Rheumatoid arthritis (RA) is the most common inflammatory arthritis and exhibits genetic overlap with other autoimmune and inflammatory disorders. Although predominant associations with the locus have been known for decades, recent data have revealed additional insight into the likely causative variants within as well as within other HLA loci that contribute to disease risk. In addition, more than 100 common variants in non-HLA loci have been implicated in disease susceptibility. Genetic factors are involved not only in the development of RA, but also with various disease subphenotypes, including production and circulating levels of autoantibodies and joint destruction. The major current challenge is to integrate these new data into a precise understanding of disease pathogenesis, including the critical cell types and molecular networks involved as well as interactions with environmental factors. We predict that delineating the functional effects of genetic variants is likely to drive new diagnostic and therapeutic approaches to the disease.

Keyword(s): endophenotypeHLA

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT. 1.  et al. 2010. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 62:2569–81 [Google Scholar]
  2. Amara K, Steen J, Murray F, Morbach H, Fernandez-Rodriguez BM. 2.  et al. 2013. Monoclonal IgG antibodies generated from joint-derived B cells of RA patients have a strong bias toward citrullinated autoantigen recognition. J. Exp. Med. 210:445–55 [Google Scholar]
  3. Arkema EV, Lu B, Malspeis S, Karlson EW, Costenbader KH. 3.  2015. Monocyte chemotactic protein-1 elevation prior to the onset of rheumatoid arthritis among women. Biomark. Med. 9:723–29 [Google Scholar]
  4. Balsa A, Cabezon A, Orozco G, Cobo T, Miranda-Carus E. 4.  et al. 2010. Influence of HLA DRB1 alleles in the susceptibility of rheumatoid arthritis and the regulation of antibodies against citrullinated proteins and rheumatoid factor. Arthritis Res. Ther. 12:R62 [Google Scholar]
  5. Bang SY, Na YJ, Kim K, Joo YB, Park Y. 5.  et al. 2014. Targeted exon sequencing fails to identify rare coding variants with large effect in rheumatoid arthritis. Arthritis Res. Ther. 16:447 [Google Scholar]
  6. Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkalingam AP. 6.  et al. 2004. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75:330–37 [Google Scholar]
  7. Boechat AL, Ogusku MM, Sadahiro A, dos Santos MC. 7.  2013. Association between the PTPN22 1858C/T gene polymorphism and tuberculosis resistance. Infect. Genet. Evol. 16:310–13 [Google Scholar]
  8. Bossini-Castillo L, de Kovel C, Källberg H, van 't Slot R, Italiaander A. 8.  et al. 2015. A genome-wide association study of rheumatoid arthritis without antibodies against citrullinated peptides. Ann. Rheum. Dis. 74:e15 [Google Scholar]
  9. Bottini N, Peterson EJ. 9.  2014. Tyrosine phosphatase PTPN22: multifunctional regulator of immune signaling, development, and disease. Annu. Rev. Immunol. 32:83–119 [Google Scholar]
  10. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. 10.  2015. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109:21.29.1–9 [Google Scholar]
  11. Byng-Maddick R, Ehrenstein MR. 11.  2015. The impact of biological therapy on regulatory T cells in rheumatoid arthritis. Rheumatology 54:768–75 [Google Scholar]
  12. Catrina AI, Ytterberg AJ, Reynisdottir G, Malmström V, Klareskog L. 12.  2014. Lungs, joints and immunity against citrullinated proteins in rheumatoid arthritis. Nat. Rev. Rheumatol. 10:645–53 [Google Scholar]
  13. Chang HH, Dwivedi N, Nicholas AP, Ho IC. 13.  2015. The W620 polymorphism in PTPN22 disrupts its interaction with peptidylarginine deiminase type 4 and enhances citrullination and NETosis. Arthritis Rheumatol. 67:2323–34 [Google Scholar]
  14. Cheng T, Choi Y, Finkel TH, Tsao PY, Ji MQ, Eisenberg RA. 14.  2013. Tumor necrosis factor receptor-associated factor 1 influences KRN/I-Ag7 mouse arthritis autoantibody production. J. Clin. Immunol. 33:759–66 [Google Scholar]
  15. Chung WS, Peng CL, Lin CL, Chang YJ, Chen YF. 15.  et al. 2014. Rheumatoid arthritis increases the risk of deep vein thrombosis and pulmonary thromboembolism: a nationwide cohort study. Ann. Rheum. Dis. 73:1774–80 [Google Scholar]
  16. Churov AV, Oleinik EK, Knip M. 16.  2015. MicroRNAs in rheumatoid arthritis: altered expression and diagnostic potential. Autoimmun. Rev. 14:1029–37 [Google Scholar]
  17. Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. 17.  2005. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat. Genet. 37:161–65 [Google Scholar]
  18. Cui J, Stahl EA, Saevarsdottir S, Miceli C, Diogo D. 18.  et al. 2013. Genome-wide association study and gene expression analysis identifies CD84 as a predictor of response to etanercept therapy in rheumatoid arthritis. PLOS Genet. 9:e1003394 [Google Scholar]
  19. Cui J, Taylor KE, Lee YC, Källberg H, Weinblatt ME. 19.  et al. 2014. The influence of polygenic risk scores on heritability of anti-CCP level in RA. Genes Immun. 15:107–14 [Google Scholar]
  20. de Rooy DP, Zhernakova A, Tsonaka R, Willemze A, Kurreeman BA. 20.  et al. 2014. A genetic variant in the region of MMP-9 is associated with serum levels and progression of joint damage in rheumatoid arthritis. Ann. Rheum. Dis. 73:1163–69 [Google Scholar]
  21. Demoruelle MK, Parish MC, Derber LA, Kolfenbach JR, Hughes-Austin JM. 21.  et al. 2013. Performance of anti-cyclic citrullinated peptide assays differs in subjects at increased risk of rheumatoid arthritis and subjects with established disease. Arthritis Rheum. 65:2243–52 [Google Scholar]
  22. Dendrou CA, Plagnol V, Fung E, Yang JH, Downes K. 22.  et al. 2009. Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable human bioresource. Nat. Genet. 41:1011–15 [Google Scholar]
  23. Di Meglio P, Di Cesare A, Laggner U, Chu CC, Napolitano L. 23.  et al. 2011. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans. PLOS ONE 6:e17160 [Google Scholar]
  24. Dilthey AT, Moutsianas L, Leslie S, McVean G. 24.  2011. HLA*IMP—an integrated framework for imputing classical HLA alleles from SNP genotypes. Bioinformatics 27:968–72 [Google Scholar]
  25. Diogo D, Bastarache L, Liao KP, Graham RR, Fulton RS. 25.  et al. 2015. TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits. PLOS ONE 10:e0122271 [Google Scholar]
  26. Diogo D, Kurreeman F, Stahl EA, Liao KP, Gupta N. 26.  et al. 2013. Rare, low-frequency, and common variants in the protein-coding sequence of biological candidate genes from GWASs contribute to risk of rheumatoid arthritis. Am. J. Hum. Genet. 92:15–27 [Google Scholar]
  27. Ehrenstein MR, Evans JG, Singh A, Moore S, Warnes G. 27.  et al. 2004. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J. Exp. Med. 200:277–85 [Google Scholar]
  28. Essouma M, Noubiap JJ. 28.  2015. Is air pollution a risk factor for rheumatoid arthritis?. J. Inflamm. 12:48 [Google Scholar]
  29. Eyre S, Bowes J, Diogo D, Lee A, Barton A. 29.  et al. 2012. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat. Genet. 44:1336–40 [Google Scholar]
  30. Eyre S, Ke X, Lawrence R, Bowes J, Panoutsopoulou K. 30.  et al. 2011. Examining the overlap between genome-wide rare variant association signals and linkage peaks in rheumatoid arthritis. Arthritis Rheum. 63:1522–26 [Google Scholar]
  31. Farh KK, Marson A, Zhu J, Kleinewietfeld M, Housley WJ. 31.  et al. 2015. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518:337–43 [Google Scholar]
  32. Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y. 32.  et al. 2015. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47:1228–35 [Google Scholar]
  33. Firestein GS. 33.  2003. Evolving concepts of rheumatoid arthritis. Nature 423:356–61 [Google Scholar]
  34. Fries JF, Wolfe F, Apple R, Erlich H, Bugawan T. 34.  et al. 2002. HLA-DRB1 genotype associations in 793 white patients from a rheumatoid arthritis inception cohort: frequency, severity, and treatment bias. Arthritis Rheum. 46:2320–29 [Google Scholar]
  35. Frisell T, Holmqvist M, Källberg H, Klareskog L, Alfredsson L, Askling J. 35.  2013. Familial risks and heritability of rheumatoid arthritis: role of rheumatoid factor/anti-citrullinated protein antibody status, number and type of affected relatives, sex, and age. Arthritis Rheum. 65:2773–82 [Google Scholar]
  36. Gan RW, Trouw LA, Shi J, Toes RE, Huizinga TW. 36.  et al. 2015. Anti-carbamylated protein antibodies are present prior to rheumatoid arthritis and are associated with its future diagnosis. J. Rheumatol. 42:572–79 [Google Scholar]
  37. Gan RW, Young KA, Zerbe GO, Demoruelle MK, Weisman MH. 37.  et al. 2016. Lower omega-3 fatty acids are associated with the presence of anti-cyclic citrullinated peptide autoantibodies in a population at risk for future rheumatoid arthritis: a nested case-control study. Rheumatology 55:367–76 [Google Scholar]
  38. Gibofsky A, Winchester RJ, Patarroyo M, Fotino M, Kunkel HG. 38.  1978. Disease associations of the Ia-like human alloantigens. Contrasting patterns in rheumatoid arthritis and systemic lupus erythematosus. J. Exp. Med. 148:1728–32 [Google Scholar]
  39. Gourh P, Agarwal SK, Martin E, Divecha D, Rueda B. 39.  et al. 2010. Association of the C8orf13-BLK region with systemic sclerosis in North-American and European populations. J. Autoimmun. 34:155–62 [Google Scholar]
  40. Gregersen PK, Amos CI, Lee AT, Lu Y, Remmers EF. 40.  et al. 2009. REL, encoding a member of the NF-κB family of transcription factors, is a newly defined risk locus for rheumatoid arthritis. Nat. Genet. 41:820–23 [Google Scholar]
  41. Gregersen PK, Klein G, Keogh M, Kern M, DeFranco M. 41.  et al. 2015. The Genotype and Phenotype (GaP) registry: a living biobank for the analysis of quantitative traits. Immunol. Res. 1:107–12 [Google Scholar]
  42. Gregersen PK, Manjarrez-Orduño N. 42.  2013. FOXO in the hole: leveraging GWAS for outcome and function. Cell 155:11–12 [Google Scholar]
  43. Gregersen PK, Silver J, Winchester RJ. 43.  1987. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30:1205–13 [Google Scholar]
  44. Gusev A, Bhatia G, Zaitlen N, Vilhjalmsson BJ, Diogo D. 44.  et al. 2013. Quantifying missing heritability at known GWAS loci. PLOS Genet. 9:e1003993 [Google Scholar]
  45. Hall FC, Weeks DE, Camilleri JP, Williams LA, Amos N. 45.  et al. 1996. Influence of the HLA-DRB1 locus on susceptibility and severity in rheumatoid arthritis. QJM 89:821–29 [Google Scholar]
  46. Han B, Diogo D, Eyre S, Källberg H, Zhernakova A. 46.  et al. 2014. Fine mapping seronegative and seropositive rheumatoid arthritis to shared and distinct HLA alleles by adjusting for the effects of heterogeneity. Am. J. Hum. Genet. 94:522–32 [Google Scholar]
  47. Hasegawa K, Martin F, Huang G, Tumas D, Diehl L, Chan AC. 47.  2004. PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science 303:685–89 [Google Scholar]
  48. Hemminki K, Li X, Sundquist J, Sundquist K. 48.  2009. Familial associations of rheumatoid arthritis with autoimmune diseases and related conditions. Arthritis Rheum. 60:661–68 [Google Scholar]
  49. Hensvold AH, Magnusson PK, Joshua V, Hansson M, Israelsson L. 49.  et al. 2013. Environmental and genetic factors in the development of anticitrullinated protein antibodies (ACPAs) and ACPA-positive rheumatoid arthritis: an epidemiological investigation in twins. Ann. Rheum. Dis. 74:375–80 [Google Scholar]
  50. Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W. 50.  et al. 2008. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N. Engl. J. Med. 358:900–9 [Google Scholar]
  51. Hu X, Kim H, Raj T, Brennan PJ, Trynka G. 51.  et al. 2014. Regulation of gene expression in autoimmune disease loci and the genetic basis of proliferation in CD4+ effector memory T cells. PLOS Genet. 10:e1004404 [Google Scholar]
  52. Hu X, Kim H, Stahl E, Plenge R, Daly M, Raychaudhuri S. 52.  2011. Integrating autoimmune risk loci with gene-expression data identifies specific pathogenic immune cell subsets. Am. J. Hum. Genet. 89:496–506 [Google Scholar]
  53. Hughes-Austin JM, Deane KD, Derber LA, Kolfenbach JR, Zerbe GO. 53.  et al. 2013. Multiple cytokines and chemokines are associated with rheumatoid arthritis-related autoimmunity in first-degree relatives without rheumatoid arthritis: Studies of the Aetiology of Rheumatoid Arthritis (SERA). Ann. Rheum. Dis. 72:901–7 [Google Scholar]
  54. Irigoyen P, Lee AT, Wener MH, Li W, Kern M. 54.  et al. 2005. Regulation of anti-cyclic citrullinated peptide antibodies in rheumatoid arthritis: contrasting effects of HLA-DR3 and the shared epitope alleles. Arthritis Rheum. 52:3813–18 [Google Scholar]
  55. Jawaheer D, Li W, Graham RR, Chen W, Damle A. 55.  et al. 2002. Dissecting the genetic complexity of the association between human leukocyte antigens and rheumatoid arthritis. Am. J. Hum. Genet. 71:585–94 [Google Scholar]
  56. Jia X, Han B, Onengut-Gumuscu S, Chen WM, Concannon PJ. 56.  et al. 2013. Imputing amino acid polymorphisms in human leukocyte antigens. PLOS ONE 8:e64683 [Google Scholar]
  57. Jiang L, Yin J, Ye L, Yang J, Hemani G. 57.  et al. 2014. Novel risk loci for rheumatoid arthritis in Han Chinese and congruence with risk variants in Europeans. Arthritis Rheumatol. 66:1121–32 [Google Scholar]
  58. Jiang X, Trouw LA, van Wesemael TJ, Shi J, Bengtsson C. 58.  et al. 2014. Anti-CarP antibodies in two large cohorts of patients with rheumatoid arthritis and their relationship to genetic risk factors, cigarette smoking and other autoantibodies. Ann. Rheum. Dis. 73:1761–68 [Google Scholar]
  59. Johansson M, Arlestig L, Hallmans G, Rantapaa-Dahlqvist S. 59.  2006. PTPN22 polymorphism and anti-cyclic citrullinated peptide antibodies in combination strongly predicts future onset of rheumatoid arthritis and has a specificity of 100% for the disease. Arthritis Res. Ther. 8:R19 [Google Scholar]
  60. Källberg H, Padyukov L, Plenge RM, Rönnelid J, Gregersen PK. 60.  et al. 2007. Gene-gene and gene-environment interactions involving HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis. Am. J. Hum. Genet. 80:867–75 [Google Scholar]
  61. Kim SJ, Gregersen PK, Diamond B. 61.  2013. Regulation of dendritic cell activation by microRNA let-7c and BLIMP1. J. Clin. Investig. 123:823–33 [Google Scholar]
  62. Klareskog L, Stolt P, Lundberg K, Källberg H, Bengtsson C. 62.  et al. 2006. A new model for an etiology of rheumatoid arthritis: Smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum. 54:38–46 [Google Scholar]
  63. Knevel R, de Rooy DPC, Zhernakova A, Grondal G, Krabben A. 63.  et al. 2013. Association of variants in IL2RA with progression of joint destruction in rheumatoid arthritis. Arthritis Rheum. 65:1684–93 [Google Scholar]
  64. Knevel R, Grondal G, Huizinga TW, Visser AW, Jonsson H. 64.  et al. 2012. Genetic predisposition of the severity of joint destruction in rheumatoid arthritis: a population-based study. Ann. Rheum. Dis. 71:707–9 [Google Scholar]
  65. Knevel R, Klein K, Somers K, Ospelt C, Houwing-Duistermaat JJ. 65.  et al. 2014. Identification of a genetic variant for joint damage progression in autoantibody-positive rheumatoid arthritis. Ann. Rheum. Dis. 73:2038–46 [Google Scholar]
  66. Kochi Y, Okada Y, Suzuki A, Ikari K, Terao C. 66.  et al. 2010. A regulatory variant in CCR6 is associated with rheumatoid arthritis susceptibility. Nat. Genet. 42:515–19 [Google Scholar]
  67. Kochi Y, Yamada R, Suzuki A, Harley JB, Shirasawa S. 67.  et al. 2005. A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat. Genet. 37:478–85 [Google Scholar]
  68. Kokkonen H, Mullazehi M, Berglin E, Hallmans G, Wadell G. 68.  et al. 2011. Antibodies of IgG, IgA and IgM isotypes against cyclic citrullinated peptide precede the development of rheumatoid arthritis. Arthritis Res. Ther. 13:R13 [Google Scholar]
  69. Kolfenbach JR, Deane KD, Derber LA, O'Donnell CI, Gilliland WR. 69.  et al. 2010. Autoimmunity to peptidyl arginine deiminase type 4 precedes clinical onset of rheumatoid arthritis. Arthritis Rheum. 62:2633–39 [Google Scholar]
  70. Krabben A, Wilson AG, de Rooy DP, Zhernakova A, Brouwer E. 70.  et al. 2013. Association of genetic variants in the IL4 and IL4R genes with the severity of joint damage in rheumatoid arthritis: a study in seven cohorts. Arthritis Rheum. 65:3051–57 [Google Scholar]
  71. Krintel SB, Palermo G, Johansen JS, Germer S, Essioux L. 71.  et al. 2012. Investigation of single nucleotide polymorphisms and biological pathways associated with response to TNFα inhibitors in patients with rheumatoid arthritis. Pharmacogenet. Genom. 22:577–89 [Google Scholar]
  72. Kroot EJ, de Jong BA, van Leeuwen MA, Swinkels H, van den Hoogen FH. 72.  et al. 2000. The prognostic value of anti-cyclic citrullinated peptide antibody in patients with recent-onset rheumatoid arthritis. Arthritis Rheum. 43:1831–35 [Google Scholar]
  73. Kurreeman FA, Padyukov L, Marques RB, Schrodi SJ, Seddighzadeh M. 73.  et al. 2007. A candidate gene approach identifies the TRAF1/C5 region as a risk factor for rheumatoid arthritis. PLOS Med. 4:e278 [Google Scholar]
  74. Laki J, Lundström E, Snir O, Rönnelid J, Ganji I. 74.  et al. 2012. Very high levels of anti-citrullinated protein antibodies are associated with HLA-DRB1*15 non-shared epitope allele in patients with rheumatoid arthritis. Arthritis Rheum. 64:2078–84 [Google Scholar]
  75. Lawrence JS. 75.  1970. Heberden Oration, 1969. Rheumatoid arthritis—nature or nurture?. Ann. Rheum. Dis. 29:357–79 [Google Scholar]
  76. Lee HS, Irigoyen P, Kern M, Lee A, Batliwalla F. 76.  et al. 2007. Interaction between smoking, the shared epitope, and anti-cyclic citrullinated peptide: a mixed picture in three large North American rheumatoid arthritis cohorts. Arthritis Rheum. 56:1745–53 [Google Scholar]
  77. Lee JC, Espeli M, Anderson CA, Linterman MA, Pocock JM. 77.  et al. 2013. Human SNP links differential outcomes in inflammatory and infectious disease to a FOXO3-regulated pathway. Cell 155:57–69 [Google Scholar]
  78. Lenz TL, Deutsch AJ, Han B, Hu X, Okada Y. 78.  et al. 2015. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat. Genet. 47:1085–90 [Google Scholar]
  79. Lewis-Faning E. 79.  1950. Report on an enquiry into the aetiological factors associated with rheumatoid arthritis. Ann. Rheum. Dis. 9:Suppl.1–94 [Google Scholar]
  80. Linn-Rasker SP, van der Helm-van Mil AH, van Gaalen FA, Kloppenburg M, de Vries RR. 80.  et al. 2006. Smoking is a risk factor for anti-CCP antibodies only in rheumatoid arthritis patients who carry HLA-DRB1 shared epitope alleles. Ann. Rheum. Dis. 65:366–71 [Google Scholar]
  81. Liu C, Batliwalla F, Li W, Lee A, Roubenoff R. 81.  et al. 2008. Genome-wide association scan identifies candidate polymorphisms associated with differential response to anti-TNF treatment in rheumatoid arthritis. Mol. Med. 14:575–81 [Google Scholar]
  82. Lu B, Hiraki LT, Sparks JA, Malspeis S, Chen CY. 82.  et al. 2014. Being overweight or obese and risk of developing rheumatoid arthritis among women: a prospective cohort study. Ann. Rheum. Dis. 73:1914–22 [Google Scholar]
  83. Lundberg K, Bengtsson C, Kharlamova N, Reed E, Jiang X. 83.  et al. 2012. Genetic and environmental determinants for disease risk in subsets of rheumatoid arthritis defined by the anticitrullinated protein/peptide antibody fine specificity profile. Ann. Rheum. Dis. 72:652–58 [Google Scholar]
  84. Lundström E, Källberg H, Alfredsson L, Klareskog L, Padyukov L. 84.  2009. Gene-environment interaction between the DRB1 shared epitope and smoking in the risk of anti-citrullinated protein antibody-positive rheumatoid arthritis: All alleles are important. Arthritis Rheum. 60:1597–603 [Google Scholar]
  85. MacGregor AJ, Snieder H, Rigby AS, Koskenvuo M, Kaprio J. 85.  et al. 2000. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 43:30–37 [Google Scholar]
  86. Mahdi H, Fisher BA, Källberg H, Plant D, Malmström V. 86.  et al. 2009. Specific interaction between genotype, smoking and autoimmunity to citrullinated α-enolase in the etiology of rheumatoid arthritis. Nat. Genet. 41:1319–24 [Google Scholar]
  87. McAllister K, Yarwood A, Bowes J, Orozco G, Viatte S. 87.  et al. 2013. Identification of BACH2 and RAD51B as rheumatoid arthritis susceptibility loci in a meta-analysis of genome-wide data. Arthritis Rheum. 65:3058–62 [Google Scholar]
  88. Morgan AW, Thomson W, Martin SG, Carter AM, Erlich HA. 88.  et al. 2009. Reevaluation of the interaction between HLA-DRB1 shared epitope alleles, PTPN22, and smoking in determining susceptibility to autoantibody-positive and autoantibody-negative rheumatoid arthritis in a large UK Caucasian population. Arthritis Rheum. 60:2565–76 [Google Scholar]
  89. Nadkarni S, Mauri C, Ehrenstein MR. 89.  2007. Anti–TNF-α therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-β. J. Exp. Med. 204:33–39 [Google Scholar]
  90. Nejentsev S, Walker N, Riches D, Egholm M, Todd JA. 90.  2009. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324:387–89 [Google Scholar]
  91. Nelson JL, Mickelson E, Masewicz S, Barrington R, Dugowson C. 91.  et al. 1991. Dw14(DRB1*0404) is a Dw4-dependent risk factor for rheumatoid arthritis. Rethinking the “shared epitope” hypothesis. Tissue Antigens 38:145–51 [Google Scholar]
  92. Neovius M, Simard JF, Askling J. (ARTIS Study Group)92.  2011. Nationwide prevalence of rheumatoid arthritis and penetration of disease-modifying drugs in Sweden. Ann. Rheum. Dis. 70:624–29 [Google Scholar]
  93. Nepom GT, Holbeck SL, Seyfried CE, Wilske KR, Nepom BS. 93.  1986. Identification of HLA-Dw14 genes in DR4+ rheumatoid arthritis. Lancet 328:1002–5 [Google Scholar]
  94. Nienhuis RL, Mandema E. 94.  1964. A new serum factor in patients with rheumatoid arthritis: the antiperinuclear factor. Ann. Rheum. Dis. 23:302–5 [Google Scholar]
  95. Nishimura K, Sugiyama D, Kogata Y, Tsuji G, Nakazawa T. 95.  et al. 2007. Meta-analysis: diagnostic accuracy of anti-cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis. Ann. Intern. Med. 146:797–808 [Google Scholar]
  96. Nordmark G, Kristjansdottir G, Theander E, Appel S, Eriksson P. 96.  et al. 2011. Association of EBF1, FAM167A(C8orf13)-BLK and TNFSF4 gene variants with primary Sjogren's syndrome. Genes Immun. 12:100–9 [Google Scholar]
  97. Ohmura K, Terao C, Maruya E, Katayama M, Matoba K. 97.  et al. 2010. Anti-citrullinated peptide antibody-negative RA is a genetically distinct subset: a definitive study using only bone-erosive ACPA-negative rheumatoid arthritis. Rheumatology 49:2298–304 [Google Scholar]
  98. Okada Y, Kim K, Han B, Pillai NE, Ong RT. 98.  et al. 2014. Risk for ACPA-positive rheumatoid arthritis is driven by shared HLA amino acid polymorphisms in Asian and European populations. Hum. Mol. Genet. 23:6916–26 [Google Scholar]
  99. Okada Y, Suzuki A, Yamada R, Kochi Y, Shimane K. 99.  et al. 2010. HLA-DRB1*0901 lowers anti-cyclic citrullinated peptide antibody levels in Japanese patients with rheumatoid arthritis. Ann. Rheum. Dis. 69:1569–70 [Google Scholar]
  100. Okada Y, Terao C, Ikari K, Kochi Y, Ohmura K. 100.  et al. 2012. Meta-analysis identifies nine new loci associated with rheumatoid arthritis in the Japanese population. Nat. Genet. 44:511–16 [Google Scholar]
  101. Okada Y, Wu D, Trynka G, Raj T, Terao C. 101.  et al. 2014. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506:376–81 [Google Scholar]
  102. Padyukov L, Seielstad M, Ong RT, Ding B, Rönnelid J. 102.  et al. 2011. A genome-wide association study suggests contrasting associations in ACPA-positive versus ACPA-negative rheumatoid arthritis. Ann. Rheum. Dis. 70:259–65 [Google Scholar]
  103. Pedersen M, Jacobsen S, Garred P, Madsen HO, Klarlund M. 103.  et al. 2007. Strong combined gene-environment effects in anti-cyclic citrullinated peptide-positive rheumatoid arthritis: a nationwide case-control study in Denmark. Arthritis Rheum. 56:1446–53 [Google Scholar]
  104. Pillai NE, Okada Y, Saw WY, Ong RT, Wang X. 104.  et al. 2014. Predicting HLA alleles from high-resolution SNP data in three Southeast Asian populations. Hum. Mol. Genet. 23:4443–51 [Google Scholar]
  105. Plant D, Bowes J, Potter C, Hyrich KL, Morgan AW. 105.  et al. 2011. Genome-wide association study of genetic predictors of anti-tumor necrosis factor treatment efficacy in rheumatoid arthritis identifies associations with polymorphisms at seven loci. Arthritis Rheum. 63:645–53 [Google Scholar]
  106. Plenge RM, Cotsapas C, Davies L, Price AL, de Bakker PI. 106.  et al. 2007. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat. Genet. 39:1477–82 [Google Scholar]
  107. Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers EF. 107.  et al. 2007. TRAF1-C5 as a risk locus for rheumatoid arthritis—a genomewide study. N. Engl. J. Med. 357:1199–209 [Google Scholar]
  108. Pouget JG, Gonçalves VF. 108.  Schizophr. Work. Group Psychiatr. Genom. Consort., Spain SL, Finucane HK et al. 2015. Genome-wide association studies suggest limited immune gene enrichment in schizophrenia compared to six immune diseases. BioRxiv. doi: 10.1101/030411
  109. Qu K, Zaba LC, Giresi PG, Li R, Longmire M. 109.  et al. 2015. Individuality and variation of personal regulomes in primary human T cells. Cell Syst. 1:51–61 [Google Scholar]
  110. Rawlings DJ, Dai X, Buckner JH. 110.  2015. The role of PTPN22 risk variant in the development of autoimmunity: finding common ground between mouse and human. J. Immunol. 194:2977–84 [Google Scholar]
  111. Raychaudhuri S, Remmers EF, Lee AT, Hackett R, Guiducci C. 111.  et al. 2008. Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nat. Genet. 40:1216–23 [Google Scholar]
  112. Raychaudhuri S, Sandor C, Stahl EA, Freudenberg J, Lee HS. 112.  et al. 2012. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44:291–96 [Google Scholar]
  113. Raychaudhuri S, Thomson BP, Remmers EF, Eyre S, Hinks A. 113.  et al. 2009. Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with rheumatoid arthritis risk. Nat. Genet. 41:1313–18 [Google Scholar]
  114. Remmers EF, Plenge RM, Lee AT, Graham RR, Hom G. 114.  et al. 2007. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med. 357:977–86 [Google Scholar]
  115. Reynolds RJ, Ahmed AF, Danila MI, Hughes LB. 115.  Consort. Longitud. Eval. Afr. Am. Early Rheum. Arthritis Investig 2014. HLA-DRB1-associated rheumatoid arthritis risk at multiple levels in African Americans: hierarchical classification systems, amino acid positions, and residues. Arthritis Rheumatol. 66:3274–82 [Google Scholar]
  116. Rivas MA, Beaudoin M, Gardet A, Stevens C, Sharma Y. 116.  et al. 2011. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat. Genet. 43:1066–73 [Google Scholar]
  117. Rose HM, Ragan C, Pearce E, Lipman MO. 117.  1948. Differential agglutination of normal and sensitized sheep erythrocytes by sera of patients with rheumatoid arthritis. Proc. Soc. Exp. Biol. Med. 68:1–6 [Google Scholar]
  118. Saijo K, Schmedt C, Su IH, Karasuyama H, Lowell CA. 118.  et al. 2003. Essential role of Src-family protein tyrosine kinases in NF-κB activation during B cell development. Nat. Immunol. 4:274–79 [Google Scholar]
  119. Sakaguchi N, Takahashi T, Hata H, Nomura T, Tagami T. 119.  et al. 2003. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426:454–60 [Google Scholar]
  120. Samuelson EM, Laird RM, Maue AC, Rochford R, Hayes SM. 120.  2012. Blk haploinsufficiency impairs the development, but enhances the functional responses, of MZ B cells. Immunol. Cell Biol. 90:620–29 [Google Scholar]
  121. Samuelson EM, Laird RM, Papillion AM, Tatum AH, Princiotta MF, Hayes SM. 121.  2014. Reduced B lymphoid kinase (Blk) expression enhances proinflammatory cytokine production and induces nephrosis in C57BL/6-lpr/lpr mice. PLOS ONE 9:e92054 [Google Scholar]
  122. Scally SW, Petersen J, Law SC, Dudek NL, Nel HJ. 122.  et al. 2013. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J. Exp. Med. 210:2569–82 [Google Scholar]
  123. Schellekens GA, de Jong BA, van den Hoogen FH, van de Putte LB, van Venrooij WJ. 123.  1998. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J. Clin. Investig. 101:273–81 [Google Scholar]
  124. Schellekens GA, Visser H, de Jong BA, van den Hoogen FH, Hazes JM. 124.  et al. 2000. The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum. 43:155–63 [Google Scholar]
  125. Scherer HU, van der Woude D, Willemze A, Trouw LA, Knevel R. 125.  et al. 2011. Distinct ACPA fine specificities, formed under the influence of HLA shared epitope alleles, have no effect on radiographic joint damage in rheumatoid arthritis. Ann. Rheum. Dis. 70:1461–64 [Google Scholar]
  126. Scott IC, Seegobin SD, Steer S, Tan R, Forabosco P. 126.  et al. 2013. Predicting the risk of rheumatoid arthritis and its age of onset through modelling genetic risk variants with smoking. PLOS Genet. 9:e1003808 [Google Scholar]
  127. Seidl C, Donner H, Fischer B, Usadel KH, Seifried E. 127.  et al. 1998. CTLA4 codon 17 dimorphism in patients with rheumatoid arthritis. Tissue Antigens 51:62–66 [Google Scholar]
  128. Shi J, Knevel R, Suwannalai P, van der Linden MP, Janssen GM. 128.  et al. 2011. Autoantibodies recognizing carbamylated proteins are present in sera of patients with rheumatoid arthritis and predict joint damage. PNAS 108:17372–77 [Google Scholar]
  129. Shi J, van de Stadt LA, Levarht EW, Huizinga TW, Toes RE. 129.  et al. 2013. Anti-carbamylated protein antibodies are present in arthralgia patients and predict the development of rheumatoid arthritis. Arthritis Rheum. 65:911–15 [Google Scholar]
  130. Shi J, van Veelen PA, Mahler M, Janssen GM, Drijfhout JW. 130.  et al. 2014. Carbamylation and antibodies against carbamylated proteins in autoimmunity and other pathologies. Autoimmun. Rev. 13:225–30 [Google Scholar]
  131. Shmerling RH, Delbanco TL. 131.  1991. The rheumatoid factor: an analysis of clinical utility. Am. J. Med. 91:528–34 [Google Scholar]
  132. Simpfendorfer KR, Armstead BE, Shih A, Li W, Curran M. 132.  et al. 2015. Autoimmune disease-associated haplotypes of BLK exhibit lowered thresholds for B cell activation and expansion of Ig class-switched B cells. Arthritis Rheumatol. 67:2866–76 [Google Scholar]
  133. Simpfendorfer KR, Olsson LM, Manjarrez-Orduño N, Khalili H, Simeone AM. 133.  et al. 2012. The autoimmunity-associated BLK haplotype exhibits cis-regulatory effects on mRNA and protein expression that are prominently observed in B cells early in development. Hum. Mol. Genet. 21:3918–25 [Google Scholar]
  134. Snir O, Gomez-Cabrero D, Montes A, Perez-Pampin E, Gómez-Reino JJ. 134.  et al. 2014. Non-HLA genes PTPN22, CDK6 and PADI4 are associated with specific autoantibodies in HLA-defined subgroups of rheumatoid arthritis. Arthritis Res. Ther. 16:414 [Google Scholar]
  135. Somers EC, Antonsen S, Pedersen L, Sorensen HT. 135.  2013. Parental history of lupus and rheumatoid arthritis and risk in offspring in a nationwide cohort study: Does sex matter?. Ann. Rheum. Dis. 72:525–29 [Google Scholar]
  136. Speed D, Hemani G, Johnson MR, Balding DJ. 136.  2012. Improved heritability estimation from genome-wide SNPs. Am. J. Hum. Genet. 91:1011–21 [Google Scholar]
  137. Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S. 137.  et al. 2010. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat. Genet. 42:508–14 [Google Scholar]
  138. Stahl EA, Wegmann D, Trynka G, Gutierrez-Achury J, Do R. 138.  et al. 2012. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat. Genet. 44:483–89 [Google Scholar]
  139. Stanford SM, Bottini N. 139.  2014. PTPN22: the archetypal non-HLA autoimmunity gene. Nat. Rev. Rheumatol. 10:602–11 [Google Scholar]
  140. Stastny P. 140.  1976. Mixed lymphocyte cultures in rheumatoid arthritis. J. Clin. Investig. 57:1148–57 [Google Scholar]
  141. Stastny P. 141.  1978. Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N. Engl. J. Med. 298:869–71 [Google Scholar]
  142. Stein EA, Mellis S, Yancopoulos GD, Stahl N, Logan D. 142.  et al. 2012. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N. Engl. J. Med. 366:1108–18 [Google Scholar]
  143. Sugiyama D, Nishimura K, Tamaki K, Tsuji G, Nakazawa T. 143.  et al. 2010. Impact of smoking as a risk factor for developing rheumatoid arthritis: a meta-analysis of observational studies. Ann. Rheum. Dis. 69:70–81 [Google Scholar]
  144. Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T. 144.  et al. 2003. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat. Genet. 34:395–402 [Google Scholar]
  145. Suzuki A, Yamada R, Kochi Y, Sawada T, Okada Y. 145.  et al. 2008. Functional SNPs in CD244 increase the risk of rheumatoid arthritis in a Japanese population. Nat. Genet. 40:1224–29 [Google Scholar]
  146. Suzuki T, Ikari K, Yano K, Inoue E, Toyama Y. 146.  et al. 2013. PADI4 and HLA-DRB1 are genetic risks for radiographic progression in RA patients, independent of ACPA status: results from the IORRA cohort study. PLOS ONE 8:e61045 [Google Scholar]
  147. Svard A, Skogh T, Alfredsson L, Ilar A, Klareskog L. 147.  et al. 2015. Associations with smoking and shared epitope differ between IgA- and IgG-class antibodies to cyclic citrullinated peptides in early rheumatoid arthritis. Arthritis Rheumatol. 67:2032–37 [Google Scholar]
  148. Svendsen AJ, Kyvik KO, Houen G, Junker P, Christensen K. 148.  et al. 2013. On the origin of rheumatoid arthritis: the impact of environment and genes—a population based twin study. PLOS ONE 8:e57304 [Google Scholar]
  149. Syversen SW, Goll GL, van der Heijde D, Landewe R, Lie BA. 149.  et al. 2010. Prediction of radiographic progression in rheumatoid arthritis and the role of antibodies against mutated citrullinated vimentin: results from a 10-year prospective study. Ann. Rheum. Dis. 69:345–51 [Google Scholar]
  150. Terao C, Ikari K, Nakayamada S, Takahashi Y, Yamada R. 150.  et al. 2016. A twin study of rheumatoid arthritis in the Japanese population. Mod. Rheumatol. In press. doi: 10.3109/14397595.2015.1135856 [Google Scholar]
  151. Terao C, Ikari K, Ohmura K, Suzuki T, Iwamoto T. 151.  et al. 2012. Quantitative effect of HLA-DRB1 alleles to ACPA levels in Japanese rheumatoid arthritis: no strong genetic impact of shared epitope to ACPA levels after stratification of HLA-DRB1*09:01. Ann. Rheum. Dis. 71:1095–97 [Google Scholar]
  152. Terao C, Ohmura K, Ikari K, Kochi Y, Maruya E. 152.  et al. 2012. ACPA-negative RA consists of two genetically distinct subsets based on RF positivity in Japanese. PLOS ONE 7:e40067 [Google Scholar]
  153. Terao C, Ohmura K, Katayama M, Takahashi M, Kokubo M. 153.  et al. 2011. Myelin basic protein as a novel genetic risk factor in rheumatoid arthritis—a genome-wide study combined with immunological analyses. PLOS ONE 6:e20457 [Google Scholar]
  154. Terao C, Ohmura K, Kochi Y, Ikari K, Maruya E. 154.  et al. 2011. A large-scale association study identified multiple HLA-DRB1 alleles associated with ACPA-negative rheumatoid arthritis in Japanese subjects. Ann. Rheum. Dis. 70:2134–39 [Google Scholar]
  155. Terao C, Ohmura K, Kochi Y, Ikari K, Okada Y. 155.  et al. 2015. Anti-citrullinated peptide/protein antibody (ACPA)-negative RA shares a large proportion of susceptibility loci with ACPA-positive RA: a meta-analysis of genome-wide association study in a Japanese population. Arthritis Res. Ther. 17:104 [Google Scholar]
  156. Terao C, Suzuki A, Ikari K, Kochi Y, Ohmura K. 156.  et al. 2015. An association between the 74th amino acid position of HLA-DRB1 and ACPA levels of Japanese ACPA-positive RA. Arthritis Rheumatol. 67:2038–45 [Google Scholar]
  157. Terao C, Yamada R, Ohmura K, Takahashi M, Kawaguchi T. 157.  et al. 2011. The human AIRE gene at chromosome 21q22 is a genetic determinant for the predisposition to rheumatoid arthritis in Japanese population. Hum. Mol. Genet. 20:2680–85 [Google Scholar]
  158. Terao C, Yano K, Ikari K, Furu M, Yamakawa N. 158.  et al. 2015. Main contribution of DRB1*04:05 among the shared epitope alleles and involvement of DRB1 amino acid position 57 in association with joint destruction in anti-citrullinated protein antibody-positive rheumatoid arthritis. Arthritis Rheumatol. 67:1744–50 [Google Scholar]
  159. Texido G, Su IH, Mecklenbrauker I, Saijo K, Malek SN. 159.  et al. 2000. The B-cell-specific Src-family kinase Blk is dispensable for B-cell development and activation. Mol. Cell. Biol. 20:1227–33 [Google Scholar]
  160. Thomson W, Barton A, Ke X, Eyre S, Hinks A. 160.  et al. 2007. Rheumatoid arthritis association at 6q23. Nat. Genet. 39:1431–33 [Google Scholar]
  161. Tokuhiro S, Yamada R, Chang X, Suzuki A, Kochi Y. 161.  et al. 2003. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat. Genet. 35:341–48 [Google Scholar]
  162. Trowsdale J, Knight JC. 162.  2013. Major histocompatibility complex genomics and human disease. Annu. Rev. Genom. Hum. Genet. 14:301–23 [Google Scholar]
  163. Trynka G, Sandor C, Han B, Xu H, Stranger BE. 163.  et al. 2013. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat. Genet. 45:124–30 [Google Scholar]
  164. Umiċeviċ Mirkov, Mirkov M, Cui J, Vermeulen SH, Stahl EA, Toonen EJ. 164.  et al. 2013. Genome-wide association analysis of anti-TNF drug response in patients with rheumatoid arthritis. Ann. Rheum. Dis. 72:1375–81 [Google Scholar]
  165. van de Stadt LA, de Koning MH, van de Stadt RJ, Wolbink G, Dijkmans BA. 165.  et al. 2011. Development of the anti-citrullinated protein antibody repertoire prior to the onset of rheumatoid arthritis. Arthritis Rheum. 63:3226–33 [Google Scholar]
  166. van der Helm-van Mil AH, Kern M, Gregersen PK, Huizinga TW. 166.  2006. Variation in radiologic joint destruction in rheumatoid arthritis differs between monozygotic and dizygotic twins and pairs of unrelated patients. Arthritis Rheum. 54:2028–30 [Google Scholar]
  167. van der Helm-van Mil AH, Verpoort KN, le Cessie S, Huizinga TW, de Vries RR, Toes RE. 167.  2007. The HLA-DRB1 shared epitope alleles differ in the interaction with smoking and predisposition to antibodies to cyclic citrullinated peptide. Arthritis Rheum. 56:425–32 [Google Scholar]
  168. van der Linden MP, Feitsma AL, le Cessie S, Kern M, Olsson LM. 168.  et al. 2009. Association of a single-nucleotide polymorphism in CD40 with the rate of joint destruction in rheumatoid arthritis. Arthritis Rheum. 60:2242–47 [Google Scholar]
  169. van der Woude D, Houwing-Duistermaat JJ, Toes RE, Huizinga TW, Thomson W. 169.  et al. 2009. Quantitative heritability of anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis. Arthritis Rheum. 60:916–23 [Google Scholar]
  170. van Gaalen FA, van Aken J, Huizinga TW, Schreuder GM, Breedveld FC. 170.  et al. 2004. Association between HLA class II genes and autoantibodies to cyclic citrullinated peptides (CCPs) influences the severity of rheumatoid arthritis. Arthritis Rheum. 50:2113–21 [Google Scholar]
  171. van Steenbergen HW, Rantapaa-Dahlqvist S, van Nies JA, Berglin E, Huizinga TW. 171.  et al. 2014. Does a genetic variant in FOXO3A predict a milder course of rheumatoid arthritis?. Arthritis Rheumatol. 66:1678–81 [Google Scholar]
  172. Veal CD, Reekie KE, Lorentzen JC, Gregersen PK, Padyukov L, Brookes AJ. 172.  2014. A 129-kb deletion on chromosome 12 confers substantial protection against rheumatoid arthritis, implicating the gene SLC2A3. Hum. Mutat. 35:248–56 [Google Scholar]
  173. Verpoort KN, Cheung K, Ioan-Facsinay A, van der Helm-van Mil AH, de Vries-Bouwstra JK. 173.  et al. 2007. Fine specificity of the anti-citrullinated protein antibody response is influenced by the shared epitope alleles. Arthritis Rheum. 56:3949–52 [Google Scholar]
  174. Verpoort KN, Papendrecht-van der Voort EA, van der Helm-van Mil AH, Jol-van der Zijde CM, van Tol MJ. 174.  et al. 2007. Association of smoking with the constitution of the anti-cyclic citrullinated peptide response in the absence of HLA-DRB1 shared epitope alleles. Arthritis Rheum. 56:2913–18 [Google Scholar]
  175. Verpoort KN, van Gaalen FA, van der Helm-van Mil AH, Schreuder GM, Breedveld FC. 175.  et al. 2005. Association of HLA-DR3 with anti-cyclic citrullinated peptide antibody-negative rheumatoid arthritis. Arthritis Rheum. 52:3058–62 [Google Scholar]
  176. Viatte S, Plant D, Bowes J, Lunt M, Eyre S. 176.  et al. 2012. Genetic markers of rheumatoid arthritis susceptibility in anti-citrullinated peptide antibody negative patients. Ann. Rheum. Dis. 71:1984–90 [Google Scholar]
  177. Viatte S, Plant D, Han B, Fu B, Yarwood A. 177.  et al. 2015. Association of HLA-DRB1 haplotypes with rheumatoid arthritis severity, mortality, and treatment response. JAMA 313:1645–56 [Google Scholar]
  178. Wang J, Bansal AT, Martin M, Germer S, Benayed R. 178.  et al. 2013. Genome-wide association analysis implicates the involvement of eight loci with response to tocilizumab for the treatment of rheumatoid arthritis. Pharmacogenom. J. 13:235–41 [Google Scholar]
  179. Wang Y, Shaked I, Stanford SM, Zhou W, Curtsinger JM. 179.  et al. 2013. The autoimmunity-associated gene PTPN22 potentiates Toll-like receptor-driven, type 1 interferon-dependent immunity. Immunity 39:111–22 [Google Scholar]
  180. Wordsworth P, Lanchbury JS, Sakkas LI, Welsh KI, Panayi GS, Bell JI. 180.  1989. HLA-DR4 subtype frequencies in rheumatoid arthritis indicate that DRB1 is the major susceptibility locus within the HLA class II region. PNAS 86:10049–53 [Google Scholar]
  181. Wordsworth P, Pile KD, Buckely JD, Lanchbury JS, Ollier B. 181.  et al. 1992. HLA heterozygosity contributes to susceptibility to rheumatoid arthritis. Am. J. Hum. Genet. 51:585–91 [Google Scholar]
  182. Yang J, Lee SH, Goddard ME, Visscher PM. 182.  2011. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88:76–82 [Google Scholar]
  183. Yelamos J, Garcia-Lozano JR, Moreno I, Aguilera I, Gonzalez MF. 183.  et al. 1993. Association of HLA-DR4-Dw15 (DRB1*0405) and DR10 with rheumatoid arthritis in a Spanish population. Arthritis Rheum. 36:811–14 [Google Scholar]
  184. Yu KH, See LC, Kuo CF, Chou IJ, Chou MJ. 184.  2013. Prevalence and incidence in patients with autoimmune rheumatic diseases: a nationwide population-based study in Taiwan. Arthritis Care Res. 65:244–50 [Google Scholar]
  185. Zheng X, Shen J, Cox C, Wakefield JC, Ehm MG. 185.  et al. 2014. HIBAG—HLA genotype imputation with attribute bagging. Pharmacogenom. J. 14:192–200 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error