1932

Abstract

Metazoans have evolved to produce various types of extracellular matrix (ECM) that provide structural support, cell adhesion, cell–cell communication, and regulated exposure to external cues. Epithelial cells produce and adhere to a specialized sheet-like ECM, the basement membrane, that is critical for cellular homeostasis and tissue integrity. Mesenchymal cells, such as chondrocytes in cartilaginous tissues and keratocytes in the corneal stroma, produce a pericellular matrix that presents optimal levels of growth factors, cytokines, chemokines, and nutrients to the cell and regulates mechanosensory signals through specific cytoskeletal and cell surface receptor interactions. Here, we discuss laminins, collagen types IV and VII, and perlecan, which are major components of these two types of ECM. We examinegenetic defects in these components that cause basement membrane pathologies such as epidermolysis bullosa, Alport syndrome, rare pericellular matrix–related chondrodysplasias, and corneal keratoconus and discuss recent advances in cell and gene therapies being developed for some of these disorders.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-083117-021702
2022-08-31
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/genom/23/1/annurev-genom-083117-021702.html?itemId=/content/journals/10.1146/annurev-genom-083117-021702&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Akuffo EL, Hunt JR, Moss J, Woodrow D, Davies M, Mason RM. 1996. A steady-state labelling approach to the measurement of proteoglycan turnover in vivo and its application to glomerular proteoglycans. Biochem. J. 320:301–8
    [Google Scholar]
  2. 2.
    Anguela XM, High KA. 2019. Entering the modern era of gene therapy. Annu. Rev. Med. 70:273–88
    [Google Scholar]
  3. 3.
    Arikawa-Hirasawa E, Le AH, Nishino I, Nonaka I, Ho NC et al. 2002. Structural and functional mutations of the perlecan gene cause Schwartz-Jampel syndrome, with myotonic myopathy and chondrodysplasia. Am. J. Hum. Genet. 70:1368–75
    [Google Scholar]
  4. 4.
    Arikawa-Hirasawa E, Watanabe H, Takami H, Hassell JR, Yamada Y. 1999. Perlecan is essential for cartilage and cephalic development. Nat. Genet. 23:354–58
    [Google Scholar]
  5. 5.
    Arikawa-Hirasawa E, Wilcox WR, Le AH, Silverman N, Govindraj P et al. 2001. Dyssegmental dysplasia, Silverman-Handmaker type, is caused by functional null mutations of the perlecan gene. Nat. Genet. 27:431–34
    [Google Scholar]
  6. 6.
    Aumailley M. 2021. Laminins and interaction partners in the architecture of the basement membrane at the dermal-epidermal junction. Exp. Dermatol. 30:17–24
    [Google Scholar]
  7. 7.
    Barker DF, Hostikka SL, Zhou J, Chow LT, Oliphant AR et al. 1990. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science 248:1224–27
    [Google Scholar]
  8. 8.
    Bauer JW, Koller J, Murauer EM, De Rosa L, Enzo E et al. 2017. Closure of a large chronic wound through transplantation of gene-corrected epidermal stem cells. J. Investig. Dermatol. 137:778–81
    [Google Scholar]
  9. 9.
    Benati D, Miselli F, Cocchiarella F, Patrizi C, Carretero M et al. 2018. CRISPR/Cas9-mediated in situ correction of LAMB3 gene in keratinocytes derived from a junctional epidermolysis bullosa patient. Mol. Ther. 26:2592–603
    [Google Scholar]
  10. 10.
    Bonafont J, Mencía A, Chacón-Solano E, Srifa W, Vaidyanathan S et al. 2021. Correction of recessive dystrophic epidermolysis bullosa by homology-directed repair-mediated genome editing. Mol. Ther. 29:2008–18
    [Google Scholar]
  11. 11.
    Bornert O, Hogervorst M, Nauroy P, Bischof J, Swildens J et al. 2021. QR-313, an antisense oligonucleotide, shows therapeutic efficacy for treatment of dominant and recessive dystrophic epidermolysis bullosa: a preclinical study. J. Investig. Dermatol. 141:883–93.e6
    [Google Scholar]
  12. 12.
    Bowman W, Todd RB. 1840. XXI. On the minute structure and movements of voluntary muscle. Philos. Trans. R. Soc. 130:457–501
    [Google Scholar]
  13. 13.
    Bremer J, Bornert O, Nyström A, Gostynski A, Jonkman MF et al. 2016. Antisense oligonucleotide-mediated exon skipping as a systemic therapeutic approach for recessive dystrophic epidermolysis bullosa. Mol. Ther. Nucleic Acids 5:e379
    [Google Scholar]
  14. 14.
    Brittingham R, Uitto J, Fertala A. 2006. High-affinity binding of the NC1 domain of collagen VII to laminin 5 and collagen IV. Biochem. Biophys. Res. Commun. 343:692–99
    [Google Scholar]
  15. 15.
    Brown KL, Cummings CF, Vanacore RM, Hudson BG. 2017. Building collagen IV smart scaffolds on the outside of cells. Protein Sci 26:2151–61
    [Google Scholar]
  16. 16.
    Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. 2021. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target. Ther. 6:53
    [Google Scholar]
  17. 17.
    Bülow RD, Boor P. 2019. Extracellular matrix in kidney fibrosis: more than just a scaffold. J. Histochem. Cytochem. 67:643–61
    [Google Scholar]
  18. 18.
    Cao L, Guilak F, Setton LA. 2007. Three-dimensional morphology of the pericellular matrix of intervertebral disc cells in the rat. J. Anat. 211:444–52
    [Google Scholar]
  19. 19.
    Champliaud MF, Lunstrum GP, Rousselle P, Nishiyama T, Keene DR, Burgeson RE. 1996. Human amnion contains a novel laminin variant, laminin 7, which like laminin 6, covalently associates with laminin 5 to promote stable epithelial-stromal attachment. J. Cell Biol. 132:1189–98
    [Google Scholar]
  20. 20.
    Chen VM, Mehta N, Robbins CC, Noh E, Pramil V et al. 2020. Anterior-segment spectral domain optical coherence tomography in epidermolysis bullosa. Ocul. Surf. 18:912–19
    [Google Scholar]
  21. 21.
    Chery DR, Han B, Zhou Y, Wang C, Adams SM et al. 2021. Decorin regulates cartilage pericellular matrix micromechanobiology. Matrix Biol 96:1–17
    [Google Scholar]
  22. 22.
    Chew C, Lennon R. 2018. Basement membrane defects in genetic kidney diseases. Front. Pediatr. 6:11
    [Google Scholar]
  23. 23.
    Chung AE, Freeman IL, Braginski JE. 1977. A novel extracellular membrane elaborated by a mouse embryonal carcinoma-derived cell line. Biochem. Biophys. Res. Commun. 79:859–68
    [Google Scholar]
  24. 24.
    Condrat I, He Y, Cosgarea R, Has C. 2018. Junctional epidermolysis bullosa: allelic heterogeneity and mutation stratification for precision medicine. Front. Med. 5:363
    [Google Scholar]
  25. 25.
    Cosgrove D, Liu S. 2017. Collagen IV diseases: a focus on the glomerular basement membrane in Alport syndrome. Matrix Biol. 57–58:45–54
    [Google Scholar]
  26. 26.
    Costell M, Gustafsson E, Aszódi A, Mörgelin M, Bloch W et al. 1999. Perlecan maintains the integrity of cartilage and some basement membranes. J. Cell Biol. 147:1109–22
    [Google Scholar]
  27. 27.
    Daehn IS, Duffield JS. 2021. The glomerular filtration barrier: a structural target for novel kidney therapies. Nat. Rev. Drug Discov. 20:770–88
    [Google Scholar]
  28. 28.
    Dang N, Murrell DF. 2008. Mutation analysis and characterization of COL7A1 mutations in dystrophic epidermolysis bullosa. Exp. Dermatol. 17:553–68
    [Google Scholar]
  29. 29.
    Danysh BP, Duncan MK. 2009. The lens capsule. Exp. Eye Res. 88:151–64
    [Google Scholar]
  30. 30.
    De Rosa L, Enzo E, Zardi G, Bodemer C, Magnoni C et al. 2021. Hologene 5: a phase II/III clinical trial of combined cell and gene therapy of junctional epidermolysis bullosa. Front. Genet. 12:705019
    [Google Scholar]
  31. 31.
    De Rosa L, Latella MC, Secone Seconetti A, Cattelani C, Bauer JW et al. 2020. Toward combined cell and gene therapy for genodermatoses. Cold Spring Harb. Perspect. Biol. 12:a035667
    [Google Scholar]
  32. 32.
    De Rosa L, Secone Seconetti A, De Santis G, Pellacani G, Hirsch T et al. 2019. Laminin 332-dependent YAP dysregulation depletes epidermal stem cells in junctional epidermolysis bullosa. Cell Rep 27:2036–49.e6
    [Google Scholar]
  33. 33.
    DeDreu J, Walker JL, Menko AS. 2021. Dynamics of the lens basement membrane capsule and its interaction with connective tissue-like extracapsular matrix proteins. Matrix Biol 96:18–46
    [Google Scholar]
  34. 34.
    Dolan M, Horchar T, Rigatti B, Hassell JR. 1997. Identification of sites in domain I of perlecan that regulate heparan sulfate synthesis. J. Biol. Chem. 272:4316–22
    [Google Scholar]
  35. 35.
    Doudna JA, Charpentier E. 2014. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096
    [Google Scholar]
  36. 36.
    Durbeej M. 2010. Laminins. Cell Tissue Res 339:259–68
    [Google Scholar]
  37. 37.
    Durkin ME, Chakravarti S, Bartos BB, Liu SH, Friedman RL, Chung AE. 1988. Amino acid sequence and domain structure of entactin. Homology with epidermal growth factor precursor and low density lipoprotein receptor. J. Cell Biol. 107:2749–56
    [Google Scholar]
  38. 38.
    Ebens CL, McGrath JA, Tamai K, Hovnanian A, Wagner JE et al. 2019. Bone marrow transplant with post-transplant cyclophosphamide for recessive dystrophic epidermolysis bullosa expands the related donor pool and permits tolerance of nonhaematopoietic cellular grafts. Br. J. Dermatol. 181:1238–46
    [Google Scholar]
  39. 39.
    Eble JA, Golbik R, Mann K, Kühn K. 1993. The α1β1 integrin recognition site of the basement membrane collagen molecule [α1(IV)]2α2(IV). EMBO J 12:4795–802
    [Google Scholar]
  40. 40.
    Eichstadt S, Barriga M, Ponakala A, Teng C, Nguyen NT et al. 2019. Phase 1/2a clinical trial of gene-corrected autologous cell therapy for recessive dystrophic epidermolysis bullosa. JCI Insight 4:e130554
    [Google Scholar]
  41. 41.
    Eur. Med. Agency. 2021. EudraCT (European Union Drug Regulating Authorities Clinical Trials Database) Accessed September 5, 2021. https://eudract.ema.europa.eu
  42. 42.
    Fidler AL, Darris CE, Chetyrkin SV, Pedchenko VK, Boudko SP et al. 2017. Collagen IV and basement membrane at the evolutionary dawn of metazoan tissues. eLife 6:e24176
    [Google Scholar]
  43. 43.
    Fine JD, Johnson LB, Weiner M, Stein A, Cash S et al. 2004. Eye involvement in inherited epidermolysis bullosa: experience of the National Epidermolysis Bullosa Registry. Am. J. Ophthalmol. 138:254–62
    [Google Scholar]
  44. 44.
    Franzke CW, Tasanen K, Schäcke H, Zhou Z, Tryggvason K et al. 2002. Transmembrane collagen XVII, an epithelial adhesion protein, is shed from the cell surface by ADAMs. EMBO J 21:5026–35
    [Google Scholar]
  45. 45.
    Fu HL, Valiathan RR, Arkwright R, Sohail A, Mihai C et al. 2013. Discoidin domain receptors: unique receptor tyrosine kinases in collagen-mediated signaling. J. Biol. Chem. 288:7430–37
    [Google Scholar]
  46. 46.
    Funk SD, Lin MH, Miner JH. 2018. Alport syndrome and Pierson syndrome: diseases of the glomerular basement membrane. Matrix Biol. 71–72:250–61
    [Google Scholar]
  47. 47.
    Gatalica B, Pulkkinen L, Li K, Kuokkanen K, Ryynanen M et al. 1997. Cloning of the human type XVII collagen gene (COL17A1), and detection of novel mutations in generalized atrophic benign epidermolysis bullosa. Am. J. Hum. Genet. 60:352–65
    [Google Scholar]
  48. 48.
    Gatseva A, Sin YY, Brezzo G, Van Agtmael T. 2019. Basement membrane collagens and disease mechanisms. Essays Biochem 63:297–312
    [Google Scholar]
  49. 49.
    Geister KA, Camper SA. 2015. Advances in skeletal dysplasia genetics. Annu. Rev. Genom. Hum. Genet. 16:199–227
    [Google Scholar]
  50. 50.
    Gordon MK, Hahn RA. 2010. Collagens. Cell Tissue Res 339:247–57
    [Google Scholar]
  51. 51.
    Green H. 2008. The birth of therapy with cultured cells. BioEssays 30:897–903
    [Google Scholar]
  52. 52.
    Groopman EE, Marasa M, Cameron-Christie S, Petrovski S, Aggarwal VS et al. 2019. Diagnostic utility of exome sequencing for kidney disease. N. Engl. J. Med. 380:142–51
    [Google Scholar]
  53. 53.
    Gubbiotti MA, Neill T, Iozzo RV. 2017. A current view of perlecan in physiology and pathology: a mosaic of functions. Matrix Biol. 57–58:285–98
    [Google Scholar]
  54. 54.
    Guilak F, Alexopoulos LG, Upton ML, Youn I, Choi JB et al. 2006. The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann. N.Y. Acad. Sci. 1068:498–512
    [Google Scholar]
  55. 55.
    Guilak F, Hayes AJ, Melrose J. 2021. Perlecan in pericellular mechanosensory cell-matrix communication, extracellular matrix stabilisation and mechanoregulation of load-bearing connective tissues. Int. J. Mol. Sci. 22:2716
    [Google Scholar]
  56. 56.
    Gunwar S, Ballester F, Noelken ME, Sado Y, Ninomiya Y, Hudson BG. 1998. Glomerular basement membrane: identification of a novel disulfide-cross-linked network of α3, α4, and α5 chains of type IV collagen and its implications for the pathogenesis of Alport syndrome. J. Biol. Chem. 273:8767–75
    [Google Scholar]
  57. 56a.
    Gurevich I, Agarwal P, Zhang P, Dolorito JA, Oliver Set al 2022. In vivo topical gene therapy for recessive dystrophic epidermolysis bullosa: a phase 1 and 2 trial. Nat. Med 28:78088
    [Google Scholar]
  58. 57.
    Halfter W, Candiello J, Hu H, Zhang P, Schreiber E, Balasubramani M. 2013. Protein composition and biomechanical properties of in vivo-derived basement membranes. Cell Adhes. Migr. 7:64–71
    [Google Scholar]
  59. 58.
    Hammond SM, Aartsma-Rus A, Alves S, Borgos SE, Buijsen RAM et al. 2021. Delivery of oligonucleotide-based therapeutics: challenges and opportunities. EMBO Mol. Med. 13:e13243
    [Google Scholar]
  60. 59.
    Has C, Bauer JW, Bodemer C, Bolling MC, Bruckner-Tuderman L et al. 2020. Consensus reclassification of inherited epidermolysis bullosa and other disorders with skin fragility. Br. J. Dermatol. 183:614–27
    [Google Scholar]
  61. 60.
    Has C, Bruckner-Tuderman L. 2014. The genetics of skin fragility. Annu. Rev. Genom. Hum. Genet. 15:245–68
    [Google Scholar]
  62. 61.
    Has C, Nyström A, Saeidian AH, Bruckner-Tuderman L, Uitto J. 2018. Epidermolysis bullosa: molecular pathology of connective tissue components in the cutaneous basement membrane zone. Matrix Biol 71–72:313–29
    [Google Scholar]
  63. 62.
    Hassell JR, Birk DE. 2010. The molecular basis of corneal transparency. Exp. Eye Res. 91:326–35
    [Google Scholar]
  64. 63.
    Hassell JR, Robey PG, Barrach HJ, Wilczek J, Rennard SI, Martin GR. 1980. Isolation of a heparan sulfate-containing proteoglycan from basement membrane. PNAS 77:4494–98
    [Google Scholar]
  65. 64.
    Hayes AJ, Shu CC, Lord MS, Little CB, Whitelock JM, Melrose J. 2016. Pericellular colocalisation and interactive properties of type VI collagen and perlecan in the intervertebral disc. Eur. Cell Mater. 32:40–57
    [Google Scholar]
  66. 65.
    Hinglais N, Grunfeld JP, Bois E. 1972. Characteristic ultrastructural lesion of the glomerular basement membrane in progressive hereditary nephritis (Alport's syndrome). Lab. Investig. 27:473–87
    [Google Scholar]
  67. 66.
    Hirakawa MP, Krishnakumar R, Timlin JA, Carney JP, Butler KS. 2020. Gene editing and CRISPR in the clinic: current and future perspectives. Biosci. Rep. 40:BSR20200127
    [Google Scholar]
  68. 67.
    Hirsch T, Rothoeft T, Teig N, Bauer JW, Pellegrini G et al. 2017. Regeneration of the entire human epidermis using transgenic stem cells. Nature 551:327–32
    [Google Scholar]
  69. 68.
    Hohenester E. 2019. Laminin G-like domains: dystroglycan-specific lectins. Curr. Opin. Struct. Biol. 56:56–63
    [Google Scholar]
  70. 69.
    Hohenester E, Yurchenco PD. 2013. Laminins in basement membrane assembly. Cell Adhes. Migr. 7:56–63
    [Google Scholar]
  71. 70.
    Hostikka SL, Eddy RL, Byers MG, Höyhtyä M, Shows TB, Tryggvason K. 1990. Identification of a distinct type IV collagen alpha chain with restricted kidney distribution and assignment of its gene to the locus of X chromosome-linked Alport syndrome. PNAS 87:1606–10
    [Google Scholar]
  72. 71.
    Hunter I, Schulthess T, Engel J. 1992. Laminin chain assembly by triple and double stranded coiled-coil structures. J. Biol. Chem. 267:6006–11
    [Google Scholar]
  73. 72.
    Hynes RO. 2012. The evolution of metazoan extracellular matrix. J. Cell Biol. 196:671–79
    [Google Scholar]
  74. 73.
    Ito S, Nagata K. 2021. Quality control of procollagen in cells. Annu. Rev. Biochem. 90:631–58
    [Google Scholar]
  75. 74.
    J. Gene Med. 2021. Gene Therapy Clinical Trials Worldwide Accessed September 5, 2021. https://a873679.fmphost.com/fmi/webd/GTCT
  76. 75.
    Jacków J, Schlosser A, Sormunen R, Nyström A, Sitaru C et al. 2016. Generation of a functional non-shedding collagen XVII mouse model: relevance of collagen XVII shedding in wound healing. J. Investig. Dermatol. 136:516–25
    [Google Scholar]
  77. 76.
    Jande SS, Belanger LF. 1971. Electron microscopy of osteocytes and the pericellular matrix in rat trabecular bone. Calcif. Tissue Res. 6:280–89
    [Google Scholar]
  78. 77.
    Jen M, Nallasamy S 2016. Ocular manifestations of genetic skin disorders. Clin. Dermatol. 34:242–75
    [Google Scholar]
  79. 78.
    Kallunki P, Sainio K, Eddy R, Byers M, Kallunki T et al. 1992. A truncated laminin chain homologous to the B2 chain: structure, spatial expression, and chromosomal assignment. J. Cell Biol. 119:679–93
    [Google Scholar]
  80. 79.
    Kalluri R, Shield CF, Todd P, Hudson BG, Neilson EG. 1997. Isoform switching of type IV collagen is developmentally arrested in X-linked Alport syndrome leading to increased susceptibility of renal basement membranes to endoproteolysis. J. Clin. Investig. 99:2470–78
    [Google Scholar]
  81. 80.
    Kamiyoshi N, Nozu K, Fu XJ, Morisada N, Nozu Y et al. 2016. Genetic, clinical, and pathologic backgrounds of patients with autosomal dominant Alport syndrome. Clin. J. Am. Soc. Nephrol. 11:1441–49
    [Google Scholar]
  82. 81.
    Kashtan CE. 2021. Alport syndrome: achieving early diagnosis and treatment. Am. J. Kidney Dis. 77:272–79
    [Google Scholar]
  83. 82.
    Khoshnoodi J, Pedchenko V, Hudson BG. 2008. Mammalian collagen IV. Microsc. Res. Tech. 71:357–70
    [Google Scholar]
  84. 83.
    Kleinman HK, Martin GR. 2005. Matrigel: basement membrane matrix with biological activity. Semin. Cancer Biol. 15:378–86
    [Google Scholar]
  85. 84.
    Knox S, Fosang AJ, Last K, Melrose J, Whitelock J. 2005. Perlecan from human epithelial cells is a hybrid heparan/chondroitin/keratan sulfate proteoglycan. FEBS Lett 579:5019–23
    [Google Scholar]
  86. 85.
    Kocher T, Wagner RN, Klausegger A, Guttmann-Gruber C, Hainzl S et al. 2019. Improved double-nicking strategies for COL7A1-editing by homologous recombination. Mol. Ther. Nucleic Acids 18:496–507
    [Google Scholar]
  87. 86.
    Korstanje R, Caputo CR, Doty RA, Cook SA, Bronson RT et al. 2014. A mouse Col4a4 mutation causing Alport glomerulosclerosis with abnormal collagen α3α4α5(IV) trimers. Kidney Int 85:1461–68
    [Google Scholar]
  88. 87.
    Kulkarni JA, Witzigmann D, Thomson SB, Chen S, Leavitt BR et al. 2021. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 16:630–43
    [Google Scholar]
  89. 88.
    Kvist AJ, Nyström A, Hultenby K, Sasaki T, Talts JF, Aspberg A. 2008. The major basement membrane components localize to the chondrocyte pericellular matrix—a cartilage basement membrane equivalent?. Matrix Biol 27:22–33
    [Google Scholar]
  90. 89.
    Landrum MJ, Lee JM, Benson M, Brown GR, Chao C et al. 2018. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 46:D1062–67
    [Google Scholar]
  91. 90.
    LeBleu V, Sugimoto H, Mundel TM, Gerami-Naini B, Finan E et al. 2009. Stem cell therapies benefit Alport syndrome. J. Am. Soc. Nephrol. 20:2359–70
    [Google Scholar]
  92. 91.
    LeBleu V, Sund M, Sugimoto H, Birrane G, Kanasaki K et al. 2010. Identification of the NC1 domain of α3 chain as critical for α3α4α5 type IV collagen network assembly. J. Biol. Chem. 285:41874–85
    [Google Scholar]
  93. 92.
    Li C, Samulski RJ. 2020. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 21:255–72
    [Google Scholar]
  94. 93.
    Li K, Tamai K, Tan EM, Uitto J. 1993. Cloning of type XVII collagen: complementary and genomic DNA sequences of mouse 180-kilodalton bullous pemphigoid antigen (BPAG2) predict an interrupted collagenous domain, a transmembrane segment, and unusual features in the 5′-end of the gene and the 3′-untranslated region of the mRNA. J. Biol. Chem. 268:8825–34
    [Google Scholar]
  95. 94.
    Lwin SM, Syed F, Di WL, Kadiyirire T, Liu L et al. 2019. Safety and early efficacy outcomes for lentiviral fibroblast gene therapy in recessive dystrophic epidermolysis bullosa. JCI Insight 4:e126243
    [Google Scholar]
  96. 95.
    Macdonald PR, Lustig A, Steinmetz MO, Kammerer RA. 2010. Laminin chain assembly is regulated by specific coiled-coil interactions. J. Struct. Biol. 170:398–405
    [Google Scholar]
  97. 96.
    Maiti G, Frikeche J, Lam CY, Biswas A, Shinde V et al. 2021. Matrix lumican endocytosed by immune cells controls receptor ligand trafficking to promote TLR4 and restrict TLR9 in sepsis. PNAS 118:e2100999118
    [Google Scholar]
  98. 97.
    Marinkovich M, Lane A, Sridhar K, Keene D, Malyala A, Maslowski J. 2018. A phase 1/2 study of genetically-corrected, collagen VII expressing autologous human dermal fibroblasts injected into the skin of patients with recessive dystrophic epidermolysis bullosa (RDEB). J. Investig. Dermatol. 138:S100 Abstr .)
    [Google Scholar]
  99. 98.
    Markowitz D, Goff S, Bank A. 1988. A safe packaging line for gene transfer: separating viral genes on two different plasmids. J. Virol. 62:1120–24
    [Google Scholar]
  100. 99.
    Martinez JR, Dhawan A, Farach-Carson MC. 2018. Modular proteoglycan perlecan/HSPG2: mutations, phenotypes, and functions. Genes 9:556
    [Google Scholar]
  101. 100.
    Mavilio F, Pellegrini G, Ferrari S, Di Nunzio F, Di Iorio E et al. 2006. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat. Med. 12:1397–402
    [Google Scholar]
  102. 101.
    McKee KK, Hohenester E, Aleksandrova M, Yurchenco PD. 2021. Organization of the laminin polymer node. Matrix Biol 98:49–63
    [Google Scholar]
  103. 102.
    Merril CR, Geier MR, Petricciani JC. 1971. Bacterial virus gene expression in human cells. Nature 233:398–400
    [Google Scholar]
  104. 103.
    Mienaltowski MJ, Birk DE. 2014. Structure, physiology, and biochemistry of collagens. Adv. Exp. Med. Biol. 802:5–29
    [Google Scholar]
  105. 104.
    Miner JH. 1998. Developmental biology of glomerular basement membrane components. Curr. Opin. Nephrol. Hypertens. 7:13–19
    [Google Scholar]
  106. 105.
    Miner JH, Sanes JR. 1996. Molecular and functional defects in kidneys of mice lacking collagen alpha 3(IV): implications for Alport syndrome. J. Cell Biol. 135:1403–13
    [Google Scholar]
  107. 106.
    Mongiat M, Sweeney SM, San Antonio JD, Fu J, Iozzo RV 2003. Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J. Biol. Chem. 278:4238–49
    [Google Scholar]
  108. 107.
    Munyon W, Kraiselburd E, Davis D, Mann J 1971. Transfer of thymidine kinase to thymidine kinaseless L cells by infection with ultraviolet-irradiated herpes simplex virus. J. Virol. 7:813–20
    [Google Scholar]
  109. 108.
    Murdoch A, Dodge G, Cohen I, Tuan R, Iozzo R. 1992. Primary structure of the human heparan sulfate proteoglycan from basement membrane (HSPG2/perlecan). J. Biol. Chem. 267:8544–57
    [Google Scholar]
  110. 109.
    Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. 2016. The extracellular matrix: tools and insights for the “omics” era. Matrix Biol 49:10–24
    [Google Scholar]
  111. 110.
    Natl. Cent. Biomed. Inf. 2021. ClinVar Accessed July 27, 2021. https://www.ncbi.nlm.nih.gov/clinvar
  112. 111.
    Natl. Libr. Med. 2021. ClinicalTrials.gov Accessed July 27, 2021. https://clinicaltrials.gov
  113. 112.
    Natl. Organ. Rare Disord. 2021. Schwartz Jampel syndrome. National Organization of Rare Diseases. https://rarediseases.org/rare-diseases/schwartz-jampel-syndrome
    [Google Scholar]
  114. 113.
    Natsuga K, Watanabe M, Nishie W, Shimizu H. 2019. Life before and beyond blistering: the role of collagen XVII in epidermal physiology. Exp. Dermatol. 28:1135–41
    [Google Scholar]
  115. 114.
    Nishie W, Lamer S, Schlosser A, Licarete E, Franzke CW et al. 2010. Ectodomain shedding generates neoepitopes on collagen XVII, the major autoantigen for bullous pemphigoid. J. Immunol. 185:4938–47
    [Google Scholar]
  116. 115.
    Noonan D, Fulle A, Valante P, Cai S, Horigan E et al. 1991. The complete sequence of perlecan, a basement membrane heparan sulfate proteoglycan, reveals extensive similarity with laminin A chain, LDL-receptor and N-CAM. J. Biol. Chem. 266:22939–47
    [Google Scholar]
  117. 116.
    Nystrom A, Shaik ZP, Gullberg D, Krieg T, Eckes B et al. 2009. Role of tyrosine phosphatase SHP-1 in the mechanism of endorepellin angiostatic activity. Blood 114:4897–906
    [Google Scholar]
  118. 117.
    Ohno M, Ohno N, Kefalides NA. 1991. Studies on human laminin and laminin-collagen complexes. Connect. Tissue Res. 25:251–63
    [Google Scholar]
  119. 118.
    Orkin RW, Gehron P, McGoodwin EB, Martin GR, Valentine T, Swarm R. 1977. A murine tumor producing a matrix of basement membrane. J. Exp. Med. 145:204–20
    [Google Scholar]
  120. 119.
    Osborn MJ, Newby GA, McElroy AN, Knipping F, Nielsen SC et al. 2020. Base editor correction of COL7A1 in recessive dystrophic epidermolysis bullosa patient-derived fibroblasts and iPSCs. J. Investig. Dermatol. 140:338–47.e5
    [Google Scholar]
  121. 120.
    Pedchenko V, Boudko SP, Barber M, Mikhailova T, Saus J et al. 2021. Collagen IVα345 dysfunction in glomerular basement membrane diseases. III. A functional framework for α345 hexamer assembly. J. Biol. Chem. 296:100592
    [Google Scholar]
  122. 121.
    Pokidysheva EN, Seeger H, Pedchenko V, Chetyrkin S, Bergmann C et al. 2021. Collagen IVα345 dysfunction in glomerular basement membrane diseases. I. Discovery of a COL4A3 variant in familial Goodpasture's and Alport diseases. J. Biol. Chem. 296:100590
    [Google Scholar]
  123. 122.
    Pozzi A, Yurchenco PD, Iozzo RV. 2017. The nature and biology of basement membranes. Matrix Biol. 57–58:1–11
    [Google Scholar]
  124. 123.
    Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. 2010. Limbal stem-cell therapy and long-term corneal regeneration. N. Engl. J. Med. 363:147–55
    [Google Scholar]
  125. 124.
    Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. 2013. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8:2281–308
    [Google Scholar]
  126. 125.
    Raote I, Malhotra V. 2021. Tunnels for protein export from the endoplasmic reticulum. Annu. Rev. Biochem. 90:605–30
    [Google Scholar]
  127. 126.
    Ricard-Blum S. 2011. The collagen family. Cold Spring Harb. Perspect. Biol. 3:a004978
    [Google Scholar]
  128. 127.
    Rogalski T, Williams B, Mullen G, Moerman D. 1993. Products of the unc-52 gene in Caenorhabditis elegans are homologous to the core protein of the mammalian basement membrane heparan sulfate proteoglycan. Gene Dev 7:1471–84
    [Google Scholar]
  129. 128.
    Saha K, Sontheimer EJ, Brooks PJ, Dwinell MR, Gersbach CA et al. 2021. The NIH Somatic Cell Genome Editing program. Nature 592:195–204
    [Google Scholar]
  130. 129.
    Sarras MP Jr., Madden ME, Zhang XM, Gunwar S, Huff JK, Hudson BG. 1991. Extracellular matrix (mesoglea) of Hydra vulgaris. I. Isolation and characterization. Dev. Biol. 148:481–94
    [Google Scholar]
  131. 130.
    Sato M, Yamato M, Mitani G, Takagaki T, Hamahashi K et al. 2019. Combined surgery and chondrocyte cell-sheet transplantation improves clinical and structural outcomes in knee osteoarthritis. NPJ Regen. Med. 4:4
    [Google Scholar]
  132. 131.
    Sebastiano V, Zhen HH, Haddad B, Bashkirova E, Melo SP et al. 2014. Human COL7A1-corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Sci. Transl. Med. 6:264ra163
    [Google Scholar]
  133. 132.
    Shams F, Rahimpour A, Vahidnezhad H, Hosseinzadeh S, Moravvej H et al. 2021. The utility of dermal fibroblasts in treatment of skin disorders: a paradigm of recessive dystrophic epidermolysis bullosa. Dermatol. Ther. 34:e15028
    [Google Scholar]
  134. 133.
    Shimizu H, Ishiko A, Masunaga T, Kurihara Y, Sato M et al. 1997. Most anchoring fibrils in human skin originate and terminate in the lamina densa. Lab. Investig. 76:753–63
    [Google Scholar]
  135. 134.
    Shinde V, Sobreira N, Wohler ES, Maiti G, Hu N et al. 2021. Pathogenic alleles in microtubule, secretory granule and extracellular matrix-related genes in familial keratoconus. Hum. Mol. Genet. 30:658–71
    [Google Scholar]
  136. 135.
    Shinkuma S, Guo Z, Christiano AM. 2016. Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa. PNAS 113:5676–81
    [Google Scholar]
  137. 136.
    Shivram H, Cress BF, Knott GJ, Doudna JA. 2021. Controlling and enhancing CRISPR systems. Nat. Chem. Biol. 17:10–19
    [Google Scholar]
  138. 137.
    Siprashvili Z, Nguyen NT, Gorell ES, Loutit K, Khuu P et al. 2016. Safety and wound outcomes following genetically corrected autologous epidermal grafts in patients with recessive dystrophic epidermolysis bullosa. JAMA 316:1808–17
    [Google Scholar]
  139. 138.
    Smith SM, Melrose J. 2019. Type XI collagen-perlecan-HS interactions stabilise the pericellular matrix of annulus fibrosus cells and chondrocytes providing matrix stabilisation and homeostasis. J. Mol. Histol. 50:285–94
    [Google Scholar]
  140. 139.
    Smith SM, West LA, Govindraj P, Zhang X, Ornitz DM, Hassell JR. 2007. Heparan and chondroitin sulfate on growth plate perlecan mediate binding and delivery of FGF-2 to FGF receptors. Matrix Biol 26:175–84
    [Google Scholar]
  141. 140.
    Smyth N, Vatansever HS, Murray P, Meyer M, Frie C et al. 1999. Absence of basement membranes after targeting the LAMC1 gene results in embryonic lethality due to failure of endoderm differentiation. J. Cell Biol. 144:151–60
    [Google Scholar]
  142. 141.
    Spear GS, Slusser RJ. 1972. Alport's syndrome: emphasizing electron microscopic studies of the glomerulus. Am. J. Pathol. 69:213–24
    [Google Scholar]
  143. 142.
    Stum M, Davoine CS, Fontaine B, Nicole S 2005. Schwartz-Jampel syndrome and perlecan deficiency. Acta Myol 24:89–92
    [Google Scholar]
  144. 143.
    Stum M, Davoine CS, Vicart S, Guillot-Noel L, Topaloglu H et al. 2006. Spectrum of HSPG2 (Perlecan) mutations in patients with Schwartz-Jampel syndrome. Hum. Mutat. 27:1082–91
    [Google Scholar]
  145. 144.
    SundarRaj N, Fite D, Ledbetter S, Chakravarti S, Hassell J. 1995. Perlecan is a component of cartilage matrix and promotes chondrocyte attachment. J. Cell Sci. 108:2663–72
    [Google Scholar]
  146. 145.
    Takagi J, Yang Y, Liu JH, Wang JH, Springer TA. 2003. Complex between nidogen and laminin fragments reveals a paradigmatic β-propeller interface. Nature 424:969–74
    [Google Scholar]
  147. 146.
    Timpl R, Dziadek M, Fujiwara S, Nowack H, Wick G. 1983. Nidogen: a new, self-aggregating basement membrane protein. Eur. J. Biochem. 137:455–65
    [Google Scholar]
  148. 147.
    Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR. 1979. Laminin—a glycoprotein from basement membranes. J. Biol. Chem. 254:9933–37
    [Google Scholar]
  149. 148.
    Timpl R, Wiedemann H, van Delden V, Furthmayr H, Kühn K. 1981. A network model for the organization of type IV collagen molecules in basement membranes. Eur. J. Biochem. 120:203–11
    [Google Scholar]
  150. 149.
    Turczynski S, Titeux M, Pironon N, Hovnanian A. 2012. Antisense-mediated exon skipping to reframe transcripts. Exon Skipping: Methods and Protocols A Aartsma-Rus 221–38 Totowa, NJ: Humana
    [Google Scholar]
  151. 150.
    Vanakker O, Callewaert B, Malfait F, Coucke P. 2015. The genetics of soft connective tissue disorders. Annu. Rev. Genom. Hum. Genet. 16:229–55
    [Google Scholar]
  152. 151.
    Varki R, Sadowski S, Pfendner E, Uitto J. 2006. Epidermolysis bullosa. I. Molecular genetics of the junctional and hemidesmosomal variants. J. Med. Genet. 43:641–52
    [Google Scholar]
  153. 152.
    Varki R, Sadowski S, Uitto J, Pfendner E. 2007. Epidermolysis bullosa. II. Type VII collagen mutations and phenotype-genotype correlations in the dystrophic subtypes. J. Med. Genet. 44:181–92
    [Google Scholar]
  154. 153.
    Velling T, Collo G, Sorokin L, Durbeej M, Zhang H, Gullberg D. 1996. Distinct α7Aβ1 and α7Bβ1 integrin expression patterns during mouse development: α7A is restricted to skeletal muscle but α7B is expressed in striated muscle, vasculature, and nervous system. Dev. Dyn. 207:355–71
    [Google Scholar]
  155. 154.
    Vonk LA, Roël G, Hernigou J, Kaps C, Hernigou P. 2021. Role of matrix-associated autologous chondrocyte implantation with spheroids in the treatment of large chondral defects in the knee: a systematic review. Int. J. Mol. Sci. 22:7149
    [Google Scholar]
  156. 155.
    Wagner JE, Ishida-Yamamoto A, McGrath JA, Hordinsky M, Keene DR et al. 2010. Bone marrow transplantation for recessive dystrophic epidermolysis bullosa. N. Engl. J. Med. 363:629–39
    [Google Scholar]
  157. 156.
    Wang Y, Zhang Z, Luo J, Han X, Wei Y, Wei X. 2021. mRNA vaccine: a potential therapeutic strategy. Mol. Cancer 20:33
    [Google Scholar]
  158. 157.
    Warady BA, Agarwal R, Bangalore S, Chapman A, Levin A et al. 2020. Alport syndrome classification and management. Kidney Med 2:639–49
    [Google Scholar]
  159. 158.
    Wenzel D, Bayerl J, Nyström A, Bruckner-Tuderman L, Meixner A, Penninger JM. 2014. Genetically corrected iPSCs as cell therapy for recessive dystrophic epidermolysis bullosa. Sci. Transl. Med. 6:264ra165
    [Google Scholar]
  160. 159.
    Wilusz RE, Sanchez-Adams J, Guilak F. 2014. The structure and function of the pericellular matrix of articular cartilage. Matrix Biol 39:25–32
    [Google Scholar]
  161. 160.
    Yamamura T, Horinouchi T, Adachi T, Terakawa M, Takaoka Y et al. 2020. Development of an exon skipping therapy for X-linked Alport syndrome with truncating variants in COL4A5. Nat. Commun. 11:2777
    [Google Scholar]
  162. 161.
    Yap L, Tay HG, Nguyen MTX, Tjin MS, Tryggvason K. 2019. Laminins in cellular differentiation. Trends Cell Biol 29:987–1000
    [Google Scholar]
  163. 162.
    Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. 2014. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15:541–55
    [Google Scholar]
  164. 163.
    Yousif LF, Di Russo J, Sorokin L. 2013. Laminin isoforms in endothelial and perivascular basement membranes. Cell Adhes. Migr. 7:101–10
    [Google Scholar]
  165. 164.
    Yurchenco PD. 2011. Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb. Perspect. Biol. 3:a004911v1
    [Google Scholar]
  166. 165.
    Yurchenco PD, Ruben GC. 1987. Basement membrane structure in situ: evidence for lateral associations in the type IV collagen network. J. Cell Biol. 105:2559–68
    [Google Scholar]
  167. 166.
    Zhang Y, Nishiyama T, Li H, Huang J, Atmanli A et al. 2021. A consolidated AAV system for single-cut CRISPR correction of a common Duchenne muscular dystrophy mutation. Mol. Ther. Methods Clin. Dev. 22:122–32
    [Google Scholar]
  168. 167.
    Zhou J, Leinonen A, Tryggvason K. 1994. Structure of the human type IV collagen COL4A5 gene. J. Biol. Chem. 269:6608–14
    [Google Scholar]
  169. 168.
    Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D et al. 1998. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72:9873–80
    [Google Scholar]
/content/journals/10.1146/annurev-genom-083117-021702
Loading
/content/journals/10.1146/annurev-genom-083117-021702
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error