1932

Abstract

Although my engagement with human genetics emerged gradually, and sometimes serendipitously, it has held me spellbound for decades. Without my teachers, students, postdocs, colleagues, and collaborators, I would not be writing this review of my scientific adventures. Early gene and disease mapping was a satisfying puzzle-solving exercise, but building biological insight was my main goal. The project trajectory was hugely influenced by the evolutionarily conserved nature of the implicated genes and by the pace of progress in genetic technologies. The rich detail of clinical observations, particularly in eye disease, makes humans an excellent model, especially when complemented by the use of multiple other animal species for experimental validation. The contributions of collaborators and rivals also influenced our approach. We are very fortunate to work in this era of unprecedented progress in genetics and genomics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-010622-095109
2022-08-31
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/genom/23/1/annurev-genom-010622-095109.html?itemId=/content/journals/10.1146/annurev-genom-010622-095109&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ansari M, Rainger J, Hanson IM, Williamson KA, Sharkey F et al. 2016. Genetic analysis of ‘PAX6-negative’ individuals with aniridia or Gillespie syndrome. PLOS ONE 11:e0153757
    [Google Scholar]
  2. 2.
    Bamiou D-E, Free SL, Sisodiya SM, Chong WK, Musiek F et al. 2007. Auditory interhemispheric transfer deficits, hearing difficulties, and brain magnetic resonance imaging abnormalities in children with congenital aniridia due to PAX6 mutations. Arch. Paediatr. Adolesc. Med. 161:463–69
    [Google Scholar]
  3. 3.
    Bamiou D-E, Musiek FE, Sisodiya SM, Free SL, Davies RA et al. 2004. Deficient auditory interhemispheric transfer in patients with PAX6 mutations. Ann. Neurol. 56:503–9
    [Google Scholar]
  4. 4.
    Bhatia S, Bengani H, Fish M, Brown A, Divizia MT et al. 2013. Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia. Am. J. Hum. Genet. 93:1126–34
    [Google Scholar]
  5. 5.
    Bhatia S, Gordon CT, Foster RG, Melin L, Abadie V et al. 2015. Functional assessment of disease-associated regulatory variants in vivo using a versatile dual colour transgenesis strategy in zebrafish. PLOS Genet. 11:e1005193
    [Google Scholar]
  6. 6.
    Bhatia S, Kleinjan DA, Uttley K, Mann A, Dellepiane N, Bickmore WA. 2021. Quantitative spatial and temporal assessment of regulatory element activity in zebrafish. eLife 10:e65601
    [Google Scholar]
  7. 7.
    Bhatia S, Monahan J, Ravi V, Gautier P, Murdoch E et al. 2014. A survey of ancient conserved non-coding elements in the PAX6 locus reveals a landscape of interdigitated cis-regulatory archipelagos. Dev. Biol. 387:214–28
    [Google Scholar]
  8. 8.
    Blanco J, Girard F, Kamachi Y, Kondoh H, Gehring WJ. 2005. Functional analysis of the chicken δ1-crystallin enhancer activity in Drosophila reveals remarkable evolutionary conservation between chicken and fly. Development 132:1895–905
    [Google Scholar]
  9. 9.
    Bodmer W. 2015. A mathematician's odyssey. Annu. Rev. Genom. Hum. Genet. 16:1–29
    [Google Scholar]
  10. 10.
    Brock DJH, Barron L, van Heyningen V. 1982. Enzyme-linked immunospecific assays for human alphafetoprotein using monoclonal antibodies. Clin. Chim. Acta 122:353–58
    [Google Scholar]
  11. 11.
    Brown A, McKie M, van Heyningen V, Prosser J. 1998. The human PAX6 mutation database. Nucleic Acids Res 26:259–64
    [Google Scholar]
  12. 12.
    Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J et al. 1990. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60:509–20
    [Google Scholar]
  13. 13.
    Camellato B, Bickmore W. 2022. PAX6. Dark Matter Project. https://www.thedarkmatterproject.org/projects-1#/pax6
    [Google Scholar]
  14. 14.
    Chisholm AD, Horvitz HR. 1995. Patterning of the Caenorhabditis elegans head region by the Pax-6 family member vab-3. Nature 377:52–55
    [Google Scholar]
  15. 15.
    Cipriani V, Kalhoro A, Arno G, Silva RS, Pontikos N et al. 2017. Genome-wide linkage and haplotype sharing analysis implicates the MCDR3 locus as a candidate region for a developmental macular disorder in association with digit abnormalities. Ophthalmic Genet 38:511–19
    [Google Scholar]
  16. 16.
    Cipriani V, Silva RS, Arno G, Pontikos N, Valeina S et al. 2017. Duplication events downstream of IRX1 cause North Carolina macular dystrophy at the MCDR3 locus. Sci. Rep. 44:7512
    [Google Scholar]
  17. 17.
    Couillin P, Le Guern E, Vignal A, Fizames C, Ravise N et al. 1994. Assignment of 112 microsatellite markers to 23 chromosome 11 subregions delineated by somatic hybrids: comparison with the genetic map. Genomics 21:379–87
    [Google Scholar]
  18. 18.
    Coutinho P, Pavlou S, Bhatia S, Chalmers KJ, Kleinjan DA, van Heyningen V. 2011. Discovery and assessment of conserved Pax6 target genes and enhancers. Genome Res 21:1349–59
    [Google Scholar]
  19. 19.
    Crolla JA, Cawdery JE, Oley CA, Young ID, Gray J et al. 1997. A FISH approach to defining the extent and possible clinical significance of deletions at the WAGR locus. J. Med. Genet. 34:207–12
    [Google Scholar]
  20. 20.
    Crolla JA, van Heyningen V. 2002. Frequent chromosome aberrations revealed by molecular cytogenetic studies in patients with aniridia. Am. J. Hum. Genet. 71:1138–49
    [Google Scholar]
  21. 21.
    Cunha DL, Arno G, Corton M, Moosajee M. 2019. The spectrum of PAX6 mutations and genotype-phenotype correlations in the eye. Genes 10:1050
    [Google Scholar]
  22. 22.
    Cvekl A, Callaerts P. 2017. PAX6: 25th anniversary and more to learn. Exp. Eye Res. 156:10–21
    [Google Scholar]
  23. 23.
    Cvekl A, Zhang X. 2017. Signaling and gene regulatory networks in mammalian lens development. Trends Genet 33:677–702
    [Google Scholar]
  24. 24.
    Desmarais D, Filion M, Lapointe L, Royal A. 1992. Cell-specific transcription of the peripherin gene in neuronal cell lines involves a cis-acting element surrounding the TATA box. EMBO J 11:2971–80
    [Google Scholar]
  25. 25.
    Dorin JR, Novak M, Hill RE, Brock DJ, Secher DS, van Heyningen V. 1987. A clue to the basic defect in cystic fibrosis from cloning the CF antigen gene. Nature 326:614–17
    [Google Scholar]
  26. 26.
    Engelkamp D, Rashbass P, Seawright A, van Heyningen V. 1999. Role of Pax6 in development of the cerebellar system. Development 126:3585–96
    [Google Scholar]
  27. 27.
    Ericson J, Rashbass P, Schedl A, Brenner-Morton S, Kawakami A et al. 1997. Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90:169–80
    [Google Scholar]
  28. 28.
    Fantes J, Ragge NK, Lynch S-A, McGill NI, Collin JRO et al. 2003. Mutations in SOX2 cause anophthalmia. Nat. Genet. 33:461–63
    [Google Scholar]
  29. 29.
    Fantes J, Redeker B, Breen M, Boyle S, Brown J et al. 1995. Aniridia-associated cytogenetic rearrangements suggest that a position effect may cause the mutant phenotype. Hum. Mol. Genet. 4:415–22
    [Google Scholar]
  30. 30.
    Fantes JA, Oghene K, Boyle S, Danes S, Fletcher JM et al. 1995. A high-resolution integrated physical, cytogenetic, and genetic map of human chromosome 11: distal p13 to proximal p15. 1: Genomics 25:447–61
    [Google Scholar]
  31. 31.
    Fauquier T, Rizzoti K, Dattani M, Lovell-Badge R, Robinson ICAF 2008. SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. PNAS 105:2907–12
    [Google Scholar]
  32. 32.
    Favor J, Peters H, Hermann T, Schmahl W, Chatterjee B et al. 2001. Molecular characterization of Pax62Neu through Pax610Neu: an extension of the Pax6 allelic series and the identification of two possible hypomorph alleles in the mouse Mus musculus. Genetics 159:1689–1700
    [Google Scholar]
  33. 33.
    Fraenkel-Conrat H. 1956. Rebuilding a virus. Sci. Am. 194:642–47
    [Google Scholar]
  34. 34.
    Francke U, Holmes LB, Atkins L, Riccardi VM. 1979. Aniridia-Wilms’ tumor association: evidence for specific deletion of 11p13. Cytogenet. Cell Genet. 24:185–92
    [Google Scholar]
  35. 35.
    Gehring WJ. 2005. New perspectives on eye development and the evolution of eyes and photoreceptors. J. Hered. 96:171–84
    [Google Scholar]
  36. 36.
    Gerth-Kahlert C, Williamson K, Ansari M, Rainger JK, Hingst V et al. 2013. Clinical and mutation analysis of 51 probands with anophthalmia and/or severe microphthalmia from a single center. Mol. Genet. Genom. Med. 1:15–31
    [Google Scholar]
  37. 37.
    Gidalevitz T, Ben-Zvi A, Ho KH, Brignull HR, Morimoto RI. 2005. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311:1471–74
    [Google Scholar]
  38. 38.
    Gordon CT, Attanasio C, Bhatia S, Benko S, Ansari M et al. 2014. Identification of novel craniofacial regulatory domains located far upstream of SOX9 and disrupted in Pierre Robin sequence. Hum. Mutat. 35:1011–20
    [Google Scholar]
  39. 39.
    Griffin C, Kleinjan DA, Doe B, van Heyningen V. 2002. New 3′ elements control Pax6 expression in the developing pretectum, neural retina and olfactory region. Mech. Dev. 112:89–100
    [Google Scholar]
  40. 40.
    Grimes G, Hanson I, Williamson K, van Heyningen V. 2018. Paired box gene 6 MRC Hum. Genet. Unit LOVD updated Aug. 4. http://lsdb.hgu.mrc.ac.uk/home.php?select_db=PAX6
    [Google Scholar]
  41. 41.
    Guy K, van Heyningen V, Cohen BB, Deane DL, Steel CM. 1982. Differential expression and serologically distinct subpopulations of human Ia antigens detected with monoclonal antibodies to Ia alpha and beta chains. Eur. J. Immunol. 12:942–48
    [Google Scholar]
  42. 42.
    Haber DA, Buckler AJ, Glaser T, Call KM, Pelletier J et al. 1990. An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms’ tumor. Cell 61:1257–69
    [Google Scholar]
  43. 43.
    Halder G, Callaerts P, Gehring WJ. 1995. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 67:1788–92
    [Google Scholar]
  44. 44.
    Hall HN, Williamson KA, FitzPatrick DR. 2018. The genetic architecture of aniridia and Gillespie syndrome. Hum. Genet. 138:881–98
    [Google Scholar]
  45. 45.
    Hanson IM, Churchill A, Love J, Axton R, Moore T et al. 1999. Missense mutations in the most ancient residues of the PAX6 paired domain underlie a spectrum of human congenital eye malformations. Hum. Mol. Genet. 8:165–72
    [Google Scholar]
  46. 46.
    Hanson IM, Fletcher JM, Jordan T, Brown A, Taylor D et al. 1994. Mutations at the PAX6 locus are found in heterogeneous anterior segment malformations including Peters’ anomaly. Nat. Genet. 6:168–73
    [Google Scholar]
  47. 47.
    Hanson IM, van Heyningen V. 1995. Pax6: more than meets the eye. Trends Genet. 11:268–72
    [Google Scholar]
  48. 48.
    Harris H. 1969. Genes and isozymes. Proc. R. Soc. B 174:1–31
    [Google Scholar]
  49. 49.
    Harris H, Watkins JF. 1965. Hybrid cells derived from mouse and man: artificial heterokaryons of mammalian cells from different species. Nature 205:640–46
    [Google Scholar]
  50. 50.
    Hart AW, Mella S, Mendrychowski J, van Heyningen V, Kleinjan DA. 2013. The developmental regulator Pax6 is essential for maintenance of islet cell function in the adult mouse pancreas. PLOS ONE 8:e54173
    [Google Scholar]
  51. 51.
    Henderson RA, Williamson K, Cumming S, Clarke MP, Lynch SA et al. 2007. Inherited PAX6, NF1 and OTX2 mutations in a child with microphthalmia and aniridia. Eur. J. Hum. Genet. 15:898–901
    [Google Scholar]
  52. 52.
    Henderson RH, Williamson KA, Kennedy JS, Webster AR, Holder GE et al. 2009. A rare de novo nonsense mutation in OTX2 causes early onset retinal dystrophy and pituitary dysfunction. Mol. Vis. 15:2442–47
    [Google Scholar]
  53. 53.
    Hever AM, Williamson KA, van Heyningen V. 2006. Developmental malformations of the eye: the role of PAX6, SOX2 and OTX2. Clin. Genet. 69:459–70
    [Google Scholar]
  54. 54.
    Hill RE, Favor J, Hogan BL, Ton CC, Saunders GF et al. 1991. Mouse Small eye results from mutations in a paired-like homeobox-containing gene. Nature 354:522–25
    [Google Scholar]
  55. 55.
    Hingorani M, Hanson I, van Heyningen V. 2012. Aniridia. Eur. J. Hum. Genet. 20:1011–17
    [Google Scholar]
  56. 56.
    Hingorani M, Williamson KA, Moore AT, van Heyningen V. 2009. Detailed ophthalmologic evaluation of 43 individuals with PAX6 mutations. Investig. Ophthalmol. Vis. Sci. 50:2581–90
    [Google Scholar]
  57. 57.
    Horn D, Prescott T, Houge G, Brække K, Rosendahl K et al. 2015. A novel oculo-skeletal syndrome with intellectual disability caused by a particular MAB21L2 mutation. Eur. J. Med. Genet. 58:387–91
    [Google Scholar]
  58. 58.
    Inoue M, Kamachi Y, Matsunami H, Imada K, Uchikawa M, Kondoh H. 2007. PAX6 and SOX2-dependent regulation of the Sox2 enhancer N-3 involved in embryonic visual system development. Genes Cells 12:1049–61
    [Google Scholar]
  59. 59.
    Jones L, López-Bendito G, Gruss P, Stoykova A, Molnár Z. 2002. Pax6 is required for the normal development of the forebrain axonal connections. Development 129:5041–52
    [Google Scholar]
  60. 60.
    Jordan T, Hanson I, Zaletayev D, Hodgson S, Prosser J et al. 1992. The human PAX6 gene is mutated in two patients with aniridia. Nat. Genet. 1:328–32
    [Google Scholar]
  61. 61.
    Jukic A, Bakiri L, Wagner EF, Tilg H, Adolph TE. 2021. Calprotectin: from biomarker to biological function. Gut 70:1978–88
    [Google Scholar]
  62. 62.
    Junien C, van Heyningen V, Evans G, Little P, Mannens M. 1992. Report of the Second Chromosome 11 Workshop. Genomics 12:620–25
    [Google Scholar]
  63. 63.
    Kamachi Y, Kondoh H. 2013. Sox proteins: regulators of cell fate specification and differentiation. Development 140:4129–44
    [Google Scholar]
  64. 64.
    Kamachi Y, Uchikawa M, Tanouchi A, Sekido R, Kondoh H. 2001. Pax6 and SOX2 form a co-DNA-binding partner complex that regulates initiation of lens development. Genes Dev 15:1272–86
    [Google Scholar]
  65. 65.
    Kaplan J-C, Kahn A, Chelly J. 1992. Illegitimate transcription: its use in the study of inherited disease. Hum. Mutat. 1:357–60
    [Google Scholar]
  66. 66.
    Kit V, Cunha DL, Hagag AM, Moosajee M. 2021. Longitudinal genotype-phenotype analysis in 86 patients with PAX6-related aniridia. JCI Insight 6:e148406
    [Google Scholar]
  67. 67.
    Kleinjan DA, Bancewicz RM, Gautier P, Dahm R, Schonthaler HB et al. 2008. Subfunctionalization of duplicated zebrafish pax6 genes by cis-regulatory divergence. PLOS Genet 4:e29
    [Google Scholar]
  68. 68.
    Kleinjan DA, Seawright A, Childs AJ, van Heyningen V. 2004. Conserved elements in Pax6 intron 7 involved in (auto)regulation and alternative transcription. Dev. Biol. 265:462–77
    [Google Scholar]
  69. 69.
    Kleinjan DA, Seawright A, Elgar G, van Heyningen V. 2002. Characterization of a novel gene adjacent to PAX6, revealing synteny conservation with functional significance. Mamm. Genome. 13:102–7
    [Google Scholar]
  70. 70.
    Kleinjan DA, Seawright A, Mella S, Carr CB, Tyas DA et al. 2006. Long-range downstream enhancers are essential for Pax6 expression. Dev. Biol. 299:563–81
    [Google Scholar]
  71. 71.
    Kleinjan DA, Seawright A, Schedl A, Quinlan RA, Danes S, van Heyningen V. 2001. Aniridia-associated translocations, DNase hypersensitivity, sequence comparison and transgenic analysis redefine the functional domain of PAX6. Hum. Mol. Genet. 10:2049–59
    [Google Scholar]
  72. 72.
    Kleinjan DA, van Heyningen V. 1998. Position effect in human genetic disease. Hum. Mol. Genet. 7:1611–18
    [Google Scholar]
  73. 73.
    Kleinjan DA, van Heyningen V. 2005. Long-range control of gene expression: emerging mechanisms and disruption in disease. Am. J. Hum. Genet. 76:8–32
    [Google Scholar]
  74. 74.
    Knowlton RG, Cohen-Haguenauer O, van Cong N, Frézal J, Brown VA et al. 1985. A polymorphic DNA marker linked to cystic fibrosis is located on chromosome 7. Nature 318:380–82
    [Google Scholar]
  75. 75.
    Knudson AG. 1975. The genetics of childhood cancer. Cancer 35:1022–26
    [Google Scholar]
  76. 76.
    Kondoh H, Kamachi Y. 2010. SOX-partner code for cell specification: regulatory target selection and underlying molecular mechanisms. Int. J. Biochem. Cell Biol. 42:391–99
    [Google Scholar]
  77. 77.
    Lewis JA, Hodgkin JA. 1977. Specific neuroanatomical changes in chemosensory mutants of the nematode Caenorhabditis elegans. J. Comp. Neurol. 172:489–510
    [Google Scholar]
  78. 78.
    Little MH, Williamson KA, Mannens M, Kelsey A, Gosden C et al. 1993. Evidence that WT1 mutations in Denys–Drash syndrome patients may act in a dominant-negative fashion. Hum. Mol. Genet. 2:259–64
    [Google Scholar]
  79. 79.
    Mannens M, Bleeker-Wagemakers EM, Bliek J, Hoovers J, Mandjes I et al. 1989. Autosomal dominant aniridia linked to the chromosome 11p13 markers catalase and D11S151 in a large Dutch family. Cytogenet. Cell Genet. 52:32–36
    [Google Scholar]
  80. 80.
    Manuel MN, Georgala PA, Carr CB, Chanas S, Kleinjan DA et al. 2006. Controlled overexpression of Pax6 in vivo negatively autoregulates the Pax6 locus, causing cell-autonomous defects of late cortical progenitor proliferation with little effect on cortical arealization. Development 134:545–55
    [Google Scholar]
  81. 81.
    Manuel MN, Mi D, Mason JO, Price DJ 2015. Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor. Front. Cell. Neurosci. 9:70
    [Google Scholar]
  82. 82.
    McBride DJ, Buckle A, van Heyningen V, Kleinjan DA. 2011. DNaseI hypersensitivity and ultraconservation reveal novel, interdependent long-range enhancers at the complex Pax6 cis-regulatory region. PLOS ONE 6:e28616
    [Google Scholar]
  83. 83.
    McEntagart M, Williamson KA, Rainger JK, Wheeler A, Seawright A et al. 2016. A restricted repertoire of de novo mutations in ITPR1 cause Gillespie syndrome with evidence for dominant-negative effect. Am. J. Hum. Genet. 98:981–92
    [Google Scholar]
  84. 84.
    Michaelides M, Jeffery G, Moore A 2012. Developmental macular disorders: phenotypes and underlying molecular genetic basis. Br. J. Ophthalmol. 96:917–24
    [Google Scholar]
  85. 85.
    Mihelec M, Abraham P, Gibson K, Krowka R, Susman R et al. 2009. Novel SOX2 partner-factor domain mutation in a four-generation family. Eur. J. Hum. Genet. 17:1417–22
    [Google Scholar]
  86. 86.
    Miles C, Elgar G, Coles E, Kleinjan DA, van Heyningen V, Hastie N. 1998. Complete sequencing of the Fugu WAGR region from WT1 to PAX6: dramatic compaction and conservation of synteny with human chromosome 11p13. PNAS 95:13068–72
    [Google Scholar]
  87. 87.
    Mitchell TN, Free SL, Williamson KA, Stevens JM, Churchill AJ et al. 2003. Polymicrogyria and absence of pineal gland due to PAX6 mutation. Ann. Neurol. 53:658–63
    [Google Scholar]
  88. 88.
    Morrison D, FitzPatrick D, Hanson I, Williamson K, van Heyningen V et al. 2002. National study of microphthalmia, anophthalmia, and coloboma (MAC) in Scotland: investigation of genetic aetiology. J. Med. Genet. 39:16–22
    [Google Scholar]
  89. 89.
    Pelletier J, Bruening W, Li FP, Haber DA, Glaser T, Housman DE. 1991. WT1 mutations contribute to abnormal genital system development and hereditary Wilms’ tumour. Nature 353:431–34
    [Google Scholar]
  90. 90.
    Pritchard-Jones K, Fleming S, Davidson D, Bickmore W, Porteous D et al. 1990. The candidate Wilms’ tumour gene is involved in genitourinary development. Nature 346:194–97
    [Google Scholar]
  91. 91.
    Prosser J, van Heyningen V. 1998. PAX6 mutations reviewed. Hum. Mutat. 11:93–108
    [Google Scholar]
  92. 92.
    Quiring R, Walidorf U, Kloter U, Gehring WJ. 1994. Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265:785–89
    [Google Scholar]
  93. 93.
    Ragge NK, Brown AG, Poloschek CM, Lorenz B, Henderson RA et al. 2005. Heterozygous mutations of OTX2 cause severe ocular malformations. Am. J. Hum. Genet. 76:1008–22
    [Google Scholar]
  94. 94.
    Ragge NK, Lorenz B, Schneider A, Bushby K, de Sanctis L et al. 2005. SOX2 anophthalmia syndrome. Am. J. Med. Genet. 135A:1–7
    [Google Scholar]
  95. 95.
    Rainger J, Pehlivan D, Johansson S, Bengani H, Sanchez-Pulido L et al. 2014. Monoallelic and biallelic mutations in MAB21L2 cause a spectrum of major eye malformations. Am. J. Hum. Genet. 94:915–23
    [Google Scholar]
  96. 96.
    Ravi V, Bhatia S, Gautier P, Loosli F, Tay B-H et al. 2013. Sequencing of Pax6 loci from the elephant shark reveals a family of Pax6 genes in vertebrate genomes, forged by ancient duplications and divergences. PLOS Genet 9:e1003177
    [Google Scholar]
  97. 97.
    Ravi V, Bhatia S, Shingate P, Tay BH, Venkatesh B, Kleinjan DA. 2019. Lampreys, the jawless vertebrates, contain three Pax6 genes with distinct expression in eye, brain and pancreas. Sci. Rep. 9:19559
    [Google Scholar]
  98. 98.
    Richardson R, Hingorani M, van Heyningen V, Gregory-Evans C, Moosajee M. 2016. Clinical utility gene card for: aniridia. Eur. J. Hum. Genet. 24:10–13
    [Google Scholar]
  99. 99.
    Robinson DO, Howarth RJ, Williamson KA, van Heyningen V, Beal SJ, Crolla JA. 2008. Genetic analysis of chromosome 11p13 and the PAX6 gene in a series of 125 cases referred with aniridia. Am. J. Med. Genet. A 146A:558–69
    [Google Scholar]
  100. 100.
    Rowley JD, Bodmer WF. 1971. Relationship of centromeric heterochromatin to fluorescent banding patterns of metaphase chromosomes in the mouse. Nature 231:503–6
    [Google Scholar]
  101. 101.
    Sansom SN, Griffiths DS, Faedo A, Kleinjan DA, Ruan Y et al. 2009. The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLOS Genet 5:e1000511
    [Google Scholar]
  102. 102.
    Schedl A, Ross A, Lee M, Engelkamp D, Rashbass P et al. 1996. Influence of PAX6 gene dosage on development: overexpression causes severe eye abnormalities. Cell 86:71–82
    [Google Scholar]
  103. 103.
    Schwartz S, Zhang Z, Frazer KA, Smit A, Riemer C et al. 2000. PipMaker—a web server for aligning two genomic DNA sequences. Genome Res 10:577–86
    [Google Scholar]
  104. 104.
    Seawright A, Fletcher JM, Fantes JA, Morrison H, Porteous DJ et al. 1988. Analysis of WAGR deletions and related translocations with gene-specific DNA probes, using FACS-selected cell hybrids. Somatic Cell Mol. Genet. 14:21–30
    [Google Scholar]
  105. 105.
    Shaw ND, Brand H, Kupchinsky ZA, Bengani H, Plummer L et al. 2017. SMCHD1 mutations associated with a rare muscular dystrophy can also cause isolated arhinia and Bosma arhinia microphthalmia syndrome. Nat. Genet. 49:238–48
    [Google Scholar]
  106. 106.
    Silva RS, Arno G, Cipriani V, Pontikos N, Defoort-Dhellemmes S et al. 2019. Unique noncoding variants upstream of PRDM13 are associated with a spectrum of developmental retinal dystrophies including progressive bifocal chorioretinal atrophy. Hum. Mutat. 40:578–87
    [Google Scholar]
  107. 107.
    Silvin A, Chapuis N, Dunsmore G, Ginhoux F, Fontenay M et al. 2020. Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19. Cell 182:1401–18
    [Google Scholar]
  108. 108.
    Sisodiya SM, Free SL, Williamson KA, Mitchell TN, Willis C et al. 2001. PAX6 haploinsufficiency causes cerebral malformation and olfactory dysfunction in humans. Nat. Genet. 28:214–16
    [Google Scholar]
  109. 109.
    Sisodiya SM, Ragge NK, Cavalleri GL, Hever A, Lorenz B et al. 2006. Role of SOX2 mutations in human hippocampal malformations and epilepsy. Epilepsia 47:534–42
    [Google Scholar]
  110. 110.
    Small KW, DeLuca AP, Whitmore SS, Rosenberg T, Silva-Garcia R et al. 2016. North Carolina macular dystrophy is caused by dysregulation of the retinal transcription factor PRDM13. Ophthalmology 123:9–18
    [Google Scholar]
  111. 111.
    St-Onge L, Sosa-Pineda B, Chowdhury K, Mansouri A, Gruss P. 1997. Pax6 is required for differentiation of glucagon-producing α-cells in mouse pancreas. Nature 387:406–9
    [Google Scholar]
  112. 112.
    Swisa A, Avrahami D, Eden N, Zhang J, Feleke E et al. 2017. PAX6 maintains pancreatic β cell identity by repressing alternative islet cell genes. J. Clin. Investig. 127:230–43
    [Google Scholar]
  113. 113.
    Thompson PJ, Mitchell TN, Free SL, Williamson KA, Hanson IM et al. 2004. Cognitive functioning in humans with mutations of the PAX6 gene. Neurology 62:1216–18
    [Google Scholar]
  114. 114.
    Ton CCT, Hirvonen H, Miwa H, Weil MM, Monaghan P et al. 1991. Positional cloning and characterization of a paired box- and homeobox-containing gene from the aniridia region. Cell 67:1059–74
    [Google Scholar]
  115. 115.
    Tunnacliffe A, Goodfellow P, Banting G, Solomon E, Knowles BB, Andrews P. 1983. Human chromosome 11 carries at least four genes controlling expression of cell-surface antigens. Somatic Cell Genet 9:629–42
    [Google Scholar]
  116. 116.
    Tyas DA, Simpson TI, Carr CB, Kleinjan DA, van Heyningen V et al. 2006. Functional conservation of Pax6 regulatory elements in humans and mice demonstrated with a novel transgenic reporter mouse. BMC Dev. Biol. 6:21
    [Google Scholar]
  117. 117.
    Tziaferi V, Kelberman D, Dattani MT. 2008. The role of SOX2 in hypogonadotropic hypogonadism. Sexual Dev 2:194–99
    [Google Scholar]
  118. 118.
    Tzoulaki I, White IM, Hanson IM. 2005. PAX6 mutations: genotype-phenotype correlations. BMC Genet 6:27–38
    [Google Scholar]
  119. 119.
    Univ. Camb. 2022. Department of Genetics: genetics centenary. University of Cambridge. https://www.gen.cam.ac.uk/department/history-of-the-department/department-history
    [Google Scholar]
  120. 120.
    van Heyningen V. 1997. Model organisms illuminate human genetics and disease. Mol. Med. 3:231–37
    [Google Scholar]
  121. 121.
    van Heyningen V, Bobrow M, Bodmer WF, Gardiner SE, Povey S, Hopkinson DA. 1975. Chromosome assignment of some human enzyme loci: mitochondrial malate dehydrogenase to 7, mannosephosphate isomerase and pyruvate kinase to 15 and probably, esterase D to 13. Ann. Hum. Genet. 38:295–303
    [Google Scholar]
  122. 122.
    van Heyningen V, Boyd PA, Seawright A, Fletcher JM, Fantes JA et al. 1985. Molecular analysis of chromosome 11 deletions in aniridia-Wilms tumor syndrome. PNAS 82:8592–96
    [Google Scholar]
  123. 123.
    van Heyningen V, Brock DJH, van Heyningen S. 1983. A simple method for ranking the affinities of monoclonal antibodies. J. Immunol. Methods 62:147–53
    [Google Scholar]
  124. 124.
    van Heyningen V, Craig IW, Bodmer WF 1973. Genetic control of mitochondrial enzymes in human-mouse somatic cell hybrids. Nature 242:509–12
    [Google Scholar]
  125. 125.
    van Heyningen V, Guy K, Newman R, Steel CM. 1982. Human MHC class II molecules as differentiation markers. Immunogenetics 16:459–69
    [Google Scholar]
  126. 126.
    van Heyningen V, Hayward C, Fletcher J, McAuley C. 1985. Tissue localization and chromosomal assignment of a serum protein that tracks the cystic fibrosis gene. Nature 315:513–15
    [Google Scholar]
  127. 127.
    van Heyningen V, Yeyati PL. 2004. Mechanisms of non-Mendelian inheritance in genetic disease. Hum. Mol. Genet. 13:R225–33
    [Google Scholar]
  128. 128.
    Visel A, Minovitsky S, Dubchak I, Pennacchio LA. 2007. VISTA Enhancer Browser—a database of tissue-specific human enhancers. Nucleic Acids Res 35:D88–92
    [Google Scholar]
  129. 129.
    Vopalensky P, Kozmik Z. 2009. Eye evolution: common use and independent recruitment of genetic components. Philos. Trans. R. Soc. B 364:2819–32
    [Google Scholar]
  130. 130.
    Wainwright BJ, Scambler PJ, Schmidtke J, Watson EA, Law HY et al. 1985. Localization of cystic fibrosis locus to human chromosome 7cen-q22. Nature 318:384–85
    [Google Scholar]
  131. 131.
    Wang S, Song R, Wang Z, Jing Z, Wang S, Ma J 2018. S100A8/A9 in inflammation. Front. Immunol. 9:1298
    [Google Scholar]
  132. 132.
    Wellcome Sanger Inst. 2022. What is the DDD study?. Deciphering Developmental Disorders. https://www.ddduk.org/intro.html
    [Google Scholar]
  133. 133.
    Wilkie AOM. 2017. Many faces of SMCHD1. Nat. Genet. 49:176–78
    [Google Scholar]
  134. 134.
    Wilkinson MM, Busuttil A, Hayward C, Brock DJ, Dorin JR, van Heyningen V. 1988. Expression pattern of two related cystic fibrosis-associated calcium-binding proteins in normal and abnormal tissues. J. Cell Sci. 91:221–30
    [Google Scholar]
  135. 135.
    Williamson KA, FitzPatrick DR. 2014. The genetic architecture of microphthalmia, anophthalmia and coloboma. Eur. J. Med. Genet. 57:369–80
    [Google Scholar]
  136. 136.
    Williamson KA, Hall HN, Owen LJ, Livesey BJ, Hanson IM et al. 2020. Recurrent heterozygous PAX6 missense variants cause severe bilateral microphthalmia via predictable effects on DNA-protein interaction. Genet. Med. 22:598–609
    [Google Scholar]
  137. 137.
    Williamson KA, Hever AM, Rainger J, Rogers RC, Magee A et al. 2006. Mutations in SOX2 cause anophthalmia-esophageal-genital (AEG) syndrome. Hum. Mol. Genet. 15:1413–22
    [Google Scholar]
  138. 138.
    Yeyati PL, Bancewicz RM, Maule J, van Heyningen V. 2007. Hsp90 selectively modulates phenotype in vertebrate development. PLOS Genet 3:e43
    [Google Scholar]
  139. 139.
    Yogarajah M, Matarin M, Vollmar C, Thompson PJ, Duncan JS et al. 2016. PAX6, brain structure and function in human adults: advanced MRI in aniridia. Ann. Clin. Transl. Neurol. 3:314–30
    [Google Scholar]
/content/journals/10.1146/annurev-genom-010622-095109
Loading
/content/journals/10.1146/annurev-genom-010622-095109
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error