Annual Review of Genomics and Human Genetics - Volume 22, 2021
Volume 22, 2021
-
-
Utility and Diversity: Challenges for Genomic Medicine
Vol. 22 (2021), pp. 1–24More LessGenomic information is poised to play an increasing role in clinical care, extending beyond highly penetrant genetic conditions to less penetrant genotypes and common disorders. But with this shift, the question of clinical utility becomes a major challenge. A collaborative effort is necessary to determine the information needed to evaluate different uses of genomic information and then acquire that information. Another challenge must also be addressed if that process is to provide equitable benefits: the lack of diversity of genomic data. Current genomic knowledge comes primarily from populations of European descent, which poses the risk that most of the human population will be shortchanged when health benefits of genomics emerge. These two challenges have defined my career as a geneticist and have taught me that solutions must start with dialogue across disciplinary and social divides.
-
-
-
A Long, Fulfilling Career in Human Genetics
Vol. 22 (2021), pp. 27–53More LessI have been fortunate and privileged to have participated in amazing breakthroughs in human genetics since the 1960s. I was lucky to have trained in medical school at Dartmouth and Johns Hopkins, in pediatrics at the University of Minnesota and Johns Hopkins, and in genetics and molecular biology with Dr. Barton Childs at Johns Hopkins and Dr. Harvey Itano at the National Institutes of Health. Later, the collaborative spirit at Johns Hopkins and the University of Pennsylvania were important to my career. Here, I describe the thrill of scientific discovery in two diverse areas of human genetics: DNA haplotypes and their role in solving the molecular basis of beta thalassemia and the role of retrotransposons (jumping genes) in human biology. I hope that this article may inspire others who love human genetics as much as I do.
-
-
-
Avoiding Extinction: Recent Advances in Understanding Mechanisms of Mitochondrial DNA Purifying Selection in the Germline
Vol. 22 (2021), pp. 55–80More LessMitochondria are unusual organelles in that they contain their own genomes, which are kept apart from the rest of the DNA in the cell. While mitochondrial DNA (mtDNA) is essential for respiration and most multicellular life, maintaining a genome outside the nucleus brings with it a number of challenges. Chief among these is preserving mtDNA genomic integrity from one generation to the next. In this review, we discuss what is known about negative (purifying) selection mechanisms that prevent deleterious mutations from accumulating in mtDNA in the germline. Throughout, we focus on the female germline, as it is the tissue through which mtDNA is inherited in most organisms and, therefore, the tissue that most profoundly shapes the genome. We discuss recent progress in uncovering the mechanisms of germline mtDNA selection, from humans to invertebrates.
-
-
-
The Need for a Human Pangenome Reference Sequence
Karen H. Miga, and Ting WangVol. 22 (2021), pp. 81–102More LessThe reference human genome sequence is inarguably the most important and widely used resource in the fields of human genetics and genomics. It has transformed the conduct of biomedical sciences and brought invaluable benefits to the understanding and improvement of human health. However, the commonly used reference sequence has profound limitations, because across much of its span, it represents the sequence of just one human haplotype. This single, monoploid reference structure presents a critical barrier to representing the broad genomic diversity in the human population. In this review, we discuss the modernization of the reference human genome sequence to a more complete reference of human genomic diversity, known as a human pangenome.
-
-
-
Therapeutic Opportunities of Targeting Canonical and Noncanonical PcG/TrxG Functions in Acute Myeloid Leukemia
Vol. 22 (2021), pp. 103–125More LessTranscriptional deregulation is a key driver of acute myeloid leukemia (AML), a heterogeneous blood cancer with poor survival rates. Polycomb group (PcG) and Trithorax group (TrxG) genes, originally identified in Drosophila melanogaster several decades ago as master regulators of cellular identity and epigenetic memory, not only are important in mammalian development but also play a key role in AML disease biology. In addition to their classical canonical antagonistic transcriptional functions, noncanonical synergistic and nontranscriptional functions of PcG and TrxG are emerging. Here, we review the biochemical properties of major mammalian PcG and TrxG complexes and their roles in AML disease biology, including disease maintenance as well as drug resistance. We summarize current efforts on targeting PcG and TrxG for treatment of AML and propose rational synthetic lethality and drug-induced antagonistic pleiotropy options involving PcG and TrxG as potential new therapeutic avenues for treatment of AML.
-
-
-
Transcriptional Regulation by (Super)Enhancers: From Discovery to Mechanisms
Vol. 22 (2021), pp. 127–146More LessAccurate control of gene expression in the right cell at the right moment is of fundamental importance to animal development and homeostasis. At the heart of gene regulation lie the enhancers, a class of gene regulatory elements that ensures precise spatiotemporal activation of gene transcription. Mammalian genomes are littered with enhancers, which are frequently organized in cooperative clusters such as locus control regions and superenhancers. Here, we discuss our current knowledge of enhancer biology, including an overview of the discovery of the various enhancer subsets and the mechanistic models used to explain their gene regulatory function.
-
-
-
The Yin and Yang of Histone Marks in Transcription
Vol. 22 (2021), pp. 147–170More LessNucleosomes wrap DNA and impede access for the machinery of transcription. The core histones that constitute nucleosomes are subject to a diversity of posttranslational modifications, or marks, that impact the transcription of genes. Their functions have sometimes been difficult to infer because the enzymes that write and read them are complex, multifunctional proteins. Here, we examine the evidence for the functions of marks and argue that the major marks perform a fairly small number of roles in either promoting transcription or preventing it. Acetylations and phosphorylations on the histone core disrupt histone–DNA contacts and/or destabilize nucleosomes to promote transcription. Ubiquitylations stimulate methylations that provide a scaffold for either the formation of silencing complexes or resistance to those complexes, and carry a memory of the transcriptional state. Tail phosphorylations deconstruct silencing complexes in particular contexts. We speculate that these fairly simple roles form the basis of transcriptional regulation by histone marks.
-
-
-
Applications of Single-Cell DNA Sequencing
Vol. 22 (2021), pp. 171–197More LessOver the past decade, genomic analyses of single cells—the fundamental units of life—have become possible. Single-cell DNA sequencing has shed light on biological questions that were previously inaccessible across diverse fields of research, including somatic mutagenesis, organismal development, genome function, and microbiology. Single-cell DNA sequencing also promises significant future biomedical and clinical impact, spanning oncology, fertility, and beyond. While single-cell approaches that profile RNA and protein have greatly expanded our understanding of cellular diversity, many fundamental questions in biology and important biomedical applications require analysis of the DNA of single cells. Here, we review the applications and biological questions for which single-cell DNA sequencing is uniquely suited or required. We include a discussion of the fields that will be impacted by single-cell DNA sequencing as the technology continues to advance.
-
-
-
Investigating the Potential Roles of SINEs in the Human Genome
Vol. 22 (2021), pp. 199–218More LessShort interspersed nuclear elements (SINEs) are nonautonomous retrotransposons that occupy approximately 13% of the human genome. They are transcribed by RNA polymerase III and can be retrotranscribed and inserted back into the genome with the help of other autonomous retroelements. Because they are preferentially located close to or within gene-rich regions, they can regulate gene expression by various mechanisms that act at both the DNA and the RNA levels. In this review, we summarize recent findings on the involvement of SINEs in different types of gene regulation and discuss the potential regulatory functions of SINEs that are in close proximity to genes, Pol III–transcribed SINE RNAs, and embedded SINE sequences within Pol II–transcribed genes in the human genome. These discoveries illustrate how the human genome has exapted some SINEs into functional regulatory elements.
-
-
-
The Role of Electronic Health Records in Advancing Genomic Medicine
Vol. 22 (2021), pp. 219–238More LessRecent advances in genomic technology and widespread adoption of electronic health records (EHRs) have accelerated the development of genomic medicine, bringing promising research findings from genome science into clinical practice. Genomic and phenomic data, accrued across large populations through biobanks linked to EHRs, have enabled the study of genetic variation at a phenome-wide scale. Through new quantitative techniques, pleiotropy can be explored with phenome-wide association studies, the occurrence of common complex diseases can be predicted using the cumulative influence of many genetic variants (polygenic risk scores), and undiagnosed Mendelian syndromes can be identified using EHR-based phenotypic signatures (phenotype risk scores). In this review, we trace the role of EHRs from the development of genome-wide analytic techniques to translational efforts to test these new interventions to the clinic. Throughout, we describe the challenges that remain when combining EHRs with genetics to improve clinical care.
-
-
-
Brain Somatic Mutation in Aging and Alzheimer's Disease
Vol. 22 (2021), pp. 239–256More LessSomatic mutations arise postzygotically, producing genetic differences between cells in an organism. Well established as a driver of cancer, somatic mutations also exist in nonneoplastic cells, including in the brain. Technological advances in nucleic acid sequencing have enabled recent breakthroughs that illuminate the roles of somatic mutations in aging and degenerative diseases of the brain. Somatic mutations accumulate during aging in human neurons, a process termed genosenium. A number of recent studies have examined somatic mutations in Alzheimer's disease (AD), primarily from the perspective of genes causing familial AD. We have also gained new information on genome-wide mutations, providing insights into the cellular events driving somatic mutation and cellular dysfunction. This review highlights recent concepts, methods, and findings in the progress to understand the role of brain somatic mutation in aging and AD.
-
-
-
Heart Development and Congenital Structural Heart Defects
Vol. 22 (2021), pp. 257–284More LessCongenital heart disease is the most frequent birth defect and the leading cause of death for the fetus and in the first year of life. The wide phenotypic diversity of congenital heart defects requires expert diagnosis and sophisticated repair surgery. Although these defects have been described since the seventeenth century, it was only in 2005 that a consensus international nomenclature was adopted, followed by an international classification in 2017 to help provide better management of patients. Advances in genetic engineering, imaging, and omics analyses have uncovered mechanisms of heart formation and malformation in animal models, but approximately 80% of congenital heart defects have an unknown genetic origin. Here, we summarize current knowledge of congenital structural heart defects, intertwining clinical and fundamental research perspectives, with the aim to foster interdisciplinary collaborations at the cutting edge of each field. We also discuss remaining challenges in better understanding congenital heart defects and providing benefits to patients.
-
-
-
The Science and Art of Clinical Genetic Variant Classification and Its Impact on Test Accuracy
Vol. 22 (2021), pp. 285–307More LessClinical genetic variant classification science is a growing subspecialty of clinical genetics and genomics. The field's continued improvement is essential for the success of precision medicine in both germline (hereditary) and somatic (oncology) contexts. This review focuses on variant classification for DNA next-generation sequencing tests. We first summarize current limitations in variant discovery and definition, and then describe the current five- and four-tier classification systems outlined in dominant standards and guideline publications for germline and somatic tests, respectively. We then discuss measures of variant classification discordance and the field's bias for positive results, as well as considerations for panel size and population screening in the context of estimates of positive predictive value thatincorporate estimated variant classification imperfections. Finally, we share opinions on the current state of variant classification from some of the authors of the most widely used standards and guideline publications and from other domain experts.
-
-
-
The Emergence and Global Spread of Noninvasive Prenatal Testing
Vol. 22 (2021), pp. 309–338More LessSince its introduction in 2011, noninvasive prenatal testing (NIPT) has spread rapidly around the world. It carries numerous benefits but also raises challenges, often related to sociocultural, legal, and economic contexts. This article describes the implementation of NIPT in nine countries, each with its own unique characteristics: Australia, Canada, China and Hong Kong, India, Israel, Lebanon, the Netherlands, the United Kingdom, and the United States. Themes covered for each country include the structure of the healthcare system, how NIPT is offered, counseling needs and resources, and cultural and legal context regarding disability and pregnancytermination. Some common issues emerge, including cost as a barrier to equitable access, the complexity of decision-making about public funding, and a shortage of appropriate resources that promote informed choice. Conversely, sociocultural values that underlie the use of NIPT vary greatly among countries. The issues described will become even more challenging as NIPT evolves from a second-tier to a first-tier screening test with expanded use.
-
-
-
Scaling Genetic Counseling in the Genomics Era
Vol. 22 (2021), pp. 339–355More LessThe development of massively parallel sequencing–based genomic sequencing tests has increased genetic test availability and access. The field and practice of genetic counseling have adapted in response to this paradigm-shifting technology and the subsequent transition to practicing genomic medicine. While the key elements defining genetic counseling remain relevant, genetic counseling service delivery models and practice settings have evolved. Genetic counselors are addressing the challenges of direct-to-consumer and consumer-driven genetic testing, and genetic counseling training programs are responding to the ongoing increased demand for genetic counseling services across a broadening range of contexts. The need to diversify both the patient and participant groups with access to genetic information, as well as the field of genetic counseling, is at the forefront of research and training program initiatives. Genetic counselors are key stakeholders in the genomics era, and their contributions are essential to effectively and equitably deliver precision medicine.
-
-
-
Threespine Stickleback: A Model System For Evolutionary Genomics
Vol. 22 (2021), pp. 357–383More LessThe repeated adaptation of oceanic threespine sticklebacks to fresh water has made it a premier organism to study parallel evolution. These small fish have multiple distinct ecotypes that display a wide range of diverse phenotypic traits. Ecotypes are easily crossed in the laboratory, and families are large and develop quickly enough for quantitative trait locus analyses, positioning the threespine stickleback as a versatile model organism to address a wide range of biological questions. Extensive genomic resources, including linkage maps, a high-quality reference genome, and developmental genetics tools have led to insights into the genomic basis of adaptation and the identification of genomic changes controlling traits in vertebrates. Recently, threespine sticklebacks have been used as a model system to identify the genomic basis of highly complex traits, such as behavior and host–microbiome and host–parasite interactions. We review the latest findings and new avenues of research that have led the threespine stickleback to be considered a supermodel of evolutionary genomics.
-
-
-
Global Governance of Human Genome Editing: What Are the Rules?
Vol. 22 (2021), pp. 385–405More LessHuman gene editing, particularly using the new CRISPR/Cas9 technology, will greatly increase the capability to make precise changes to human genomes. Human gene editing can be broken into four major categories: somatic therapy, heritable gene editing, genetic enhancement, and basic and applied research. Somatic therapy is generally well governed by national regulatory systems, so the need for global governance is less urgent. All nations are in agreement that heritable gene editing should not proceed at this time, but there is likely to be divergence if and when such procedures are shown to be safe and effective. Gene editing for enhancement purposes is not feasible today but is more controversial with the public, and many nations do not have well-developed regulatory systems for addressing genetic enhancement. Finally, different nations treat research with human embryos very differently based on deeply embedded social, cultural, ethical, and legal traditions. Several international governance mechanisms are currently in operation for human gene editing, and several other governance mechanisms have been proposed. It is unlikely that any single mechanism will alone be effective for governing human gene editing; rather, a polycentric or ecosystem approach that includes several overlapping and interacting components is likely to be necessary.
-
Previous Volumes
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
-
Volume 0 (1932)