1932

Abstract

Over the past decade, genomic analyses of single cells—the fundamental units of life—have become possible. Single-cell DNA sequencing has shed light on biological questions that were previously inaccessible across diverse fields of research, including somatic mutagenesis, organismal development, genome function, and microbiology. Single-cell DNA sequencing also promises significant future biomedical and clinical impact, spanning oncology, fertility, and beyond. While single-cell approaches that profile RNA and protein have greatly expanded our understanding of cellular diversity, many fundamental questions in biology and important biomedical applications require analysis of the DNA of single cells. Here, we review the applications and biological questions for which single-cell DNA sequencing is uniquely suited or required. We include a discussion of the fields that will be impacted by single-cell DNA sequencing as the technology continues to advance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-111320-090436
2021-08-31
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/genom/22/1/annurev-genom-111320-090436.html?itemId=/content/journals/10.1146/annurev-genom-111320-090436&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abyzov A, Vaccarino FM. 2020. Cell lineage tracing and cellular diversity in humans. Annu. Rev. Genom. Hum. Genet. 21:101–16
    [Google Scholar]
  2. 2. 
    Alemany A, Florescu M, Baron CS, Peterson-Maduro J, van Oudenaarden A. 2018. Whole-organism clone tracing using single-cell sequencing. Nature 556:108–12
    [Google Scholar]
  3. 3. 
    Alexandrov LB, Jones PH, Wedge DC, Sale JE, Campbell PJ et al. 2015. Clock-like mutational processes in human somatic cells. Nat. Genet. 47:1402–7
    [Google Scholar]
  4. 4. 
    Argelaguet R, Clark SJ, Mohammed H, Stapel LC, Krueger C et al. 2019. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 576:487–91
    [Google Scholar]
  5. 5. 
    Bae T, Tomasini L, Mariani J, Zhou B, Roychowdhury T et al. 2018. Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis. Science 359:550–55
    [Google Scholar]
  6. 6. 
    Bakker B, Taudt A, Belderbos ME, Porubsky D, Spierings DCJ et al. 2016. Single-cell sequencing reveals karyotype heterogeneity in murine and human malignancies. Genome Biol 17:115
    [Google Scholar]
  7. 7. 
    Baron CS, van Oudenaarden A. 2019. Unravelling cellular relationships during development and regeneration using genetic lineage tracing. Nat. Rev. Mol. Cell Biol. 20:753–65
    [Google Scholar]
  8. 8. 
    Baslan T, Hicks J. 2017. Unravelling biology and shifting paradigms in cancer with single-cell sequencing. Nat. Rev. Cancer 17:557–69
    [Google Scholar]
  9. 9. 
    Baslan T, Kendall J, Volyanskyy K, McNamara K, Cox H et al. 2020. Novel insights into breast cancer copy number genetic heterogeneity revealed by single-cell genome sequencing. eLife 9:e51480
    [Google Scholar]
  10. 10. 
    Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C et al. 2010. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327:836–40
    [Google Scholar]
  11. 11. 
    Beagrie RA, Scialdone A, Schueler M, Kraemer DCA, Chotalia M et al. 2017. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543:519–24
    [Google Scholar]
  12. 12. 
    Bell AD, Mello CJ, Nemesh J, Brumbaugh SA, Wysoker A, McCarroll SA. 2020. Insights about variation in meiosis from 31,228 human sperm genomes. Nature 583:25964
    [Google Scholar]
  13. 13. 
    Bian S, Hou Y, Zhou X, Li X, Yong J et al. 2018. Single-cell multiomics sequencing and analyses of human colorectal cancer. Science 362:1060–63
    [Google Scholar]
  14. 14. 
    Biezuner T, Spiro A, Raz O, Amir S, Milo L et al. 2016. A generic, cost-effective, and scalable cell lineage analysis platform. Genome Res 26:1588–99
    [Google Scholar]
  15. 15. 
    Blainey PC. 2013. The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol. Rev. 37:407–27
    [Google Scholar]
  16. 16. 
    Bohrson CL, Barton AR, Lodato MA, Rodin RE, Luquette LJ et al. 2019. Linked-read analysis identifies mutations in single-cell DNA-sequencing data. Nat. Genet. 51:749–54
    [Google Scholar]
  17. 17. 
    Brazhnik K, Sun S, Alani O, Kinkhabwala M, Wolkoff AW et al. 2020. Single-cell analysis reveals different age-related somatic mutation profiles between stem and differentiated cells in human liver. Sci. Adv. 6:eaax2659
    [Google Scholar]
  18. 18. 
    Breuss MW, Yang X, Antaki D, Schlachetzki JCM, Lana AJ et al. 2020. Somatic mosaicism in the mature brain reveals clonal cellular distributions during cortical development. bioRxiv 2020.08.10.244814. https://doi.org/10.1101/2020.08.10.244814
    [Crossref]
  19. 19. 
    Brick K, Thibault-Sennett S, Smagulova F, Lam K-WG, Pu Y et al. 2018. Extensive sex differences at the initiation of genetic recombination. Nature 561:338–42
    [Google Scholar]
  20. 20. 
    Brunner SF, Roberts ND, Wylie LA, Moore L, Aitken SJ et al. 2019. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature 574:538–42
    [Google Scholar]
  21. 21. 
    Cai X, Evrony GD, Lehmann HS, Elhosary PC, Mehta BK et al. 2014. Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep 8:1280–89
    [Google Scholar]
  22. 22. 
    Capalbo A, Hoffmann ER, Cimadomo D, Ubaldi FM, Rienzi L. 2017. Human female meiosis revised: new insights into the mechanisms of chromosome segregation and aneuploidies from advanced genomics and time-lapse imaging. Hum. Reprod. Update 23:706–22
    [Google Scholar]
  23. 23. 
    Carvalho CMB, Lupski JR. 2016. Mechanisms underlying structural variant formation in genomic disorders. Nat. Rev. Genet. 17:224–38
    [Google Scholar]
  24. 24. 
    Casasent AK, Schalck A, Gao R, Sei E, Long A et al. 2018. Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell 172:205–17.e12
    [Google Scholar]
  25. 25. 
    Cayrefourcq L, Vincent M-C, Pierredon S, Moutou C, Imbert-Bouteille M et al. 2020. Single circulating fetal trophoblastic cells eligible for non invasive prenatal diagnosis: the exception rather than the rule. Sci. Rep. 10:9861
    [Google Scholar]
  26. 26. 
    Chan MM, Smith ZD, Grosswendt S, Kretzmer H, Norman TM et al. 2019. Molecular recording of mammalian embryogenesis. Nature 570:77–82
    [Google Scholar]
  27. 27. 
    Dago AE, Stepansky A, Carlsson A, Luttgen M, Kendall J et al. 2014. Rapid phenotypic and genomic change in response to therapeutic pressure in prostate cancer inferred by high content analysis of single circulating tumor cells. PLOS ONE 9:e101777
    [Google Scholar]
  28. 28. 
    Dagogo-Jack I, Shaw AT 2018. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15:81–94
    [Google Scholar]
  29. 29. 
    Daughtry BL, Rosenkrantz JL, Lazar NH, Fei SS, Redmayne N et al. 2019. Single-cell sequencing of primate preimplantation embryos reveals chromosome elimination via cellular fragmentation and blastomere exclusion. Genome Res 29:367–82
    [Google Scholar]
  30. 30. 
    de Souza CPE, Andronescu M, Masud T, Kabeer F, Biele J et al. 2020. Epiclomal: probabilistic clustering of sparse single-cell DNA methylation data. PLOS Comput. Biol. 16:e1008270
    [Google Scholar]
  31. 31. 
    Demaree B, Delley CL, Vasudevan HN, Peretz CAC, Ruff D et al. 2020. Joint profiling of proteins and DNA in single cells reveals extensive proteogenomic decoupling in leukemia. bioRxiv 2020.02.26.967133. https://doi.org/10.1101/2020.02.26.967133
    [Crossref]
  32. 32. 
    D'Gama AM, Walsh CA 2018. Somatic mosaicism and neurodevelopmental disease. Nat. Neurosci. 21:1504–14
    [Google Scholar]
  33. 33. 
    Dixon JR, Gorkin David U, Ren B 2016. Chromatin domains: the unit of chromosome organization. Mol. Cell 62:668–80
    [Google Scholar]
  34. 34. 
    Dixon JR, Selvaraj S, Yue F, Kim A, Li Y et al. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–80
    [Google Scholar]
  35. 35. 
    Dong X, Zhang L, Milholland B, Lee M, Maslov AY et al. 2017. Accurate identification of single-nucleotide variants in whole-genome-amplified single cells. Nat. Methods 14:491–93
    [Google Scholar]
  36. 36. 
    Dreissig S, Fuchs J, Himmelbach A, Mascher M, Houben A. 2017. Sequencing of single pollen nuclei reveals meiotic recombination events at megabase resolution and circumvents segregation distortion caused by postmeiotic processes. Front. Plant Sci. 8:1620
    [Google Scholar]
  37. 37. 
    Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA et al. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74
    [Google Scholar]
  38. 38. 
    Durbin RM, Altshuler D, Durbin RM, Abecasis GR, Bentley DR et al. 2010. A map of human genome variation from population-scale sequencing. Nature 467:1061–73
    [Google Scholar]
  39. 39. 
    Erickson RP. 2010. Somatic gene mutation and human disease other than cancer: an update. Mutat. Res. 705:96–106
    [Google Scholar]
  40. 40. 
    Erwin JA, Paquola ACM, Singer T, Gallina I, Novotny M et al. 2016. L1-associated genomic regions are deleted in somatic cells of the healthy human brain. Nat. Neurosci. 19:1583–91
    [Google Scholar]
  41. 41. 
    Evrony GD, Cai X, Lee E, Hills LB, Elhosary PC et al. 2012. Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151:483–96
    [Google Scholar]
  42. 42. 
    Evrony GD, Lee E, Mehta BK, Benjamini Y, Johnson RM et al. 2015. Cell lineage analysis in human brain using endogenous retroelements. Neuron 85:49–59
    [Google Scholar]
  43. 43. 
    Evrony GD, Lee E, Park PJ, Walsh CA. 2016. Resolving rates of mutation in the brain using single-neuron genomics. eLife 5:e12966
    [Google Scholar]
  44. 44. 
    Ferronika P, van den Bos H, Taudt A, Spierings DCJ, Saber A et al. 2017. Copy number alterations assessed at the single-cell level revealed mono- and polyclonal seeding patterns of distant metastasis in a small-cell lung cancer patient. Ann. Oncol. 28:1668–70
    [Google Scholar]
  45. 45. 
    Flyamer IM, Gassler J, Imakaev M, Brandão HB, Ulianov SV et al. 2017. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544:110–14
    [Google Scholar]
  46. 46. 
    Francis JM, Zhang C-Z, Maire CL, Jung J, Manzo VE et al. 2014. EGFR variant heterogeneity in glioblastoma resolved through single-nucleus sequencing. Cancer Discov 4:956–71
    [Google Scholar]
  47. 47. 
    Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL et al. 2007. A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–61
    [Google Scholar]
  48. 48. 
    Frieda KL, Linton JM, Hormoz S, Choi J, Chow K-HK et al. 2017. Synthetic recording and in situ readout of lineage information in single cells. Nature 541:107–11
    [Google Scholar]
  49. 49. 
    Frumkin D, Wasserstrom A, Kaplan S, Feige U, Shapiro E. 2005. Genomic variability within an organism exposes its cell lineage tree. PLOS Comput. Biol. 1:e50
    [Google Scholar]
  50. 50. 
    Gaiti F, Chaligne R, Gu H, Brand RM, Kothen-Hill S et al. 2019. Epigenetic evolution and lineage histories of chronic lymphocytic leukaemia. Nature 569:576–80
    [Google Scholar]
  51. 51. 
    Gao R, Davis A, McDonald TO, Sei E, Shi X et al. 2016. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat. Genet. 48:1119–30
    [Google Scholar]
  52. 52. 
    Gawad C, Koh W, Quake SR. 2014. Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics. PNAS 111:17947
    [Google Scholar]
  53. 53. 
    Gawad C, Koh W, Quake SR. 2016. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17:175–88
    [Google Scholar]
  54. 54. 
    Gkountela S, Castro-Giner F, Szczerba BM, Vetter M, Landin J et al. 2019. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell 176:98–112.e14
    [Google Scholar]
  55. 55. 
    Gonzalez V, Natarajan S, Xia Y, Klein D, Carter R et al. 2020. Accurate genomic variant detection in single cells with primary template-directed amplification. bioRxiv 2020.11.20.391961. https://doi.org/10.1101/2020.11.20.391961
    [Crossref]
  56. 56. 
    Greenberg MVC, Bourc'his D 2019. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 20:590–607
    [Google Scholar]
  57. 57. 
    Halldorsson BV, Palsson G, Stefansson OA, Jonsson H, Hardarson MT et al. 2019. Characterizing mutagenic effects of recombination through a sequence-level genetic map. Science 363:eaau1043
    [Google Scholar]
  58. 58. 
    Hassold T, Abruzzo M, Adkins K, Griffin D, Merrill M et al. 1996. Human aneuploidy: incidence, origin, and etiology. Environ. Mol. Mutagen. 28:167–75
    [Google Scholar]
  59. 59. 
    Hassold T, Hunt P. 2001. To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2:280–91
    [Google Scholar]
  60. 60. 
    Hinch AG, Tandon A, Patterson N, Song Y, Rohland N et al. 2011. The landscape of recombination in African Americans. Nature 476:170–75
    [Google Scholar]
  61. 61. 
    Hinch AG, Zhang G, Becker PW, Moralli D, Hinch R et al. 2019. Factors influencing meiotic recombination revealed by whole-genome sequencing of single sperm. Science 363:eaau8861
    [Google Scholar]
  62. 62. 
    Hiratani I, Takahashi S. 2019. DNA replication timing enters the single-cell era. Genes 10:221
    [Google Scholar]
  63. 63. 
    Hou Y, Fan W, Yan L, Li R, Lian Y et al. 2013. Genome analyses of single human oocytes. Cell 155:1492–506
    [Google Scholar]
  64. 64. 
    Hou Y, Guo H, Cao C, Li X, Hu B et al. 2016. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res 26:304–19
    [Google Scholar]
  65. 65. 
    Hou Y, Song L, Zhu P, Zhang B, Tao Y et al. 2012. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148:873–85
    [Google Scholar]
  66. 66. 
    Hu P, Liang D, Chen Y, Lin Y, Qiao F et al. 2019. An enrichment method to increase cell-free fetal DNA fraction and significantly reduce false negatives and test failures for non-invasive prenatal screening: a feasibility study. J. Transl. Med. 17:124
    [Google Scholar]
  67. 67. 
    Huang AY, Li P, Rodin RE, Kim SN, Dou Y et al. 2020. Parallel RNA and DNA analysis after deep sequencing (PRDD-seq) reveals cell type-specific lineage patterns in human brain. PNAS 117:13886–95
    [Google Scholar]
  68. 68. 
    Huang L, Ma F, Chapman A, Lu S, Xie XS. 2015. Single-cell whole-genome amplification and sequencing: methodology and applications. Annu. Rev. Genom. Hum. Genet. 16:79–102
    [Google Scholar]
  69. 69. 
    Hughes AEO, Magrini V, Demeter R, Miller CA, Fulton R et al. 2014. Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing. PLOS Genet 10:e1004462
    [Google Scholar]
  70. 70. 
    Hui T, Cao Q, Wegrzyn-Woltosz J, O'Neill K, Hammond CA et al. 2018. High-resolution single-cell DNA methylation measurements reveal epigenetically distinct hematopoietic stem cell subpopulations. Stem Cell Rep 11:578–92
    [Google Scholar]
  71. 71. 
    Hunter N. 2015. Meiotic recombination: the essence of heredity. Cold Spring Harb. Perspect. Biol. 7:a016618
    [Google Scholar]
  72. 72. 
    Jones PA. 2012. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13:484–92
    [Google Scholar]
  73. 73. 
    Kagan KO, Sonek J, Wagner P, Hoopmann M. 2017. Principles of first trimester screening in the age of non-invasive prenatal diagnosis: screening for chromosomal abnormalities. Arch. Gynecol. Obstet. 296:645–51
    [Google Scholar]
  74. 74. 
    Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ et al. 2014. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344:416–20
    [Google Scholar]
  75. 75. 
    Kelsey G, Stegle O, Reik W. 2017. Single-cell epigenomics: recording the past and predicting the future. Science 358:69–75
    [Google Scholar]
  76. 76. 
    Kester L, van Oudenaarden A. 2018. Single-cell transcriptomics meets lineage tracing. Cell Stem Cell 23:166–79
    [Google Scholar]
  77. 77. 
    Kim C, Gao R, Sei E, Brandt R, Hartman J et al. 2018. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell 173:879–93.e13
    [Google Scholar]
  78. 78. 
    Klemm SL, Shipony Z, Greenleaf WJ. 2019. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20:207–20
    [Google Scholar]
  79. 79. 
    Knouse KA, Wu J, Whittaker CA, Amon A. 2014. Single cell sequencing reveals low levels of aneuploidy across mammalian tissues. PNAS 111:13409
    [Google Scholar]
  80. 80. 
    Kong A, Thorleifsson G, Gudbjartsson DF, Masson G, Sigurdsson A et al. 2010. Fine-scale recombination rate differences between sexes, populations and individuals. Nature 467:1099–103
    [Google Scholar]
  81. 81. 
    Kretzschmar K, Watt FM. 2012. Lineage tracing. Cell 148:33–45
    [Google Scholar]
  82. 82. 
    Kumar A, Ryan A, Kitzman JO, Wemmer N, Snyder MW et al. 2015. Whole genome prediction for preimplantation genetic diagnosis. Genome Med 7:35
    [Google Scholar]
  83. 83. 
    Laks E, McPherson A, Zahn H, Lai D, Steif A et al. 2019. Clonal decomposition and DNA replication states defined by scaled single-cell genome sequencing. Cell 179:1207–21.e22
    [Google Scholar]
  84. 84. 
    Lan F, Demaree B, Ahmed N, Abate AR. 2017. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat. Biotechnol. 35:640–46
    [Google Scholar]
  85. 85. 
    Lareau CA, Ludwig LS, Muus C, Gohil SH, Zhao T et al. 2021. Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling. Nat. Biotechnol. 39:45161
    [Google Scholar]
  86. 86. 
    Lasken RS. 2012. Genomic sequencing of uncultured microorganisms from single cells. Nat. Rev. Microbiol. 10:631–40
    [Google Scholar]
  87. 87. 
    Lee D-S, Luo C, Zhou J, Chandran S, Rivkin A et al. 2019. Simultaneous profiling of 3D genome structure and DNA methylation in single human cells. Nat. Methods 16:999–1006
    [Google Scholar]
  88. 88. 
    Leung ML, Davis A, Gao R, Casasent A, Wang Y et al. 2017. Single-cell DNA sequencing reveals a late-dissemination model in metastatic colorectal cancer. Genome Res 27:1287–99
    [Google Scholar]
  89. 89. 
    Li G, Liu Y, Zhang Y, Kubo N, Yu M et al. 2019. Joint profiling of DNA methylation and chromatin architecture in single cells. Nat. Methods 16:991–93
    [Google Scholar]
  90. 90. 
    Li L, Li L, Li Q, Liu X, Ma X et al. 2021. Dissecting the epigenomic dynamics of human fetal germ cell development at single-cell resolution. Cell Res 31:46377
    [Google Scholar]
  91. 91. 
    Li R, Bitoun E, Altemose N, Davies RW, Davies B, Myers SR. 2019. A high-resolution map of non-crossover events reveals impacts of genetic diversity on mammalian meiotic recombination. Nat. Commun. 10:3900
    [Google Scholar]
  92. 92. 
    Li Y, Xu X, Song L, Hou Y, Li Z et al. 2012. Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive bladder cancer. GigaScience 1:12
    [Google Scholar]
  93. 93. 
    Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–93
    [Google Scholar]
  94. 94. 
    Liu EY, Morgan AP, Chesler EJ, Wang W, Churchill GA, Pardo-Manuel de Villena F. 2014. High-resolution sex-specific linkage maps of the mouse reveal polarized distribution of crossovers in male germline. Genetics 197:91–106
    [Google Scholar]
  95. 95. 
    Liu H, Zhou J, Tian W, Luo C, Bartlett A et al. 2020. DNA methylation atlas of the mouse brain at single-cell resolution. bioRxiv 2020.04.30.069377. https://doi.org/10.1101/2020.04.30.069377
    [Crossref]
  96. 96. 
    Liu M, Liu Y, Di J, Su Z, Yang H et al. 2017. Multi-region and single-cell sequencing reveal variable genomic heterogeneity in rectal cancer. BMC Cancer 17:787
    [Google Scholar]
  97. 97. 
    Lodato MA, Rodin RE, Bohrson CL, Coulter ME, Barton AR et al. 2018. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359:555–59
    [Google Scholar]
  98. 98. 
    Lodato MA, Woodworth MB, Lee S, Evrony GD, Mehta BK et al. 2015. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350:94–98
    [Google Scholar]
  99. 99. 
    Lohr JG, Adalsteinsson VA, Cibulskis K, Choudhury AD, Rosenberg M et al. 2014. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat. Biotechnol. 32:479–84
    [Google Scholar]
  100. 100. 
    Lu S, Zong C, Fan W, Yang M, Li J et al. 2012. Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science 338:1627–30
    [Google Scholar]
  101. 101. 
    Ludwig LS, Lareau CA, Ulirsch JC, Christian E, Muus C et al. 2019. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell 176:1325–39.e22
    [Google Scholar]
  102. 102. 
    Luo C, Hajkova P, Ecker JR. 2018. Dynamic DNA methylation: in the right place at the right time. Science 361:1336–40
    [Google Scholar]
  103. 103. 
    Luo C, Keown CL, Kurihara L, Zhou J, He Y et al. 2017. Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science 357:600–4
    [Google Scholar]
  104. 104. 
    Luo C, Li X, Zhang Q, Yan J 2019. Single gametophyte sequencing reveals that crossover events differ between sexes in maize. Nat. Commun. 10:785
    [Google Scholar]
  105. 105. 
    Luo C, Liu H, Xie F, Armand EJ, Siletti K et al. 2019. Single nucleus multi-omics links human cortical cell regulatory genome diversity to disease risk variants. bioRxiv 2019.12.11.873398. https://doi.org/10.1101/2019.12.11.873398
    [Crossref]
  106. 106. 
    Luquette LJ, Bohrson CL, Sherman MA, Park PJ. 2019. Identification of somatic mutations in single cell DNA-seq using a spatial model of allelic imbalance. Nat. Commun. 10:3908
    [Google Scholar]
  107. 107. 
    Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX et al. 2015. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12:519–22
    [Google Scholar]
  108. 108. 
    Macaulay IC, Ponting CP, Voet T. 2017. Single-cell multiomics: multiple measurements from single cells. Trends Genet. 33:155–68
    [Google Scholar]
  109. 109. 
    Marcy Y, Ouverney C, Bik EM, Lösekann T, Ivanova N et al. 2007. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. PNAS 104:11889–94
    [Google Scholar]
  110. 110. 
    Marston AL, Amon A. 2004. Meiosis: cell-cycle controls shuffle and deal. Nat. Rev. Mol. Cell Biol. 5:983–97
    [Google Scholar]
  111. 111. 
    Martelotto LG, Baslan T, Kendall J, Geyer FC, Burke KA et al. 2017. Whole-genome single-cell copy number profiling from formalin-fixed paraffin-embedded samples. Nat. Med. 23:376–85
    [Google Scholar]
  112. 112. 
    Martincorena I, Campbell PJ. 2015. Somatic mutation in cancer and normal cells. Science 349:1483–89
    [Google Scholar]
  113. 113. 
    Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E et al. 2012. Systematic localization of common disease-associated variation in regulatory DNA. Science 337:1190–95
    [Google Scholar]
  114. 114. 
    McCarthy DJ, Rostom R, Huang Y, Kunz DJ, Danecek P et al. 2020. Cardelino: computational integration of somatic clonal substructure and single-cell transcriptomes. Nat. Methods 17:414–21
    [Google Scholar]
  115. 115. 
    McConnell MJ, Lindberg MR, Brennand KJ, Piper JC, Voet T et al. 2013. Mosaic copy number variation in human neurons. Science 342:632–37
    [Google Scholar]
  116. 116. 
    McConnell MJ, Moran JV, Abyzov A, Akbarian S, Bae T et al. 2017. Intersection of diverse neuronal genomes and neuropsychiatric disease: the Brain Somatic Mosaicism Network. Science 356:eaal1641
    [Google Scholar]
  117. 117. 
    McCoy RC. 2017. Mosaicism in preimplantation human embryos: when chromosomal abnormalities are the norm. Trends Genet 33:448–63
    [Google Scholar]
  118. 118. 
    McKenna A, Gagnon JA. 2019. Recording development with single cell dynamic lineage tracing. Development 146:dev169730
    [Google Scholar]
  119. 119. 
    McPherson A, Roth A, Laks E, Masud T, Bashashati A et al. 2016. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat. Genet. 48:758–67
    [Google Scholar]
  120. 120. 
    Miles LA, Bowman RL, Merlinsky TR, Csete IS, Ooi A et al. 2020. Single cell mutational profiling delineates clonal trajectories in myeloid malignancies. bioRxiv 2020.02.07.938860. https://doi.org/10.1101/2020.02.07.938860
    [Crossref]
  121. 121. 
    Miller MB, Reed HC, Walsh CA. 2021. Brain somatic mutation in aging and Alzheimer's disease. Annu. Rev. Genom. Hum. Genet. 22:23956
    [Google Scholar]
  122. 122. 
    Morita K, Wang F, Jahn K, Hu T, Tanaka T et al. 2020. Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat. Commun. 11:5327
    [Google Scholar]
  123. 123. 
    Mulqueen RM, Pokholok D, Norberg SJ, Torkenczy KA, Fields AJ et al. 2018. Highly scalable generation of DNA methylation profiles in single cells. Nat. Biotechnol. 36:428–31
    [Google Scholar]
  124. 124. 
    Myers S, Bowden R, Tumian A, Bontrop RE, Freeman C et al. 2010. Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science 327:876–79
    [Google Scholar]
  125. 125. 
    Nagano T, Lubling Y, Várnai C, Dudley C, Leung W et al. 2017. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547:61–67
    [Google Scholar]
  126. 126. 
    Nam AS, Chaligne R, Landau DA. 2020. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat. Rev. Genet. 22:3–18
    [Google Scholar]
  127. 127. 
    Navin NE. 2015. The first five years of single-cell cancer genomics and beyond. Genome Res 25:1499–507
    [Google Scholar]
  128. 128. 
    Navin NE, Kendall J, Troge J, Andrews P, Rodgers L et al. 2011. Tumour evolution inferred by single-cell sequencing. Nature 472:90–94
    [Google Scholar]
  129. 129. 
    Ni X, Zhuo M, Su Z, Duan J, Gao Y et al. 2013. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. PNAS 110:21083–88
    [Google Scholar]
  130. 130. 
    Oliver PL, Goodstadt L, Bayes JJ, Birtle Z, Roach KC et al. 2009. Accelerated evolution of the Prdm9 speciation gene across diverse metazoan taxa. PLOS Genet 5:e1000753
    [Google Scholar]
  131. 131. 
    Ottolini CS, Newnham LJ, Capalbo A, Natesan SA, Joshi HA et al. 2015. Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nat. Genet. 47:727–35
    [Google Scholar]
  132. 132. 
    Pachiadaki MG, Brown JM, Brown J, Bezuidt O, Berube PM et al. 2019. Charting the complexity of the marine microbiome through single-cell genomics. Cell 179:1623–35.e11
    [Google Scholar]
  133. 133. 
    Payne AC, Chiang ZD, Reginato PL, Mangiameli SM, Murray EM et al. 2021. In situ genome sequencing resolves DNA sequence and structure in intact biological samples. Science371eaay3446
    [Google Scholar]
  134. 134. 
    Podar M, Abulencia CB, Walcher M, Hutchison D, Zengler K et al. 2007. Targeted access to the genomes of low-abundance organisms in complex microbial communities. Appl. Environ. Microbiol. 73:3205–14
    [Google Scholar]
  135. 135. 
    Poduri A, Evrony GD, Cai X, Walsh CA. 2013. Somatic mutation, genomic variation, and neurological disease. Science 341:1237758
    [Google Scholar]
  136. 136. 
    Raghunathan A, Ferguson HR, Bornarth CJ, Song W, Driscoll M, Lasken RS. 2005. Genomic DNA amplification from a single bacterium. Appl. Environ. Microbiol. 71:3342–47
    [Google Scholar]
  137. 137. 
    Raj B, Wagner DE, McKenna A, Pandey S, Klein AM et al. 2018. Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nat. Biotechnol. 36:442–50
    [Google Scholar]
  138. 138. 
    Ramani V, Deng X, Qiu R, Gunderson KL, Steemers FJ et al. 2017. Massively multiplex single-cell Hi-C. Nat. Methods 14:263–66
    [Google Scholar]
  139. 139. 
    Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID et al. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–80
    [Google Scholar]
  140. 140. 
    Reizel Y, Chapal-Ilani N, Adar R, Itzkovitz S, Elbaz J et al. 2011. Colon stem cell and crypt dynamics exposed by cell lineage reconstruction. PLOS Genet 7:e1002192
    [Google Scholar]
  141. 141. 
    Ren X, Kang B, Zhang Z. 2018. Understanding tumor ecosystems by single-cell sequencing: promises and limitations. Genome Biol 19:211
    [Google Scholar]
  142. 142. 
    Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ et al. 2013. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–37
    [Google Scholar]
  143. 143. 
    Rozenblatt-Rosen O, Regev A, Oberdoerffer P, Nawy T, Hupalowska A et al. 2020. The Human Tumor Atlas Network: charting tumor transitions across space and time at single-cell resolution. Cell 181:236–49
    [Google Scholar]
  144. 144. 
    Salipante SJ, Horwitz MS 2006. Phylogenetic fate mapping. PNAS 103:5448–53
    [Google Scholar]
  145. 145. 
    Salipante SJ, Horwitz MS. 2007. A phylogenetic approach to mapping cell fate. Curr. Top. Dev. Biol. 79:157–84
    [Google Scholar]
  146. 146. 
    Sandor C, Li W, Coppieters W, Druet T, Charlier C, Georges M. 2012. Genetic variants in REC8, RNF212, and PRDM9 influence male recombination in cattle. PLOS Genet 8:e1002854
    [Google Scholar]
  147. 147. 
    Sato T, Ito Y, Samura O, Aoki H, Uchiyama T et al. 2020. Direct assessment of single-cell DNA using crudely purified live cells: a proof of concept for noninvasive prenatal definitive diagnosis. J. Mol. Diagn. 22:132–40
    [Google Scholar]
  148. 148. 
    Schultz MD, He Y, Whitaker JW, Hariharan M, Mukamel EA et al. 2015. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523:212–16
    [Google Scholar]
  149. 149. 
    Shi Q, Qiu Y, Xu C, Yang H, Li C et al. 2020. Next-generation sequencing analysis of each blastomere in good-quality embryos: insights into the origins and mechanisms of embryonic aneuploidy in cleavage-stage embryos. J. Assist. Reprod. Genet. 37:1711–18
    [Google Scholar]
  150. 150. 
    Sloan DB, Broz AK, Sharbrough J, Wu Z. 2018. Detecting rare mutations and DNA damage with sequencing-based methods. Trends Biotechnol 36:729–40
    [Google Scholar]
  151. 151. 
    Spanjaard B, Hu B, Mitic N, Olivares-Chauvet P, Janjuha S et al. 2018. Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars. Nat. Biotechnol. 36:469–73
    [Google Scholar]
  152. 152. 
    Stepanauskas R. 2012. Single cell genomics: an individual look at microbes. Curr. Opin. Microbiol. 15:613–20
    [Google Scholar]
  153. 153. 
    Stevens TJ, Lando D, Basu S, Atkinson LP, Cao Y et al. 2017. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544:59–64
    [Google Scholar]
  154. 154. 
    Sun H, Rowan BA, Flood PJ, Brandt R, Fuss J et al. 2019. Linked-read sequencing of gametes allows efficient genome-wide analysis of meiotic recombination. Nat. Commun. 10:4310
    [Google Scholar]
  155. 155. 
    Tan L, Ma W, Wu H, Zheng Y, Xing D et al. 2021. Changes in genome architecture and transcriptional dynamics progress independently of sensory experience during post-natal brain development. Cell 184:74158.e17
    [Google Scholar]
  156. 156. 
    Tan L, Xing D, Chang C-H, Li H, Xie XS 2018. Three-dimensional genome structures of single diploid human cells. Science 361:924–28
    [Google Scholar]
  157. 157. 
    Tao L, Raz O, Marx Z, Gosh M, Huber S et al. 2020. Retrospective cell lineage reconstruction in humans using short tandem repeats. bioRxiv 191296. https://doi.org/10.1101/191296
    [Crossref]
  158. 158. 
    Theunissen G. 2020. DNA profiling of single sperm cells and single skin flakes in forensics using micromanipulation and whole genome amplification PhD Thesis, Robert Gordon Univ. Aberdeen, Scotl:.
  159. 159. 
    Thorpe J, Osei-Owusu IA, Avigdor BE, Tupler R, Pevsner J. 2020. Mosaicism in human health and disease. Annu. Rev. Genet. 54:487–510
    [Google Scholar]
  160. 160. 
    Treff NR, Fedick A, Tao X, Devkota B, Taylor D, Scott RT Jr. 2013. Evaluation of targeted next-generation sequencing-based preimplantation genetic diagnosis of monogenic disease. Fertil. Steril. 99:1377–84.e6
    [Google Scholar]
  161. 161. 
    Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P et al. 2009. Chromosome instability is common in human cleavage-stage embryos. Nat. Med. 15:577–83
    [Google Scholar]
  162. 162. 
    Vermeesch JR, Voet T, Devriendt K. 2016. Prenatal and pre-implantation genetic diagnosis. Nat. Rev. Genet. 17:643–56
    [Google Scholar]
  163. 163. 
    Vijg J, Dong X. 2020. Pathogenic mechanisms of somatic mutation and genome mosaicism in aging. Cell 182:12–23
    [Google Scholar]
  164. 164. 
    Wagner DE, Klein AM. 2020. Lineage tracing meets single-cell omics: opportunities and challenges. Nat. Rev. Genet. 21:410–27
    [Google Scholar]
  165. 165. 
    Wang J, Fan HC, Behr B, Quake SR. 2012. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150:402–12
    [Google Scholar]
  166. 166. 
    Wang Y, Waters J, Leung ML, Unruh A, Roh W et al. 2014. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512:155–60
    [Google Scholar]
  167. 167. 
    Wasserstrom A, Adar R, Shefer G, Frumkin D, Itzkovitz S et al. 2008. Reconstruction of cell lineage trees in mice. PLOS ONE 3:e1939
    [Google Scholar]
  168. 168. 
    Wasserstrom A, Frumkin D, Adar R, Itzkovitz S, Stern T et al. 2008. Estimating cell depth from somatic mutations. PLOS Comput. Biol. 4:e1000058
    [Google Scholar]
  169. 169. 
    Wegmann D, Kessner DE, Veeramah KR, Mathias RA, Nicolae DL et al. 2011. Recombination rates in admixed individuals identified by ancestry-based inference. Nat. Genet. 43:847–53
    [Google Scholar]
  170. 170. 
    Wei CJ-Y, Zhang K. 2020. RETrace: simultaneous retrospective lineage tracing and methylation profiling of single cells. Genome Res 30:602–10
    [Google Scholar]
  171. 171. 
    Weinreb C, Rodriguez-Fraticelli A, Camargo FD, Klein AM. 2020. Lineage tracing on transcriptional landscapes links state to fate during differentiation. Science 367:eaaw3381
    [Google Scholar]
  172. 172. 
    Wells D, Kaur K, Grifo J, Glassner M, Taylor JC et al. 2014. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation. J. Med. Genet. 51:553–62
    [Google Scholar]
  173. 173. 
    Woodworth MB, Girskis KM, Walsh CA. 2017. Building a lineage from single cells: genetic techniques for cell lineage tracking. Nat. Rev. Genet. 18:230–44
    [Google Scholar]
  174. 174. 
    Woyke T, Doud DFR, Schulz F. 2017. The trajectory of microbial single-cell sequencing. Nat. Methods 14:1045–54
    [Google Scholar]
  175. 175. 
    Xu J, Nuno K, Litzenburger UM, Qi Y, Corces MR et al. 2019. Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA. eLife 8:e45105
    [Google Scholar]
  176. 176. 
    Xu X, Hou Y, Yin X, Bao L, Tang A et al. 2012. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148:886–95
    [Google Scholar]
  177. 177. 
    Yin Y, Jiang Y, Lam K-WG, Berletch JB, Disteche CM et al. 2019. High-throughput single-cell sequencing with linear amplification. Mol. Cell 76:676–90.e10
    [Google Scholar]
  178. 178. 
    Yizhak K, Aguet F, Kim J, Hess JM, Kübler K et al. 2019. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science 364:eaaw0726
    [Google Scholar]
  179. 179. 
    Yoon HS, Price DC, Stepanauskas R, Rajah VD, Sieracki ME et al. 2011. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332:714–717
    [Google Scholar]
  180. 180. 
    Yoshida K, Gowers KHC, Lee-Six H, Chandrasekharan DP, Coorens T et al. 2020. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578:266–72
    [Google Scholar]
  181. 181. 
    Zhang C-Z, Spektor A, Cornils H, Francis JM, Jackson EK et al. 2015. Chromothripsis from DNA damage in micronuclei. Nature 522:179–84
    [Google Scholar]
  182. 182. 
    Zhang J, Fujimoto J, Zhang J, Wedge DC, Song X et al. 2014. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science 346:256–59
    [Google Scholar]
  183. 183. 
    Zhang K, Deng R, Gao H, Teng X, Li J. 2020. Lighting up single-nucleotide variation in situ in single cells and tissues. Chem. Soc. Rev. 49:1932–54
    [Google Scholar]
  184. 184. 
    Zhang K, Martiny AC, Reppas NB, Barry KW, Malek J et al. 2006. Sequencing genomes from single cells by polymerase cloning. Nat. Biotechnol. 24:680–86
    [Google Scholar]
  185. 185. 
    Zhang L, Dong X, Lee M, Maslov AY, Wang T, Vijg J 2019. Single-cell whole-genome sequencing reveals the functional landscape of somatic mutations in B lymphocytes across the human lifespan. PNAS 116:9014–19
    [Google Scholar]
  186. 186. 
    Zhang L, Vijg J. 2018. Somatic mutagenesis in mammals and its implications for human disease and aging. Annu. Rev. Genet. 52:397–419
    [Google Scholar]
  187. 187. 
    Zhu C, Preissl S, Ren B. 2020. Single-cell multimodal omics: the power of many. Nat. Methods 17:11–14
    [Google Scholar]
  188. 188. 
    Zhu P, Guo H, Ren Y, Hou Y, Dong J et al. 2018. Single-cell DNA methylome sequencing of human preimplantation embryos. Nat. Genet. 50:12–19
    [Google Scholar]
  189. 189. 
    Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LTY et al. 2013. Charting a dynamic DNA methylation landscape of the human genome. Nature 500:477–81
    [Google Scholar]
/content/journals/10.1146/annurev-genom-111320-090436
Loading
/content/journals/10.1146/annurev-genom-111320-090436
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error