. Farschtschi S, Mautner VF, Hollants S, Hagel C, Spaepen M. 42.  et al. 2015. Keratinocytic epidermal nevus syndrome with Schwann cell proliferation, lipomatous tumour and mosaic KRAS mutation. BMC Med. Genet 16:6 [Google Scholar]
  43. Fasano O, Aldrich T, Tamanoi F, Taparowsky E, Furth M, Wigler M. 43.  1984. Analysis of the transforming potential of the human H-ras gene by random mutagenesis. PNAS 81:4008–12 [Google Scholar]
  44. Feldmeyer L, Mevorah B, Grzeschik KH, Huber M, Hohl D. 44.  2006. Clinical variation in X-linked dominant chondrodysplasia punctata (X-linked dominant ichthyosis). Br. J. Dermatol. 154:766–69 [Google Scholar]
  45. Flaherty P, Natsoulis G, Muralidharan O, Winters M, Buenrostro J. 45.  et al. 2012. Ultrasensitive detection of rare mutations using next-generation targeted resequencing. Nucleic Acids Res 40:e2 [Google Scholar]
  46. Funk T, Lim Y, Kulungowski AM, Prok L, Crombleholme TM. 46.  et al. 2016. Symptomatic congenital hemangioma and congenital hemangiomatosis associated with a somatic activating mutation in GNA11. JAMA Dermatol 152:1015–20 [Google Scholar]
  47. Gabhane SK, Kotwal MN, Bobhate SK. 47.  2010. Segmental neurofibromatosis: a report of 3 cases. Indian J. Dermatol. 55:105–8 [Google Scholar]
  48. Goldstein DB, Allen A, Keebler J, Margulies EH, Petrou S. 48.  et al. 2013. Sequencing studies in human genetics: design and interpretation. Nat. Rev. Genet. 14:460–70 [Google Scholar]
  49. Gostynski A, Deviaene FC, Pasmooij AM, Pas HH, Jonkman MF. 49.  2009. Adhesive stripping to remove epidermis in junctional epidermolysis bullosa for revertant cell therapy. Br. J. Dermatol. 161:444–47 [Google Scholar]
  50. Gostynski A, Pasmooij AM, Jonkman MF. 50.  2014. Successful therapeutic transplantation of revertant skin in epidermolysis bullosa. J. Am. Acad. Dermatol. 70:98–101 [Google Scholar]
  51. Groesser L, Herschberger E, Ruetten A, Ruivenkamp C, Lopriore E. 51.  et al. 2012. Postzygotic HRAS and KRAS mutations cause nevus sebaceous and Schimmelpenning syndrome. Nat. Genet. 44:783–87 [Google Scholar]
  52. Groesser L, Herschberger E, Sagrera A, Shwayder T, Flux K. 52.  et al. 2013. Phacomatosis pigmentokeratotica is caused by a postzygotic HRAS mutation in a multipotent progenitor cell. J. Investig. Dermatol. 133:1998–2003 [Google Scholar]
  53. Groesser L, Peterhof E, Evert M, Landthaler M, Berneburg M, Hafner C. 53.  2015. BRAF and RAS mutations in sporadic and secondary pyogenic granuloma. J. Investig. Dermatol. 136:481–86 [Google Scholar]
  54. Guerra L, Diociaiuti A, El Hachem M, Castiglia D, Zambruno G. 54.  2015. Ichthyosis with confetti: clinics, molecular genetics and management. Orphanet J. Rare Dis. 10:115 [Google Scholar]
  55. Hafner C, Groesser L. 55.  2013. Mosaic RASopathies. Cell Cycle 12:43–50 [Google Scholar]
  56. Hafner C, López-Knowles E, Luis NM, Toll A, Baselga E. 56.  et al. 2007. Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern. PNAS 104:13450–54 [Google Scholar]
  57. Hall JG. 57.  1988. Review and hypotheses: somatic mosaicism: observations related to clinical genetics. Am. J. Hum. Genet. 43:355–63 [Google Scholar]
  58. Halvorsen M, Petrovski S, Shellhaas R, Tang Y, Crandall L. 58.  et al. 2016. Mosaic mutations in early-onset genetic diseases. Genet. Med. 18:746–49 [Google Scholar]
  59. Happle R. 59.  2016. The categories of cutaneous mosaicism: a proposed classification. Am. J. Med. Genet. A 170A:452–59 [Google Scholar]
  60. Happle R, Itin PH, Brun AM. 60.  1999. Type 2 segmental Darier disease. Eur. J. Dermatol. 9:449–51 [Google Scholar]
  61. Hastings PJ. 61.  2010. Mechanisms of ectopic gene conversion. Genes 1:427–39 [Google Scholar]
  62. Hirschhorn K, Decker WH, Cooper HL. 62.  1960. Human intersex with chromosome mosaicism of type XY/XO. Report of a case. N. Engl. J. Med. 263:1044–48 [Google Scholar]
  63. Jackson SP, Bartek J. 63.  2009. The DNA-damage response in human biology and disease. Nature 461:1071–78 [Google Scholar]
  64. Janzarik WG, Kratz CP, Loges NT, Olbrich H, Klein C. 64.  et al. 2007. Further evidence for a somatic KRAS mutation in a pilocytic astrocytoma. Neuropediatrics 38:61–63 [Google Scholar]
  65. Jones DT, Hutter B, Jäger N, Korshunov A, Kool M. 65.  et al. 2013. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat. Genet. 45:927–32 [Google Scholar]
  66. Jonkman MF, Castellanos Nuijts M, van Essen AJ. 66.  2003. Natural repair mechanisms in correcting pathogenic mutations in inherited skin disorders. Clin. Exp. Dermatol. 28:625–31 [Google Scholar]
  67. Jonkman MF, Pasmooij AM. 67.  2009. Revertant mosaicism—patchwork in the skin. N. Engl. J. Med. 360:1680–82 [Google Scholar]
  68. Kenwrick S, Woffendin H, Jakins T, Shuttleworth SG, Mayer E. 68.  et al. 2001. Survival of male patients with incontinentia pigmenti carrying a lethal mutation can be explained by somatic mosaicism or Klinefelter syndrome. Am. J. Hum. Genet. 69:1210–17 [Google Scholar]
  69. Kinsler VA, Shaw AC, Merks JH, Hennekam RC. 69.  2012. The face in congenital melanocytic nevus syndrome. Am. J. Med. Genet. A 158A:1014–19 [Google Scholar]
  70. Kinsler VA, Thomas AC, Ishida M, Bulstrode NW, Loughlin S. 70.  et al. 2013. Multiple congenital melanocytic nevi and neurocutaneous melanosis are caused by postzygotic mutations in codon 61 of NRAS. J. Investig. Dermatol. 133:2229–36 [Google Scholar]
  71. Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD. 71.  et al. 2009. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 25:2283–85 [Google Scholar]
  72. Kolahgar G, Suijkerbuijk SJ, Kucinski I, Poirier EZ, Mansour S. 72.  et al. 2015. Cell competition modifies adult stem cell and tissue population dynamics in a JAK-STAT-dependent manner. Dev. Cell 34:297–309 [Google Scholar]
  73. Korgaonkar S, Vundinti BR. 73.  2015. Trisomy 8 mosaicism in a boy with dysmorphic features. Indian Pediatr 52:812–13 [Google Scholar]
  74. Kumar R, Angelini S, Snellman E, Hemminki K. 74.  2004. BRAF mutations are common somatic events in melanocytic nevi. J. Investig. Dermatol. 122:342–48 [Google Scholar]
  75. Kummari E, Guo-Ross SX, Eells JB. 75.  2015. Laser capture microdissection—a demonstration of the isolation of individual dopamine neurons and the entire ventral tegmental area. J. Vis. Exp.96e52336 [Google Scholar]
  76. Kurek KC, Luks VL, Ayturk UM, Alomari AI, Fishman SJ. 76.  et al. 2012. Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am. J. Hum. Genet. 90:1108–15 [Google Scholar]
  77. Lai-Cheong JE, McGrath JA, Uitto J. 77.  2011. Revertant mosaicism in skin: natural gene therapy. Trends Mol. Med. 17:140–48 [Google Scholar]
  78. Lavoue V, Morcel K, Bouchard P, Sultan C, Massart C. 78.  et al. 2008. Restoration of ovulation after unilateral ovariectomy in a woman with McCune-Albright syndrome: a case report. Eur. J. Endocrinol. 158:131–34 [Google Scholar]
  79. Levinsohn JL, Sugarman JL, Bilguvar K, McNiff JM. Choate KA. 79. , 2015. Somatic V600E BRAF mutation in linear and sporadic syringocystadenoma papilliferum. J. Investig. Dermatol. 135:2536–38 [Google Scholar]
  80. Levinsohn JL, Sugarman JL. McNiff JM, Antaya RJ, Choate KA. 80. , Yale Cent. Mendel. Genom., 2016. Somatic mutations in NEK9 cause nevus comedonicus. Am. J. Hum. Genet. 98:1030–37 [Google Scholar]
  81. Levinsohn JL, Tian LC, Boyden LM, McNiff JM, Narayan D. 81.  et al. 2013. Whole-exome sequencing reveals somatic mutations in HRAS and KRAS, which cause nevus sebaceus. J. Investig. Dermatol. 133:827–30 [Google Scholar]
  82. Lim YH, Bacchiocchi A, Qiu J, Straub R, Bruckner A. 82.  et al. 2016. GNA14 somatic mutation causes congenital and sporadic vascular tumors by MAPK activation. Am. J. Hum. Genet. 99:443–50 [Google Scholar]
  83. Lim YH, Choate KA. 83.  2016. Expanding the mutation spectrum of ichthyosis with confetti. J. Investig. Dermatol. 136:1941–43 [Google Scholar]
  84. Lim YH, Douglas SR, Ko CJ, Antaya RJ, McNiff JM. 84.  et al. 2015. Somatic activating RAS mutations cause vascular tumors including pyogenic granuloma. J. Investig. Dermatol. 135:1698–700 [Google Scholar]
  85. Lim YH, Ovejero D, Sugarman JS, Deklotz CM, Maruri A. 85.  et al. 2014. Multilineage somatic activating mutations in HRAS and NRAS cause mosaic cutaneous and skeletal lesions, elevated FGF23 and hypophosphatemia. Hum. Mol. Genet. 23:397–407 [Google Scholar]
  86. Lim YH, Qiu J, Saraceni C, Burrall BA, Choate KA. 86.  2016. Genetic reversion via mitotic recombination in ichthyosis with confetti due to a KRT10 polyalanine frameshift mutation. J. Investig. Dermatol. 136:1725–28 [Google Scholar]
  87. Limaye N, Kangas J, Mendola A, Godfraind C, Schlögel MJ. 87.  et al. 2015. Somatic activating PIK3CA mutations cause venous malformation. Am. J. Hum. Genet. 97:914–21 [Google Scholar]
  88. Lindhurst MJ, Sapp JC, Teer JK, Johnston JJ, Finn EM. 88.  et al. 2011. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N. Engl. J. Med. 365:611–19 [Google Scholar]
  89. Lyon MF. 89.  1962. Sex chromatin and gene action in the mammalian X-chromosome. Am. J. Hum. Genet. 14:135–48 [Google Scholar]
  90. Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P. 90.  et al. 2015. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348:880–86 [Google Scholar]
  91. Miller RM, Sparkes RS. 91.  1977. Segmental neurofibromatosis. Arch. Dermatol. 113:837–38 [Google Scholar]
  92. Møller LB, Lenartowicz M, Zabot MT, Josiane A, Burglen L. 92.  et al. 2012. Clinical expression of Menkes disease in females with normal karyotype. Orphanet J. Rare Dis. 7:6 [Google Scholar]
  93. Monroig PD, Calin GA. 93.  2013. MicroRNA and epigenetics: diagnostic and therapeutic opportunities. Curr. Pathobiol. Rep. 1:43–52 [Google Scholar]
  94. Pabinger S, Dander A, Fischer M, Snajder R, Sperk M. 94.  et al. 2014. A survey of tools for variant analysis of next-generation genome sequencing data. Brief Bioinform 15:256–78 [Google Scholar]
  95. Pasmooij AM, Garcia M, Escamez MJ, Nijenhuis AM, Azon A. 95.  et al. 2010. Revertant mosaicism due to a second-site mutation in COL7A1 in a patient with recessive dystrophic epidermolysis bullosa. J. Investig. Dermatol. 130:2407–11 [Google Scholar]
  96. Percoco G, Benard M, Ramdani Y, Lati E, Lefeuvre L. 96.  et al. 2012. Isolation of human epidermal layers by laser capture microdissection: application to the analysis of gene expression by quantitative real-time PCR. Exp. Dermatol. 21:531–34 [Google Scholar]
  97. Pewitt JD, Burns EK, Chan LS. 97.  2015. Eruptive syringocystadenoma papilliferum, keratoacanthoma, and verruca vulgaris in a keratinocytic epidermal nevus on the leg. SKINmed 13:395–97 [Google Scholar]
  98. Piraino SW, Furney SJ. 98.  2015. Beyond the exome: the role of non-coding somatic mutations in cancer. Ann. Oncol. 27:240–48 [Google Scholar]
  99. Poblete-Gutiérrez P, Wiederholt T, König A, Jugert FK, Marquardt Y. 99.  et al. 2004. Allelic loss underlies type 2 segmental Hailey-Hailey disease, providing molecular confirmation of a novel genetic concept. J. Clin. Investig. 114:1467–74 [Google Scholar]
  100. Prior IA, Lewis PD, Mattos C. 100.  2012. A comprehensive survey of Ras mutations in cancer. Cancer Res 72:2457–67 [Google Scholar]
  101. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. 101.  2011. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer 11:761–74 [Google Scholar]
  102. Qin W, Chan JA, Vinters HV, Mathern GW, Franz DN. 102.  et al. 2010. Analysis of TSC cortical tubers by deep sequencing of TSC1, TSC2 and KRAS demonstrates that small second-hit mutations in these genes are rare events. Brain Pathol 20:1096–105 [Google Scholar]
  103. Rabbani B, Tekin M, Mahdieh N. 103.  2014. The promise of whole-exome sequencing in medical genetics. J. Hum. Genet. 59:5–15 [Google Scholar]
  104. Rey RA, Venara M, Coutant R, Trabut JB, Rouleau S. 104.  et al. 2006. Unexpected mosaicism of R201H-GNAS1 mutant-bearing cells in the testes underlie macro-orchidism without sexual precocity in McCune-Albright syndrome. Hum. Mol. Genet. 15:3538–43 [Google Scholar]
  105. Riccardi VM. 105.  1982. Neurofibromatosis: clinical heterogeneity. Curr. Probl. Cancer 7:1–34 [Google Scholar]
  106. Rivera B, Gayden T, Carrot-Zhang J, Nadaf J, Boshari T. 106.  et al. 2016. Germline and somatic FGFR1 abnormalities in dysembryoplastic neuroepithelial tumors. Acta Neuropathol 131:847–63 [Google Scholar]
  107. Sarin KY, McNiff JM, Kwok S, Kim J, Khavari PA. 107.  2014. Activating HRAS mutation in nevus spilus. J. Investig. Dermatol. 134:1766–68 [Google Scholar]
  108. Sastry GR, Cooper HB Jr., Brink RA. 108.  1965. Paramutation and somatic mosaicism in maize. Genetics 52:407–24 [Google Scholar]
  109. Saunders CT, Wong WS, Swamy S, Becq J, Murray LJ, Cheetham RK. 109.  2012. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics 28:1811–17 [Google Scholar]
  110. Scheimberg I, Harper JI, Malone M, Lake BD. 110.  1996. Inherited ichthyoses: a review of the histology of the skin. Pediatr. Pathol. Lab. Med. 16:359–78 [Google Scholar]
  111. Schubbert S, Shannon K, Bollag G. 111.  2007. Hyperactive Ras in developmental disorders and cancer. Nat. Rev. Cancer 7:295–308 [Google Scholar]
  112. Schubbert S, Zenker M, Rowe SL, Böll S, Klein C. 112.  et al. 2006. Germline KRAS mutations cause Noonan syndrome. Nat. Genet. 38:331–36 [Google Scholar]
  113. Sebastiano V, Zhen HH, Haddad B, Bashkirova E, Melo SP. 113.  et al. 2014. Human COL7A1-corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Sci. Transl. Med. 6:264ra163 [Google Scholar]
  114. Shamseldin HE, Tulbah M, Kurdi W, Nemer M, Alsahan N. 114.  et al. 2015. Identification of embryonic lethal genes in humans by autozygosity mapping and exome sequencing in consanguineous families. Genome Biol 16:116 [Google Scholar]
  115. Shirley MD, Tang H, Gallione CJ, Baugher JD, Frelin LP. 115.  et al. 2013. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N. Engl. J. Med. 368:1971–79 [Google Scholar]
  116. Siegel DH, Sybert VP. 116.  2006. Mosaicism in genetic skin disorders. Pediatr. Dermatol. 23:87–92 [Google Scholar]
  117. Smahi A, Courtois G, Vabres P, Yamaoka S, Heuertz S. 117.  et al. 2000. Genomic rearrangement in NEMO impairs NF-κB activation and is a cause of incontinentia pigmenti. Nature 405:466–72 [Google Scholar]
  118. Snyder RD, Green JW. 118.  2001. A review of the genotoxicity of marketed pharmaceuticals. Mutat. Res. 488:151–69 [Google Scholar]
  119. Spoerri I, Brena M, De Mesmaeker J, Schlipf N, Fischer J. 119.  et al. 2015. The phenotypic and genotypic spectra of ichthyosis with confetti plus novel genetic variation in the 3′ end of KRT10: from disease to a syndrome. JAMA Dermatol 151:64–69 [Google Scholar]
  120. Sudarsanam A, Ardern-Holmes SL. 120.  2014. Sturge-Weber syndrome: from the past to the present. Eur. J. Paediatr. Neurol. 18:257–66 [Google Scholar]
  121. Suzuki S, Nomura T, Miyauchi T, Takeda M, Nakamura H. 121.  et al. 2016. Revertant mosaicism in ichthyosis with confetti caused by a frameshift mutation in KRT1. J. Investig. Dermatol. 136:2093–95 [Google Scholar]
  122. Tan K, An L, Miao K, Ren L, Hou Z. 122.  et al. 2016. Impaired imprinted X chromosome inactivation is responsible for the skewed sex ratio following in vitro fertilization. PNAS 113:3197–202 [Google Scholar]
  123. Thomas AC, Zeng Z, Rivière JB, O'Shaughnessy R, Al-Olabi L. 123.  et al. 2016. Mosaic activating mutations in GNA11 and GNAQ are associated with phakomatosis pigmentovascularis and extensive dermal melanocytosis. J. Investig. Dermatol. 136:770–78 [Google Scholar]
  124. Ting TW, Shahdadpuri R, Jamuar SS. 124.  2015. Mosaicism in traditional Mendelian diseases. Curr. Genet. Med. Rep. 3:101–9 [Google Scholar]
  125. Tinschert S, Naumann I, Stegmann E, Buske A, Kaufmann D. 125.  et al. 2000. Segmental neurofibromatosis is caused by somatic mutation of the neurofibromatosis type 1 (NF1) gene. Eur. J. Hum. Genet. 8:455–59 [Google Scholar]
  126. Tolar J, Wagner JE. 126.  2013. Allogeneic blood and bone marrow cells for the treatment of severe epidermolysis bullosa: repair of the extracellular matrix. Lancet 382:1214–23 [Google Scholar]
  127. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ. 127.  et al. 2014. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–71 [Google Scholar]
  128. Tumer Z, Moller LB. 128.  2010. Menkes disease. Eur. J. Hum. Genet. 18:511–18 [Google Scholar]
  129. Tuveson DA, Shaw AT, Willis NA, Silver DP, Jackson EL. 129.  et al. 2004. Endogenous oncogenic K-rasG12D stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5:375–87 [Google Scholar]
  130. Twigg SR, Hufnagel RB, Miller KA, Zhou Y, McGowan SJ. 130.  et al. 2016. A recurrent mosaic mutation in SMO, encoding the hedgehog signal transducer smoothened, is the major cause of Curry-Jones syndrome. Am. J. Hum. Genet. 98:1256–65 [Google Scholar]
  131. Uchiyama Y, Nakashima M, Watanabe S, Miyajima M, Taguri M. 131.  et al. 2016. Ultra-sensitive droplet digital PCR for detecting a low-prevalence somatic GNAQ mutation in Sturge-Weber syndrome. Sci. Rep. 6:22985 [Google Scholar]
  132. Umegaki-Arao N, Pasmooij AM, Itoh M, Cerise JE, Guo Z. 132.  et al. 2014. Induced pluripotent stem cells from human revertant keratinocytes for the treatment of epidermolysis bullosa. Sci. Transl. Med. 6:264ra164 [Google Scholar]
  133. Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L. 133.  et al. 2009. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457:599–602 [Google Scholar]
  134. Van Raamsdonk CD, Griewank KG, Crosby MB, Garrido MC, Vemula S. 134.  et al. 2010. Mutations in GNA11 in uveal melanoma. N. Engl. J. Med. 363:2191–99 [Google Scholar]
  135. van Steensel MA. 135.  2015. Neurocutaneous manifestations of genetic mosaicism. J. Pediatr. Genet. 4:144–53 [Google Scholar]
  136. Wagner JE, Ishida-Yamamoto A, McGrath JA, Hordinsky M, Keene DR. 136.  et al. 2010. Bone marrow transplantation for recessive dystrophic epidermolysis bullosa. N. Engl. J. Med. 363:629–39 [Google Scholar]
  137. Wang SM, Hsieh YJ, Chang KM, Tsai HL, Chen CP. 137.  2014. Schimmelpenning syndrome: a case report and literature review. Pediatr. Neonatol. 55:487–90 [Google Scholar]
  138. Weinhold N, Jacobsen A, Schultz N, Sander C, Lee W. 138.  2014. Genome-wide analysis of noncoding regulatory mutations in cancer. Nat. Genet. 46:1160–65 [Google Scholar]
  139. Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. 139.  1991. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N. Engl. J. Med. 325:1688–95 [Google Scholar]
  140. Wu M, Pastor-Pareja JC, Xu T. 140.  2010. Interaction between RasV12 and scribbled clones induces tumour growth and invasion. Nature 463:545–48 [Google Scholar]
  141. Wu Y, Zhao RC, Tredget EE. 141.  2010. Concise review: bone marrow-derived stem/progenitor cells in cutaneous repair and regeneration. Stem Cells 28:905–15 [Google Scholar]
  142. Yang Q, Huang C, Yang X, Feng Y, Wang Q, Liu M. 142.  2008. The R1947X mutation of NF1 causing autosomal dominant neurofibromatosis type 1 in a Chinese family. J. Genet. Genom. 35:73–76 [Google Scholar]
  143. Zheng JW, Zhang L, Zhou Q, Mai HM, Wang YA. 143.  et al. 2013. A practical guide to treatment of infantile hemangiomas of the head and neck. Int. J. Clin. Exp. Med. 6:851–60 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error