1932

Abstract

Transcriptional deregulation is a key driver of acute myeloid leukemia (AML), a heterogeneous blood cancer with poor survival rates. Polycomb group (PcG) and Trithorax group (TrxG) genes, originally identified in several decades ago as master regulators of cellular identity and epigenetic memory, not only are important in mammalian development but also play a key role in AML disease biology. In addition to their classical canonical antagonistic transcriptional functions, noncanonical synergistic and nontranscriptional functions of PcG and TrxG are emerging. Here, we review the biochemical properties of major mammalian PcG and TrxG complexes and their roles in AML disease biology, including disease maintenance as well as drug resistance. We summarize current efforts on targeting PcG and TrxG for treatment of AML and propose rational synthetic lethality and drug-induced antagonistic pleiotropy options involving PcG and TrxG as potential new therapeutic avenues for treatment of AML.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-111120-102443
2021-08-31
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/genom/22/1/annurev-genom-111120-102443.html?itemId=/content/journals/10.1146/annurev-genom-111120-102443&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abdel-Wahab O, Adli M, LaFave L, Gao J, Hricik T et al. 2012. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell 22:180–93
    [Google Scholar]
  2. 2. 
    Agarwal SK, Guru SC, Heppner C, Erdos MR, Collins RM et al. 1999. Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. Cell 96:143–52
    [Google Scholar]
  3. 3. 
    Aho ER, Wang J, Gogliotti RD, Howard GC, Phan J et al. 2019. Displacement of WDR5 from chromatin by a WIN site inhibitor with picomolar affinity. Cell Rep 26:2916–28.e13
    [Google Scholar]
  4. 4. 
    Aho ER, Weissmiller AM, Fesik SW, Tansey WP. 2019. Targeting WDR5: a WINning anti-cancer strategy?. Epigenet. Insights 12: https://doi.org/10.1177/2516865719865282
    [Crossref] [Google Scholar]
  5. 5. 
    Alsulami M, Munawar N, Dillon E, Oliviero G, Wynne K et al. 2019. SETD1A methyltransferase is physically and functionally linked to the DNA damage repair protein RAD18. Mol. Cell Proteom. 18:1428–36
    [Google Scholar]
  6. 6. 
    Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ et al. 2016. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127:2391–405
    [Google Scholar]
  7. 7. 
    Barbosa K, Deshpande A, Chen BR, Ghosh A, Sun Y et al. 2019. Acute myeloid leukemia driven by the CALM-AF10 fusion gene is dependent on BMI1. Exp. Hematol. 74:42–51.e3
    [Google Scholar]
  8. 8. 
    Basheer F, Giotopoulos G, Meduri E, Yun H, Mazan M et al. 2019. Contrasting requirements during disease evolution identify EZH2 as a therapeutic target in AML. J. Exp. Med. 216:966–81
    [Google Scholar]
  9. 9. 
    Bitler BG, Aird KM, Garipov A, Li H, Amatangelo M et al. 2015. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat. Med. 21:231–38
    [Google Scholar]
  10. 10. 
    Bodega B, Marasca F, Ranzani V, Cherubini A, Della Valle F et al. 2017. A cytosolic Ezh1 isoform modulates a PRC2-Ezh1 epigenetic adaptive response in postmitotic cells. Nat. Struct. Mol. Biol. 24:444–52
    [Google Scholar]
  11. 11. 
    Borkin D, He S, Miao H, Kempinska K, Pollock J et al. 2015. Pharmacologic inhibition of the menin-MLL interaction blocks progression of MLL leukemia in vivo. Cancer Cell 27:589–602
    [Google Scholar]
  12. 12. 
    Bower H, Andersson TM, Björkholm M, Dickman PW, Lambert PC, Derolf ÅR. 2016. Continued improvement in survival of acute myeloid leukemia patients: an application of the loss in expectation of life. Blood Cancer J. 6:e390
    [Google Scholar]
  13. 13. 
    Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D et al. 2005. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–17
    [Google Scholar]
  14. 14. 
    Buchwald G, van der Stoop P, Weichenrieder O, Perrakis A, van Lohuizen M, Sixma T. 2006. Structure and E3-ligase activity of the Ring–Ring complex of Polycomb proteins Bmi1 and Ring1b. EMBO J 25:2465–74
    [Google Scholar]
  15. 15. 
    Buscarlet M, Krasteva V, Ho L, Simon C, Hébert J et al. 2014. Essential role of BRG, the ATPase subunit of BAF chromatin remodeling complexes, in leukemia maintenance. Blood 123:1720–28
    [Google Scholar]
  16. 16. 
    Campagne A, Lee MK, Zielinski D, Michaud A, Le Corre S et al. 2019. BAP1 complex promotes transcription by opposing PRC1-mediated H2A ubiquitylation. Nat. Commun. 10:348
    [Google Scholar]
  17. 17. 
    Campbell S, Ismail IH, Young LC, Poirier GG, Hendzel MJ. 2013. Polycomb repressive complex 2 contributes to DNA double-strand break repair. Cell Cycle 12:2675–83
    [Google Scholar]
  18. 18. 
    Cao F, Townsend E, Karatas H, Xu J, Li L et al. 2014. Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia. Mol. Cell 53:247–61
    [Google Scholar]
  19. 19. 
    Cao R, Zhang Y. 2004. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol. Cell 15:57–67
    [Google Scholar]
  20. 20. 
    Capotosti F, Guernier S, Lammers F, Waridel P, Cai Y et al. 2011. O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1. Cell 144:376–88
    [Google Scholar]
  21. 21. 
    Celik H, Koh WK, Kramer AC, Ostrander EL, Mallaney C et al. 2018. JARID2 functions as a tumor suppressor in myeloid neoplasms by repressing self-renewal in hematopoietic progenitor cells. Cancer Cell 34:741–56.e8
    [Google Scholar]
  22. 22. 
    Chammas P, Mocavini I, Di Croce L. 2020. Engaging chromatin: PRC2 structure meets function. Br. J. Cancer 122:315–28
    [Google Scholar]
  23. 23. 
    Chatterjee SS, Biswas M, Boila LD, Banerjee D, Sengupta A. 2018. SMARCB1 deficiency integrates epigenetic signals to oncogenic gene expression program maintenance in human acute myeloid leukemia. Mol. Cancer Res. 16:791–804
    [Google Scholar]
  24. 24. 
    Chen C, Liu Y, Rappaport AR, Kitzing T, Schultz N et al. 2014. MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell 25:652–65
    [Google Scholar]
  25. 25. 
    Chen Y, Anastassiadis K, Kranz A, Stewart AF, Arndt K et al. 2017. MLL2, not MLL1, plays a major role in sustaining MLL-rearranged acute myeloid leukemia. Cancer Cell 31:755–70.e6
    [Google Scholar]
  26. 26. 
    Cohen I, Zhao D, Bar C, Valdes VJ, Dauber-Decker KL et al. 2018. PRC1 fine-tunes gene repression and activation to safeguard skin development and stem cell specification. Cell Stem Cell 22:726–39.e7
    [Google Scholar]
  27. 27. 
    Cohen I, Zhao D, Menon G, Nakayama M, Koseki H et al. 2019. PRC1 preserves epidermal tissue integrity independently of PRC2. Genes Dev 33:55–60
    [Google Scholar]
  28. 28. 
    Contieri B, Duarte BKL, Lazarini M. 2020. Updates on DNA methylation modifiers in acute myeloid leukemia. Ann. Hematol. 99:693–701
    [Google Scholar]
  29. 29. 
    Coombs CC, Tavakkoli M, Tallman MS. 2015. Acute promyelocytic leukemia: where did we start, where are we now, and the future. Blood Cancer J 5:e304
    [Google Scholar]
  30. 30. 
    D'Altri T, Wilhelmson AS, Schuster MB, Wenzel A, Kalvisa A et al. 2020. The ASXL1-G643W variant accelerates the development of CEBPA mutant acute myeloid leukemia. Haematologica 106:1000–7
    [Google Scholar]
  31. 31. 
    Danis E, Yamauchi T, Echanique K, Haladyna J, Kalkur R et al. 2015. Inactivation of Eed impedes MLL-AF9-mediated leukemogenesis through Cdkn2a-dependent and Cdkn2a-independent mechanisms in a murine model. Exp. Hematol. 43:930–35.e6
    [Google Scholar]
  32. 32. 
    Dey A, Seshasayee D, Noubade R, French D, Liu J et al. 2012. Loss of the tumor suppressor BAP1 causes myeloid transformation. Science 337:1541–46
    [Google Scholar]
  33. 33. 
    Di Costanzo A, Del Gaudio N, Conte L, Dell'Aversana C, Vermeulen M et al. 2018. The HDAC inhibitor SAHA regulates CBX2 stability via a SUMO-triggered ubiquitin-mediated pathway in leukemia. Oncogene 37:2559–72
    [Google Scholar]
  34. 34. 
    Dou L, Yan F, Pang J, Zheng D, Li D et al. 2019. Protein lysine 43 methylation by EZH1 promotes AML1-ETO transcriptional repression in leukemia. Nat. Commun. 10:5051
    [Google Scholar]
  35. 35. 
    Esposito MT, Zhao L, Fung TK, Rane JK, Wilson A et al. 2015. Synthetic lethal targeting of oncogenic transcription factors in acute leukemia by PARP inhibitors. Nat. Med. 21:1481–90
    [Google Scholar]
  36. 36. 
    Fang L, Teng H, Wang Y, Liao G, Weng L et al. 2018. SET1A-mediated mono-methylation at K342 regulates YAP activation by blocking its nuclear export and promotes tumorigenesis. Cancer Cell 34:103–18.e9
    [Google Scholar]
  37. 37. 
    Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA et al. 2005. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–21
    [Google Scholar]
  38. 38. 
    Fisher JB, Peterson J, Reimer M, Stelloh C, Pulakanti K et al. 2017. The cohesin subunit Rad21 is a negative regulator of hematopoietic self-renewal through epigenetic repression of Hoxa7 and Hoxa9. Leukemia 31:712–19
    [Google Scholar]
  39. 39. 
    Fiskus W, Wang Y, Sreekumar A, Buckley KM, Shi H et al. 2009. Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood 114:2733–43
    [Google Scholar]
  40. 40. 
    Forzati F, Federico A, Pallante P, Abbate A, Esposito F et al. 2012. CBX7 is a tumor suppressor in mice and humans. J. Clin. Investig. 122:612–23
    [Google Scholar]
  41. 41. 
    Franks TM, McCloskey A, Shokirev MN, Benner C, Rathore A, Hetzer MW. 2017. Nup98 recruits the Wdr82-Set1A/COMPASS complex to promoters to regulate H3K4 trimethylation in hematopoietic progenitor cells. Genes Dev 31:2222–34
    [Google Scholar]
  42. 42. 
    Fujita S, Honma D, Adachi N, Araki K, Takamatsu E et al. 2018. Dual inhibition of EZH1/2 breaks the quiescence of leukemia stem cells in acute myeloid leukemia. Leukemia 32:855–64
    [Google Scholar]
  43. 43. 
    Gao Z, Lee P, Stafford JM, von Schimmelmann M, Schaefer A, Reinberg D. 2014. An AUTS2-Polycomb complex activates gene expression in the CNS. Nature 516:349–54
    [Google Scholar]
  44. 44. 
    Gao Z, Zhang J, Bonasio R, Strino F, Sawai A et al. 2012. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol. Cell 45:344–56
    [Google Scholar]
  45. 45. 
    Gargiulo G, Cesaroni M, Serresi M, de Vries N, Hulsman D et al. 2013. In vivo RNAi screen for BMI1 targets identifies TGF-β/BMP-ER stress pathways as key regulators of neural- and malignant glioma-stem cell homeostasis. Cancer Cell 23:660–76
    [Google Scholar]
  46. 46. 
    Gelsi-Boyer V, Brecqueville M, Devillier R, Murati A, Mozziconacci MJ, Birnbaum D. 2012. Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. J. Hematol. Oncol. 5:12
    [Google Scholar]
  47. 47. 
    Gildea JJ, Lopez R, Shearn A. 2000. A screen for new trithorax group genes identified little imaginal discs, the Drosophila melanogaster homologue of human retinoblastoma binding protein 2. Genetics 156:645–63
    [Google Scholar]
  48. 48. 
    Ginjala V, Nacerddine K, Kulkarni A, Oza J, Hill SJ et al. 2011. BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair. Mol. Cell. Biol. 31:1972–82
    [Google Scholar]
  49. 49. 
    Glazer RI, Hartman KD, Knode MC, Richard MM, Chiang PK et al. 1986. 3-Deazaneplanocin: a new and potent inhibitor of S-adenosylhomocysteine hydrolase and its effects on human promyelocytic leukemia cell line HL-60. Biochem. Biophys. Res. Commun. 135:688–94
    [Google Scholar]
  50. 50. 
    Göllner S, Oellerich T, Agrawal-Singh S, Schenk T, Klein H-U et al. 2016. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia. Nat. Med. 23:69–78
    [Google Scholar]
  51. 51. 
    Gozdecka M, Meduri E, Mazan M, Tzelepis K, Dudek M et al. 2018. UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs. Nat. Genet. 50:883–94
    [Google Scholar]
  52. 52. 
    Grebien F, Vedadi M, Getlik M, Giambruno R, Grover A et al. 2015. Pharmacological targeting of the Wdr5-MLL interaction in C/EBPα N-terminal leukemia. Nat. Chem. Biol. 11:571–78
    [Google Scholar]
  53. 53. 
    Gunawan M, Venkatesan N, Loh JT, Wong JF, Berger H et al. 2015. The methyltransferase Ezh2 controls cell adhesion and migration through direct methylation of the extranuclear regulatory protein talin. Nat. Immunol. 16:505–16
    [Google Scholar]
  54. 54. 
    Hauri S, Comoglio F, Seimiya M, Gerstung M, Glatter T et al. 2016. A high-density map for navigating the human Polycomb complexome. Cell Rep 17:583–95
    [Google Scholar]
  55. 55. 
    Hodges C, Kirkland JG, Crabtree GR. 2016. The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer. Cold Spring Harb. Perspect. Med. 6:a026930
    [Google Scholar]
  56. 56. 
    Hoshii T, Cifani P, Feng Z, Huang CH, Koche R et al. 2018. A non-catalytic function of SETD1A regulates cyclin K and the DNA damage response. Cell 172:1007–21.e17
    [Google Scholar]
  57. 57. 
    Huang Y, Zhao W, Wang C, Zhu Y, Liu M et al. 2018. Combinatorial control of recruitment of a variant PRC1.6 complex in embryonic stem cells. Cell Rep 22:3032–43
    [Google Scholar]
  58. 58. 
    Huether R, Dong L, Chen X, Wu G, Parker M et al. 2014. The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nat. Commun. 5:3630
    [Google Scholar]
  59. 59. 
    Ingham P, Whittle R. 1980. Trithorax: a new homoeotic mutation of Drosophila melanogaster causing transformations of abdominal and thoracic imaginal segments. Mol. Gen. Genet. 179:607–14
    [Google Scholar]
  60. 60. 
    Ismail IH, Andrin C, McDonald D, Hendzel MJ. 2010. BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair. J. Cell Biol. 191:45–60
    [Google Scholar]
  61. 61. 
    Ito T, Teo YV, Evans SA, Neretti N, Sedivy JM. 2018. Regulation of cellular senescence by Polycomb chromatin modifiers through distinct DNA damage- and histone methylation-dependent pathways. Cell Rep 22:3480–92
    [Google Scholar]
  62. 62. 
    Jung J, Buisman SC, Weersing E, Dethmers-Ausema A, Zwart E et al. 2019. CBX7 induces self-renewal of human normal and malignant hematopoietic stem and progenitor cells by canonical and non-canonical interactions. Cell Rep 26:1906–18.e8
    [Google Scholar]
  63. 63. 
    Kakarougkas A, Ismail A, Chambers AL, Riballo E, Herbert AD et al. 2014. Requirement for PBAF in transcriptional repression and repair at DNA breaks in actively transcribed regions of chromatin. Mol. Cell 55:723–32
    [Google Scholar]
  64. 64. 
    Kassis JA, Kennison JA, Tamkun JW. 2017. Polycomb and Trithorax group genes in Drosophila. Genetics 206:1699–725
    [Google Scholar]
  65. 65. 
    Kelly MJ, So J, Rogers AJ, Gregory G, Li J et al. 2019. Bcor loss perturbs myeloid differentiation and promotes leukaemogenesis. Nat. Commun. 10:1347
    [Google Scholar]
  66. 66. 
    Kennison JA, Tamkun JW. 1988. Dosage-dependent modifiers of Polycomb and Antennapedia mutations in Drosophila. PNAS 85:8136–40
    [Google Scholar]
  67. 67. 
    Kim W, Bird GH, Neff T, Guo G, Kerenyi MA et al. 2013. Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer. Nat. Chem. Biol. 9:643–50
    [Google Scholar]
  68. 68. 
    Klauke K, Radulović V, Broekhuis M, Weersing E, Zwart E et al. 2013. Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation. Nat. Cell Biol. 15:353–62
    [Google Scholar]
  69. 69. 
    Krivtsov AV, Evans K, Gadrey JY, Eschle BK, Hatton C et al. 2019. A menin-MLL inhibitor induces specific chromatin changes and eradicates disease in models of MLL-rearranged leukemia. Cancer Cell 36:660–73.e11
    [Google Scholar]
  70. 70. 
    Kuhn MW, Song E, Feng Z, Sinha A, Chen CW et al. 2016. Targeting chromatin regulators inhibits leukemogenic gene expression in NPM1 mutant leukemia. Cancer Discov 6:1166–81
    [Google Scholar]
  71. 71. 
    Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA et al. 2014. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505:495–501
    [Google Scholar]
  72. 72. 
    Lessard J, Sauvageau G. 2003. Bmi-1 determines proliferation capacity of normal and leukemic stem cells. Nature 423:255–60
    [Google Scholar]
  73. 73. 
    Lewis E. 1978. A gene complex controlling segmentation in Drosophila. Nature 276:565–70
    [Google Scholar]
  74. 74. 
    Li Z, Cao R, Wang M, Myers MP, Zhang Y, Xu RM. 2006. Structure of a Bmi-1-Ring1B Polycomb group ubiquitin ligase complex. J. Biol. Chem. 281:20643–49
    [Google Scholar]
  75. 75. 
    Lin KH, Rutter JC, Xie A, Pardieu B, Winn ET et al. 2020. Using antagonistic pleiotropy to design a chemotherapy-induced evolutionary trap to target drug resistance in cancer. Nat. Genet. 52:408–17
    [Google Scholar]
  76. 76. 
    Liu H, Takeda S, Kumar R, Westergard TD, Brown EJ et al. 2010. Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature 467:343–46
    [Google Scholar]
  77. 77. 
    Liu J, Cao L, Chen J, Song S, Lee IH et al. 2009. Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 459:387–92
    [Google Scholar]
  78. 78. 
    Loubiere V, Papadopoulos GL, Szabo Q, Martinez AM, Cavalli G. 2020. Widespread activation of developmental gene expression characterized by PRC1-dependent chromatin looping. Sci. Adv. 6:eaax4001
    [Google Scholar]
  79. 79. 
    Madan V, Shyamsunder P, Han L, Mayakonda A, Nagata Y et al. 2016. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia. Leukemia 30:1672–81
    [Google Scholar]
  80. 80. 
    Maethner E, Garcia-Cuellar M-P, Breitinger C, Takacova S, Divoky V et al. 2013. MLL-ENL inhibits Polycomb repressive complex 1 to achieve efficient transformation of hematopoietic cells. Cell Rep 3:1553–66
    [Google Scholar]
  81. 81. 
    Maganti HB, Jrade H, Cafariello C, Manias Rothberg JL, Porter CJ et al. 2018. Targeting the MTF2–MDM2 axis sensitizes refractory acute myeloid leukemia to chemotherapy. Cancer Discov 8:1376–89
    [Google Scholar]
  82. 82. 
    Martincorena I, Campbell PJ. 2015. Somatic mutation in cancer and normal cells. Science 349:1483–89
    [Google Scholar]
  83. 83. 
    McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C et al. 2012. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492:108–12
    [Google Scholar]
  84. 84. 
    Meyer C, Burmeister T, Groger D, Tsaur G, Fechina L et al. 2018. The MLL recombinome of acute leukemias in 2017. Leukemia 32:273–84
    [Google Scholar]
  85. 85. 
    Micol JB, Duployez N, Boissel N, Petit A, Geffroy S et al. 2014. Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocations. Blood 124:1445–49
    [Google Scholar]
  86. 86. 
    Mishra RK, Mihaly J, Barges S, Spierer A, Karch F et al. 2001. The iab-7 Polycomb response element maps to a nucleosome-free region of chromatin and requires both GAGA and pleiohomeotic for silencing activity. Mol. Cell. Biol. 21:1311–18
    [Google Scholar]
  87. 87. 
    Mizukawa B, Wei J, Shrestha M, Wunderlich M, Chou FS et al. 2011. Inhibition of Rac GTPase signaling and downstream prosurvival Bcl-2 proteins as combination targeted therapy in MLL-AF9 leukemia. Blood 118:5235–45
    [Google Scholar]
  88. 88. 
    Neff T, Sinha A, Kluk M, Zhu N, Khattab M et al. 2012. Polycomb repressive complex 2 is required for MLL-AF9 leukemia. PNAS 109:5028–33
    [Google Scholar]
  89. 89. 
    Nishida Y, Maeda A, Kim MJ, Cao L, Kubota Y et al. 2017. The novel BMI-1 inhibitor PTC596 downregulates MCL-1 and induces p53-independent mitochondrial apoptosis in acute myeloid leukemia progenitor cells. Blood Cancer J 7:e527
    [Google Scholar]
  90. 90. 
    Pan R, Ruvolo V, Mu H, Leverson JD, Nichols G et al. 2017. Synthetic lethality of combined Bcl-2 inhibition and p53 activation in AML: mechanisms and superior antileukemic efficacy. Cancer Cell 32:748–60.e6
    [Google Scholar]
  91. 91. 
    Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P et al. 2016. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374:2209–21
    [Google Scholar]
  92. 92. 
    Park I, Qian D, Kiel M, Becker M, Pihalja M et al. 2003. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423:302–5
    [Google Scholar]
  93. 93. 
    Pasini D, Bracken A, Jensen M, Lazzerini Denchi E, Helin K 2004. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J 23:4061–71
    [Google Scholar]
  94. 94. 
    Patnaik MM, Vallapureddy R, Lasho TL, Hoversten KP, Finke CM et al. 2018. EZH2 mutations in chronic myelomonocytic leukemia cluster with ASXL1 mutations and their co-occurrence is prognostically detrimental. Blood Cancer J 8:12
    [Google Scholar]
  95. 95. 
    Pherson M, Misulovin Z, Gause M, Mihindukulasuriya K, Swain A, Dorsett D. 2017. Polycomb repressive complex 1 modifies transcription of active genes. Sci. Adv. 3:e1700944
    [Google Scholar]
  96. 96. 
    Piunti A, Shilatifard A. 2016. Epigenetic balance of gene expression by Polycomb and COMPASS families. Science 352:aad9780
    [Google Scholar]
  97. 97. 
    Pratcorona M, Abbas S, Sanders MA, Koenders JE, Kavelaars FG et al. 2012. Acquired mutations in ASXL1 in acute myeloid leukemia: prevalence and prognostic value. Haematologica 97:388–92
    [Google Scholar]
  98. 98. 
    Priam P, Krasteva V, Rousseau P, D'Angelo G, Gaboury L et al. 2017. SMARCD2 subunit of SWI/SNF chromatin-remodeling complexes mediates granulopoiesis through a CEBPε dependent mechanism. Nat. Genet. 49:753–64
    [Google Scholar]
  99. 99. 
    Rathert P, Roth M, Neumann T, Muerdter F, Roe JS et al. 2015. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature 525:543–47
    [Google Scholar]
  100. 100. 
    Rinke J, Chase A, Cross NCP, Hochhaus A, Ernst T. 2020. EZH2 in myeloid malignancies. Cells 9:1639
    [Google Scholar]
  101. 101. 
    Rohban S, Cerutti A, Morelli MJ, d'Adda di Fagagna F, Campaner S. 2017. The cohesin complex prevents Myc-induced replication stress. Cell Death Dis 8:e2956
    [Google Scholar]
  102. 102. 
    Rossi A, Ferrari KJ, Piunti A, Jammula S, Chiacchiera F et al. 2016. Maintenance of leukemic cell identity by the activity of the Polycomb complex PRC1 in mice. Sci. Adv. 2:e1600972
    [Google Scholar]
  103. 103. 
    Sahasrabuddhe AA. 2016. BMI1: a biomarker of hematologic malignancies. Biomark. Cancer 8:65–75
    [Google Scholar]
  104. 104. 
    Saudy NS, Fawzy IM, Azmy E, Goda EF, Eneen A, Abdul Salam EM 2014. BMI1 gene expression in myeloid leukemias and its impact on prognosis. Blood Cells Mol. Dis. 53:194–98
    [Google Scholar]
  105. 105. 
    Schmahling S, Meiler A, Lee Y, Mohammed A, Finkl K et al. 2018. Regulation and function of H3K36 di-methylation by the trithorax-group protein complex AMC. Development 145:dev163808
    [Google Scholar]
  106. 106. 
    Schuringa JJ, Vellenga E. 2010. Role of the polycomb group gene BMI1 in normal and leukemic hematopoietic stem and progenitor cells. Curr. Opin. Hematol. 17:294–99
    [Google Scholar]
  107. 107. 
    Shi J, Wang E, Zuber J, Rappaport A, Taylor M et al. 2013. The Polycomb complex PRC2 supports aberrant self-renewal in a mouse model of MLL-AF9;NrasG12D acute myeloid leukemia. Oncogene 32:930–38
    [Google Scholar]
  108. 108. 
    Shi J, Whyte WA, Zepeda-Mendoza CJ, Milazzo JP, Shen C et al. 2013. Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev 27:2648–62
    [Google Scholar]
  109. 109. 
    Shima H, Takamatsu-Ichihara E, Shino M, Yamagata K, Katsumoto T et al. 2018. Ring1A and Ring1B inhibit expression of Glis2 to maintain murine MOZ-TIF2 AML stem cells. Blood 131:1833–45
    [Google Scholar]
  110. 110. 
    Sinha S, Thomas D, Yu L, Gentles AJ, Jung N et al. 2015. Mutant WT1 is associated with DNA hypermethylation of PRC2 targets in AML and responds to EZH2 inhibition. Blood 125:316–26
    [Google Scholar]
  111. 111. 
    Smith LL, Yeung J, Zeisig BB, Popov N, Huijbers I et al. 2011. Functional crosstalk between Bmi1 and MLL/Hoxa9 axis in establishment of normal hematopoietic and leukemic stem cells. Cell Stem Cell 8:649–62
    [Google Scholar]
  112. 112. 
    Su IH, Dobenecker MW, Dickinson E, Oser M, Basavaraj A et al. 2005. Polycomb group protein Ezh2 controls actin polymerization and cell signaling. Cell 121:425–36
    [Google Scholar]
  113. 113. 
    Tan J, Jones M, Koseki H, Nakayama M, Muntean A et al. 2011. CBX8, a Polycomb group protein, is essential for MLL-AF9-induced leukemogenesis. Cancer Cell 20:563–75
    [Google Scholar]
  114. 114. 
    Tan J, Yang X, Zhuang L, Jiang X, Chen W et al. 2007. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 21:1050–63
    [Google Scholar]
  115. 115. 
    Tanaka S, Miyagi S, Sashida G, Chiba T, Yuan J et al. 2012. Ezh2 augments leukemogenicity by reinforcing differentiation blockage in acute myeloid leukemia. Blood 120:1107–17
    [Google Scholar]
  116. 116. 
    Tkachuk DC, Kohler S, Cleary ML. 1992. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 71:691–700
    [Google Scholar]
  117. 117. 
    Trissal MC, Wong TN, Yao JC, Ramaswamy R, Kuo I et al. 2018. MIR142 loss-of-function mutations derepress ASH1L to increase HOXA gene expression and promote leukemogenesis. Cancer Res 78:3510–21
    [Google Scholar]
  118. 118. 
    Triviai I, Zeschke S, Rentel J, Spanakis M, Scherer T et al. 2019. ASXL1/EZH2 mutations promote clonal expansion of neoplastic HSC and impair erythropoiesis in PMF. Leukemia 33:99–109
    [Google Scholar]
  119. 119. 
    Uckelmann HJ, Kim SM, Wong EM, Hatton C, Giovinazzo H et al. 2020. Therapeutic targeting of preleukemia cells in a mouse model of NPM1 mutant acute myeloid leukemia. Science 367:586–90
    [Google Scholar]
  120. 120. 
    Uckelmann M, Sixma TK. 2017. Histone ubiquitination in the DNA damage response. DNA Repair 56:92–101
    [Google Scholar]
  121. 121. 
    van den Boom V, Maat H, Geugien M, Rodriguez Lopez A, Sotoca AM et al. 2016. Non-canonical PRC1.1 targets active genes independent of H3K27me3 and is essential for leukemogenesis. Cell Rep 14:332–46
    [Google Scholar]
  122. 122. 
    Verma SK, Tian X, LaFrance LV, Duquenne C, Suarez DP et al. 2012. Identification of potent, selective, cell-active inhibitors of the histone lysine methyltransferase EZH2. ACS Med. Chem. Lett. 3:1091–96
    [Google Scholar]
  123. 123. 
    Versteege I, Sevenet N, Lange J, Rousseau-Merck MF, Ambros P et al. 1998. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394:203–6
    [Google Scholar]
  124. 124. 
    Vincenz C, Kerppola TK 2008. Different polycomb group CBX family proteins associate with distinct regions of chromatin using nonhomologous protein sequences. PNAS 105:16572–77
    [Google Scholar]
  125. 125. 
    Wang L, Leite de Oliveira R, Huijberts S, Bosdriesz E, Pencheva N et al. 2018. An acquired vulnerability of drug-resistant melanoma with therapeutic potential. Cell 173:1413–25.e14
    [Google Scholar]
  126. 126. 
    Wang T, Yu H, Hughes NW, Liu B, Kendirli A et al. 2017. Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic Ras. Cell 168:890–903.e15
    [Google Scholar]
  127. 127. 
    Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC et al. 2008. Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell 13:483–95
    [Google Scholar]
  128. 128. 
    Wendt KS, Yoshida K, Itoh T, Bando M, Koch B et al. 2008. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451:796–801
    [Google Scholar]
  129. 129. 
    Wilson B, Wang X, Shen X, McKenna E, Lemieux M et al. 2010. Epigenetic antagonism between Polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 18:316–28
    [Google Scholar]
  130. 130. 
    Witzel M, Petersheim D, Fan Y, Bahrami E, Racek T et al. 2017. Chromatin-remodeling factor SMARCD2 regulates transcriptional networks controlling differentiation of neutrophil granulocytes. Nat. Genet. 49:742–52
    [Google Scholar]
  131. 131. 
    Wong NM, So CWE. 2020. Novel therapeutic strategies for MLL-rearranged leukemias. Biochim. Biophys. Acta Gene Regul. Mech. 1863:194584
    [Google Scholar]
  132. 132. 
    Xu B, On DM, Ma A, Parton T, Konze KD et al. 2015. Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL-rearranged leukemia. Blood 125:346–57
    [Google Scholar]
  133. 133. 
    Xu J, Shao Z, Li D, Xie H, Kim W et al. 2015. Developmental control of Polycomb subunit composition by GATA factors mediates a switch to non-canonical functions. Mol. Cell 57:304–16
    [Google Scholar]
  134. 134. 
    Yamato G, Shiba N, Yoshida K, Shiraishi Y, Hara Y et al. 2017. ASXL2 mutations are frequently found in pediatric AML patients with t(8;21)/RUNX1-RUNX1T1 and associated with a better prognosis. Genes Chromosomes Cancer 56:382–93
    [Google Scholar]
  135. 135. 
    Yang X, Wong MPM, Ng RK. 2019. Aberrant DNA methylation in acute myeloid leukemia and its clinical implications. Int. J. Mol. Sci. 20:4576
    [Google Scholar]
  136. 136. 
    Yokoyama A, Somervaille T, Smith K, Rozenblatt-Rosen O, Meyerson M, Cleary M. 2005. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 123:207–18
    [Google Scholar]
  137. 137. 
    Zeisig BB, Kulasekararaj AG, Mufti GJ, So CW. 2012. SnapShot: acute myeloid leukemia. Cancer Cell 22:698–98.e1
    [Google Scholar]
  138. 138. 
    Zeisig BB, So CW 2016. Cellular and molecular basis of KMT2A/MLL leukaemias: from transformation mechanisms to novel therapeutic strategies. Chromosomal Translocations and Genome Rearrangements in Cancer JD Rowley, MM Le Beau, TH Rabbitts 223–50 Cham, Switz: Springer
    [Google Scholar]
  139. 139. 
    Zhou J, Bi C, Cheong LL, Mahara S, Liu SC et al. 2011. The histone methyltransferase inhibitor, DZNep, up-regulates TXNIP, increases ROS production, and targets leukemia cells in AML. Blood 118:2830–39
    [Google Scholar]
  140. 140. 
    Zhou P, Wang Z, Yuan X, Zhou C, Liu L et al. 2013. Mixed lineage leukemia 5 (MLL5) protein regulates cell cycle progression and E2F1-responsive gene expression via association with host cell factor-1 (HCF-1). J. Biol. Chem. 288:17532–43
    [Google Scholar]
  141. 141. 
    Zhu L, Li Q, Wong SH, Huang M, Klein BJ et al. 2016. ASH1L links histone H3 lysine 36 dimethylation to MLL leukemia. Cancer Discov 6:770–83
    [Google Scholar]
  142. 142. 
    Zuber J, Shi J, Wang E, Rappaport A, Herrmann H et al. 2011. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478:524–28
    [Google Scholar]
/content/journals/10.1146/annurev-genom-111120-102443
Loading
/content/journals/10.1146/annurev-genom-111120-102443
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error