1932

Abstract

With the widespread clinical adoption of noninvasive screening for fetal chromosomal aneuploidies based on cell-free DNA analysis from maternal plasma, more researchers are turning their attention to noninvasive prenatal assessment for single-gene disorders. The development of a spectrum of approaches to analyze cell-free DNA in maternal circulation, including relative mutation dosage, relative haplotype dosage, and size-based methods, has expanded the scope of noninvasive prenatal testing to sex-linked and autosomal recessive disorders. Cell-free fetal DNA analysis for several of the more prevalent single-gene disorders has recently been introduced into clinical service. This article reviews the analytical approaches currently available and discusses the extent of the clinical implementation of noninvasive prenatal testing for single-gene disorders.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-110821-113411
2022-08-31
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/genom/23/1/annurev-genom-110821-113411.html?itemId=/content/journals/10.1146/annurev-genom-110821-113411&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alfirevic Z, Navaratnam K, Mujezinovic F. 2017. Amniocentesis and chorionic villus sampling for prenatal diagnosis. Cochrane Database Syst. Rev. 9:CD003252
    [Google Scholar]
  2. 2.
    Barrett AN, McDonnell TC, Chan KA, Chitty LS. 2012. Digital PCR analysis of maternal plasma for noninvasive detection of sickle cell anemia. Clin. Chem. 58:1026–32
    [Google Scholar]
  3. 3.
    Chan KCA, Zhang J, Hui ABY, Wong N, Lau TK et al. 2004. Size distributions of maternal and fetal DNA in maternal plasma. Clin. Chem. 50:88–92
    [Google Scholar]
  4. 4.
    Chandler NJ, Ahlfors H, Drury S, Mellis R, Hill M et al. 2020. Noninvasive prenatal diagnosis for cystic fibrosis: implementation, uptake, outcome, and implications. Clin. Chem. 66:207–16
    [Google Scholar]
  5. 5.
    Chial H. 2008. Rare genetic disorders: learning about genetic disease through gene mapping, SNPs, and microarray data. Nat. Educ. 1:192
    [Google Scholar]
  6. 6.
    Chitty LS, Griffin DR, Meaney C, Barrett A, Khalil A et al. 2011. New aids for the non-invasive prenatal diagnosis of achondroplasia: dysmorphic features, charts of fetal size and molecular confirmation using cell-free fetal DNA in maternal plasma. Ultrasound Obstet. Gynecol. 37:283–89
    [Google Scholar]
  7. 7.
    Chitty LS, Khalil A, Barrett AN, Pajkrt E, Griffin DR, Cole TJ. 2013. Safe, accurate, prenatal diagnosis of thanatophoric dysplasia using ultrasound and free fetal DNA. Prenat. Diagn. 33:416–23
    [Google Scholar]
  8. 8.
    Chitty LS, Mason S, Barrett AN, McKay F, Lench N et al. 2015. Non-invasive prenatal diagnosis of achondroplasia and thanatophoric dysplasia: next-generation sequencing allows for a safer, more accurate, and comprehensive approach. Prenat. Diagn. 35:656–62
    [Google Scholar]
  9. 9.
    Chiu EKL, Hui WWI, Chiu RWK. 2018. cfDNA screening and diagnosis of monogenic disorders—where are we heading?. Prenat. Diagn. 38:52–58
    [Google Scholar]
  10. 10.
    Chiu RWK, Chan KCA, Gao Y, Lau VYM, Zheng W et al. 2008. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. PNAS 105:20458–63
    [Google Scholar]
  11. 11.
    Chiu RWK, Lau TK, Cheung PT, Gong ZQ, Leung TN, Lo YMD. 2002. Noninvasive prenatal exclusion of congenital adrenal hyperplasia by maternal plasma analysis: a feasibility study. Clin. Chem. 48:778–80
    [Google Scholar]
  12. 12.
    Chiu RWK, Lau TK, Leung TN, Chow KC, Chui DH, Lo YMD. 2002. Prenatal exclusion of β thalassaemia major by examination of maternal plasma. Lancet 360:998–1000
    [Google Scholar]
  13. 13.
    Dan S, Yuan Y, Wang Y, Chen C, Gao C et al. 2016. Non-invasive prenatal diagnosis of lethal skeletal dysplasia by targeted capture sequencing of maternal plasma. PLOS ONE 11:e0159355
    [Google Scholar]
  14. 14.
    Deans Z, Hill M, Chitty LS, Lewis C. 2013. Non-invasive prenatal testing for single gene disorders: exploring the ethics. Eur. J. Hum. Genet. 21:713–18
    [Google Scholar]
  15. 15.
    Drury S, Mason S, McKay F, Lo K, Boustred C et al. 2016. Implementing non-invasive prenatal diagnosis (NIPD) in a national health service laboratory; from dominant to recessive disorders. Circulating Nucleic Acids in Serum and Plasma – CNAPS IX PB Gahan, M Fleischhacker, B Schmidt 71–75 Cham, Switz: Springer
    [Google Scholar]
  16. 16.
    Duan H, Liu N, Zhao Z, Liu Y, Wang Y et al. 2019. Non-invasive prenatal testing of pregnancies at risk for phenylketonuria. Arch. Dis. Child. Fetal Neonatal Ed. 104:F24–29
    [Google Scholar]
  17. 17.
    Finning KM, Martin PG, Soothill PW, Avent ND. 2002. Prediction of fetal D status from maternal plasma: introduction of a new noninvasive fetal RHD genotyping service. Transfusion 42:1079–85
    [Google Scholar]
  18. 18.
    Gregg AR, Edwards JG. 2018. Prenatal genetic carrier screening in the genomic age. . Semin. Perinatol. 42:303–6
    [Google Scholar]
  19. 19.
    Hill M, Compton C, Karunaratna M, Lewis C, Chitty L. 2014. Client views and attitudes to non-invasive prenatal diagnosis for sickle cell disease, thalassaemia and cystic fibrosis. J. Genet. Counsel. 23:1012–21
    [Google Scholar]
  20. 20.
    Hill M, Karunaratna M, Lewis C, Forya F, Chitty L. 2013. Views and preferences for the implementation of non-invasive prenatal diagnosis for single gene disorders from health professionals in the United Kingdom. Am. J. Med. Genet. A 161A:1612–18
    [Google Scholar]
  21. 21.
    Hill M, Suri R, Nash EF, Morris S, Chitty LS. 2014. Preferences for prenatal tests for cystic fibrosis: a discrete choice experiment to compare the views of adult patients, carriers of cystic fibrosis and health professionals. J. Clin. Med. 3:176–90
    [Google Scholar]
  22. 22.
    Hill M, Twiss P, Verhoef TI, Drury S, McKay F et al. 2015. Non-invasive prenatal diagnosis for cystic fibrosis: detection of paternal mutations, exploration of patient preferences and cost analysis. Prenat. Diagn. 35:950–58
    [Google Scholar]
  23. 23.
    Hui WWI, Jiang P, Tong YK, Lee WS, Cheng YKY et al. 2017. Universal haplotype-based noninvasive prenatal testing for single gene diseases. Clin. Chem. 63:513–24
    [Google Scholar]
  24. 24.
    Hyett JA, Gardener G, Stojilkovic-Mikic T, Finning KM, Martin PG et al. 2005. Reduction in diagnostic and therapeutic interventions by non-invasive determination of fetal sex in early pregnancy. Prenat. Diagn. 25:1111–16
    [Google Scholar]
  25. 25.
    Jenkins LA, Deans ZC, Lewis C, Allen S 2018. Delivering an accredited non-invasive prenatal diagnosis service for monogenic disorders and recommendations for best practice. Prenat. Diagn. 38:44–51
    [Google Scholar]
  26. 26.
    Lo YMD, Chan KCA, Sun H, Chen EZ, Jiang P et al. 2010. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci. Transl. Med. 2:61ra91
    [Google Scholar]
  27. 27.
    Lo YMD, Corbetta N, Chamberlain PF, Rai V, Sargent IL et al. 1997. Presence of fetal DNA in maternal plasma and serum. Lancet 350:485–87
    [Google Scholar]
  28. 28.
    Lun FMF, Chiu RWK, Chan KCA, Leung TY, Lau TK, Lo YMD. 2008. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin. Chem. 54:1664–72
    [Google Scholar]
  29. 29.
    Lun FMF, Tsui NBY, Chan KCA, Leung TY, Lau TK et al. 2008. Noninvasive prenatal diagnosis of monogenic diseases by digital size selection and relative mutation dosage on DNA in maternal plasma. PNAS 105:19920–25
    [Google Scholar]
  30. 30.
    Lv W, Wei X, Guo R, Liu Q, Zheng Y et al. 2015. Noninvasive prenatal testing for Wilson disease by use of circulating single-molecule amplification and resequencing technology (cSMART). Clin. Chem. 61:172–81
    [Google Scholar]
  31. 31.
    Mellis R, Chandler N, Jenkins L, Chitty LS. 2020. The role of sonographic phenotyping in delivering an efficient noninvasive prenatal diagnosis service for FGFR3-related skeletal dysplasias. Prenat. Diagn. 40:785–91
    [Google Scholar]
  32. 32.
    New MI, Tong YK, Yuen T, Jiang P, Pina C et al. 2014. Noninvasive prenatal diagnosis of congenital adrenal hyperplasia using cell-free fetal DNA in maternal plasma. J. Clin. Endocrinol. Metab. 99:E1022–30
    [Google Scholar]
  33. 33.
    Parks M, Court S, Bowns B, Cleary S, Clokie S et al. 2017. Non-invasive prenatal diagnosis of spinal muscular atrophy by relative haplotype dosage. Eur. J. Hum. Genet. 25:416–22
    [Google Scholar]
  34. 34.
    Parks M, Court S, Cleary S, Clokie S, Hewitt J et al. 2016. Non-invasive prenatal diagnosis of Duchenne and Becker muscular dystrophies by relative haplotype dosage. Prenat. Diagn. 36:312–20
    [Google Scholar]
  35. 35.
    Perlado S, Bustamante-Aragones A, Donas M, Lorda-Sanchez I, Plaza J, Rodríguez de Alba M. 2016. Fetal genotyping in maternal blood by digital PCR: towards NIPD of monogenic disorders independently of parental origin. PLOS ONE 11:e0153258
    [Google Scholar]
  36. 36.
    Rabinowitz T, Polsky A, Golan D, Danilevsky A, Shapira G et al. 2019. Bayesian-based noninvasive prenatal diagnosis of single-gene disorders. Genome Res 29:428–38
    [Google Scholar]
  37. 37.
    Rhoads A, Au KF. 2015. PacBio sequencing and its applications. Genom. Proteom. Bioinform. 13:278–89
    [Google Scholar]
  38. 38.
    Saito H, Sekizawa A, Morimoto T, Suzuki M, Yanaihara T. 2000. Prenatal DNA diagnosis of a single-gene disorder from maternal plasma. Lancet 356:1170
    [Google Scholar]
  39. 39.
    Scotchman E, Chandler NJ, Mellis R, Chitty LS. 2020. Noninvasive prenatal diagnosis of single-gene diseases: the next frontier. Clin. Chem. 66:53–60
    [Google Scholar]
  40. 40.
    Ungerer V, Bronkhorst AJ, Holdenrieder S. 2020. Preanalytical variables that affect the outcome of cell-free DNA measurements. Crit. Rev. Clin. Lab. Sci. 57:484–507
    [Google Scholar]
  41. 41.
    van Campen J, Silcock L, Yau S, Daniel Y, Ahn JW et al. 2020. A novel non-invasive prenatal sickle cell disease test for all at-risk pregnancies. Br. J. Haematol. 190:119–24
    [Google Scholar]
  42. 42.
    van den Oever JME, Bijlsma EK, Feenstra I, Muntjewerff N, Mathijssen IB et al. 2015. Noninvasive prenatal diagnosis of Huntington disease: detection of the paternally inherited expanded CAG repeat in maternal plasma. Prenat. Diagn. 35:945–49
    [Google Scholar]
  43. 43.
    Verhoef TI, Hill M, Drury S, Mason S, Jenkins L et al. 2016. Non-invasive prenatal diagnosis (NIPD) for single gene disorders: cost analysis of NIPD and invasive testing pathways. Prenat. Diagn. 36:636–42
    [Google Scholar]
  44. 44.
    Vermeulen C, Geeven G, de Wit E, Verstegen MJA, Jansen RP et al. 2017. Sensitive monogenic noninvasive prenatal diagnosis by targeted haplotyping. Am. J. Hum. Genet. 101:326–39
    [Google Scholar]
  45. 45.
    Wienzek-Lischka S, Bachmann S, Froehner V, Bein G. 2020. Potential of next-generation sequencing in noninvasive fetal molecular blood group genotyping. Transfus. Med. Hemother. 47:14–22
    [Google Scholar]
  46. 46.
    Wulff CB, Gerds TA, Rode L, Ekelund CK, Petersen OB et al. 2016. Risk of fetal loss associated with invasive testing following combined first-trimester screening for down syndrome: a national cohort of 147 987 singleton pregnancies. Ultrasound Obstet. Gynecol. 47:38–44
    [Google Scholar]
  47. 47.
    Xiong L, Barrett AN, Hua R, Ho S, Jun L et al. 2018. Non-invasive prenatal testing for fetal inheritance of maternal β-thalassaemia mutations using targeted sequencing and relative mutation dosage: a feasibility study. BJOG 125:461–68
    [Google Scholar]
  48. 48.
    Young E, Bowns B, Gerrish A, Parks M, Court S et al. 2020. Clinical service delivery of noninvasive prenatal diagnosis by relative haplotype dosage for single-gene disorders. J. Mol. Diagn. 22:1151–61
    [Google Scholar]
  49. 49.
    Yu SCY, Chan KCA, Zheng YWL, Jiang P, Liao GJW et al. 2014. Size-based molecular diagnostics using plasma DNA for noninvasive prenatal testing. PNAS 111:8583–88
    [Google Scholar]
  50. 50.
    Zeevi DA, Altarescu G, Weinberg-Shukron A, Zahdeh F, Dinur T et al. 2015. Proof-of-principle rapid noninvasive prenatal diagnosis of autosomal recessive founder mutations. J. Clin. Investig. 125:3757–65
    [Google Scholar]
  51. 51.
    Zhang J, Li J, Saucier JB, Feng Y, Jiang Y et al. 2019. Non-invasive prenatal sequencing for multiple Mendelian monogenic disorders using circulating cell-free fetal DNA. Nat. Med. 25:439–47
    [Google Scholar]
/content/journals/10.1146/annurev-genom-110821-113411
Loading
/content/journals/10.1146/annurev-genom-110821-113411
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error