Annual Review of Genomics and Human Genetics - Volume 6, 2005
Volume 6, 2005
-
-
A PERSONAL SIXTY-YEAR TOUR OF GENETICS AND MEDICINE
Vol. 6 (2005), pp. 1–14More Less▪ AbstractThe past 60 years surely constitute a Golden Age for biomedical science, and for medical genetics in particular. A personal experience began with an encounter with inborn errors of metabolism, selection, and the incidences of hereditary diseases, and peaked with molecular biology, virology, and cytogenetics, finally focusing all three on the problem of cancer.
-
-
-
COMPLEX GENETICS OF GLAUCOMA SUSCEPTIBILITY
Vol. 6 (2005), pp. 15–44More Less▪ AbstractGlaucoma describes a group of diseases that kill retinal ganglion cells. There are different types of glaucoma, and each appears to be genetically heterogeneous. Different glaucoma genes have been identified, but these genes account for only a small proportion of glaucoma. Most glaucoma cases appear to be multifactorial, and are likely affected by multiple interacting loci. A number of genetic susceptibility factors have been suggested to contribute to glaucoma. These factors fit into two broad groups, those affecting intraocular pressure and those important in modulating retinal ganglion cell viability. Defining the complex genetics of glaucoma will require significant further study of the human disease and animal models. Genetic approaches are essential and will be enhanced by recently developed genomic and proteomic technologies. These technologies will provide valuable clues about pathogenesis for subsequent testing. In this review, we focus on endogenous genetic susceptibility factors and on how experimental studies will be valuable for dissecting the multifactorial complexity of their interactions.
-
-
-
NOONAN SYNDROME AND RELATED DISORDERS: Genetics and Pathogenesis
Vol. 6 (2005), pp. 45–68More Less▪ AbstractNoonan syndrome is a pleiomorphic autosomal dominant disorder with short stature, facial dysmorphia, webbed neck, and heart defects. In the past decade, progress has been made in elucidating the pathogenesis of this disorder using a positional cloning approach. Noonan syndrome is now known to be a genetically heterogeneous disorder with nearly one half of cases caused by gain-of-function mutations in PTPN11, the gene encoding the protein tyrosine phosphatase SHP-2. Similar germ line mutations cause two related genetic disorders, Noonan-like disorder with multiple giant cell lesion syndrome and LEOPARD syndrome, and somatic PTPN11 mutations can underlie certain pediatric hematopoietic malignancies, including juvenile myelomonocytic, acute lymphoblastic, and acute myelogenous leukemias. A mouse model of PTPN11-related Noonan syndrome was recently generated, providing a reagent for studying disease pathogenesis in greater depth as well as experimenting with novel therapeutic strategies.
-
-
-
SILENCING OF THE MAMMALIAN X CHROMOSOME
Vol. 6 (2005), pp. 69–92More Less▪ AbstractMammalian X chromosome inactivation is one of the most striking examples of epigenetic gene regulation. Early in development one of the pair of ∼160-Mb X chromosomes is chosen to be silenced, and this silencing is then stably inherited through subsequent somatic cell divisions. Recent advances have revealed many of the chromatin changes that underlie this stable silencing of an entire chromosome. The key initiator of these changes is a functional RNA, XIST, which is transcribed from, and associates with, the inactive X chromosome, although the mechanism of association with the inactive X and recruitment of facultative heterochromatin remain to be elucidated. This review describes the unique evolutionary history and resulting genomic structure of the X chromosome as well as the current understanding of the factors and events involved in silencing an X chromosome in mammals.
-
-
-
THE GENETICS OF PSORIASIS AND AUTOIMMUNITY
Vol. 6 (2005), pp. 93–122More Less▪ AbstractPsoriasis is an inflammatory/autoimmune disease and, as with many autoimmune diseases, is associated with alleles from the major histocompatibility complex (MHC). With psoriasis and autoimmune disease, the penetrance of the MHC-associated alleles is never 100%, even for monozygotic twins. This may be because development requires additional environmental and/or genetic modifiers or requires specific T-cell receptor arrangements. Families segregating single or multilocus susceptibility alleles other than the MHC have also been reported. Overlapping genetic locations of loci for different autoimmune diseases have been known for several years and are starting to reveal common genes or genetic variants. These include genes normally involved in preventing spontaneous T-cell activation or proliferation, immune synapse formation, or cytokine production via pathways such as those mediated by NFκB and those involved in thymic selection. Autoimmunity may also involve dysregulation of genes or pathways regulated by the RUNX family of transcription factors. RUNX is involved in hematopoietic cell development, development of T cells in the thymus, chromatin remodeling, and gene silencing. Hence, its effect on cells of the immune system may be due to variable changes in gene expression and could account for variable body surface involvement and waxing and waning of disease.
-
-
-
EVOLUTION OF THE ATP-BINDING CASSETTE (ABC) TRANSPORTER SUPERFAMILY IN VERTEBRATES*
Michael Dean, and Tarmo AnniloVol. 6 (2005), pp. 123–142More Less▪ AbstractThe ATP-binding cassette (ABC) superfamily of genes encode membrane proteins that transport a diverse set of substrates across membranes. Mutations in ABC transporters cause or contribute to many different Mendelian and complex disorders including adrenoleukodystrophy, cystic fibrosis, retinal degeneration, hypercholesterolemia, and cholestasis. The genes play important roles in protecting organisms from xenobiotics and transport compounds across the intestine, blood-brain barrier, and the placenta. There are 48 ABC genes in the human genome divided into seven subfamilies based on amino acid sequence similarities and phylogeny. These seven subfamilies are represented in all eukaryotic genomes and are therefore of ancient origin. Sequencing the genomes of numerous vertebrate organisms has allowed the complement of ABC transporters to be characterized and the evolution of the genes to be assessed. Most ABC transporters are conserved in all vertebrates, but there are also several examples of recent duplication and gene loss. For genes with a conserved ortholog, animal models have been identified or developed that can be used to probe the function and regulation of selected genes. Genes that are restricted to a specific group of animals may represent specialized functions that could provide insight into unique biological properties of that organism. Further characterization of all ABC transporters from the human genome and from model organisms will lead to additional insights into normal physiology and human disease.
-
-
-
TRADE-OFFS IN DETECTING EVOLUTIONARILY CONSTRAINED SEQUENCE BY COMPARATIVE GENOMICS
Vol. 6 (2005), pp. 143–164More Less▪ AbstractAs whole-genome sequencing efforts extend beyond more traditional model organisms to include a deep diversity of species, comparative genomic analyses will be further empowered to reveal insights into the human genome and its evolution. The discovery and annotation of functional genomic elements is a necessary step toward a detailed understanding of our biology, and sequence comparisons have proven to be an integral tool for that task. This review is structured to broadly reflect the statistical challenges in discriminating these functional elements from the bulk of the genome that has evolved neutrally. Specifically, we review the comparative genomics literature in terms of specificity, sensitivity, and phylogenetic scope, as well as the trade-offs that relate these factors in standard analyses. We consider the impact of an expanding diversity of orthologous sequences on our ability to resolve functional elements. This impact is assessed through both recent comparative analyses of deep alignments and mathematical modeling.
-
-
-
MITOCHONDRIAL DNA AND HUMAN EVOLUTION
Vol. 6 (2005), pp. 165–183More Less▪ AbstractSeveral unique properties of human mitochondrial DNA (mtDNA), including its high copy number, maternal inheritance, lack of recombination, and high mutation rate, have made it the molecule of choice for studies of human population history and evolution. Here we review the current state of knowledge concerning these properties, how mtDNA variation is studied, what we have learned, and what the future likely holds. We conclude that increasingly, mtDNA studies are (and should be) supplemented with analyses of the Y-chromosome and other nuclear DNA variation. Some serious issues need to be addressed concerning nuclear inserts, database quality, and the possible influence of selection on mtDNA variation. Nonetheless, mtDNA studies will continue to play an important role in such areas as examining socio-cultural influences on human genetic variation, ancient DNA, certain forensic DNA applications, and in tracing personal genetic history.
-
-
-
THE GENETIC BASIS FOR CARDIAC REMODELING
Vol. 6 (2005), pp. 185–216More Less▪ AbstractCardiomyopathies are primary disorders of cardiac muscle associated with abnormalities of cardiac wall thickness, chamber size, contraction, relaxation, conduction, and rhythm. They are a major cause of morbidity and mortality at all ages and, like acquired forms of cardiovascular disease, often result in heart failure. Over the past two decades, molecular genetic studies of humans and analyses of model organisms have made remarkable progress in defining the pathogenesis of cardiomyopathies. Hypertrophic cardiomyopathy can result from mutations in 11 genes that encode sarcomere proteins, and dilated cardiomyopathy is caused by mutations at 25 chromosome loci where genes encoding contractile, cytoskeletal, and calcium regulatory proteins have been identified. Causes of cardiomyopathies associated with clinically important cardiac arrhythmias have also been discovered: Mutations in cardiac metabolic genes cause hypertrophy in association with ventricular pre-excitation and mutations causing arrhythmogenic right ventricular dysplasia were recently discovered in protein constituents of desmosomes. This considerable genetic heterogeneity suggests that there are multiple pathways that lead to changes in heart structure and function. Defects in myocyte force generation, force transmission, and calcium homeostasis have emerged as particularly critical signals driving these pathologies. Delineation of the cell and molecular events triggered by cardiomyopathy gene mutations provide new fundamental knowledge about myocyte biology and organ physiology that accounts for cardiac remodeling and defines mechanistic pathways that lead to heart failure.
-
-
-
HUMAN TASTE GENETICS*
Vol. 6 (2005), pp. 217–235More Less▪ AbstractHumans show substantial differences in taste sensitivity to many different substances. Some of this variation is known to be genetic in origin, and many other inter-individual differences are likely to be partially or wholly determined by genetic mechanisms. Recent advances in the understanding of taste at the molecular level have provided candidate genes that can be evaluated for contributions to phenotypic differences in taste abilities. This approach has provided an understanding of variation in the ability to taste phenylthiocarbamide (PTC), and has resolved long-standing controversies about the genetics of this classic human genetic trait. Significant coding sequence variation exists in taste receptor genes, which suggests that PTC tasting may indicate more general taste sensory variation. However, many aspects of taste perception remain poorly characterized. Better understanding of the molecular components of salty and sour tastes is still needed, as is a more complete picture of second messenger and downstream signaling mechanisms for all taste modalities. More general studies of linkage and association between genetic markers and taste phenotypes may reveal genes encoding proteins that were previously unsuspected to be involved in this sensory process.
-
-
-
MODIFIER GENETICS: Cystic Fibrosis
Vol. 6 (2005), pp. 237–260More Less▪ AbstractCystic fibrosis (CF) is the most common lethal autosomal recessive disorder in the Caucasian population, affecting about 30,000 individuals in the United States. The gene responsible for CF, the CF transmembrane conductance regulator (CFTR), was identified 15 years ago. Substantial variation in the many aspects of the CF phenotype among individuals with the same CFTR genotype demonstrates that factors independent of CFTR exert considerable influence on outcome in CF. To date, the majority of published studies investigating the cause of disease variability in CF report associations between candidate genes and some aspect of the CF phenotype. However, a definitive modifier gene for CF remains to be identified. Despite the challenges posed by searches for modifier effects, studies of affected twins and siblings indicate that genetic factors play a substantial role in intestinal manifestations. Identifying the factors contributing to variation in pulmonary disease, the primary cause of mortality, remains a challenge for CF research.
-
-
-
ADVANCES IN CHEMICAL GENETICS
Vol. 6 (2005), pp. 261–286More Less▪ AbstractChemical genetics is an emerging approach for studying biological systems using chemical tools. This strategy aims to reveal the macromolecules responsible for regulating biological systems; thus, the approach shares much in common with genetics. In both strategies, one must (a) develop an assay that reports on a biological process of interest, (b) perturb this process systematically (with mutations or small molecules), and (c) determine the target of each perturbation to reveal macromolecules (i.e., proteins and genes) regulating the process of interest. In this review, we discuss advances and challenges in this field that have emerged over the past four years. Several technologies have converged, raising the hope that it may be possible to systematically apply chemical probes to biological processes.
-
-
-
THE PATTERNS OF NATURAL VARIATION IN HUMAN GENES
Vol. 6 (2005), pp. 287–312More Less▪ AbstractCurrently, more than 10 million DNA sequence variations have been uncovered in the human genome. The most detailed variation discovery efforts have focused on candidate genes involved in cardiovascular disease or in susceptibilities associated with exposure to environmental agents. Here we provide an overview of natural genetic variation from the literature and in 510 human candidate genes resequenced for variation discovery. The average human gene contains 126 biallelic polymorphisms, 46 of which are common (≥5% minor allele frequency) and 5 of which are found in coding regions. Using this complete picture of genetic diversity, we explore conservation, signatures of selection, and historical recombination to mine information useful for candidate gene association studies. In general, we find that the patterns of human gene variation suggest that no one approach will be appropriate for genetic association studies across all genes. Therefore, many different approaches may be required to identify the elusive genotypes associated with common human phenotypes.
-
-
-
COMPARATIVE GENOMIC HYBRIDIZATION
Vol. 6 (2005), pp. 331–354More Less▪ AbstractAltering DNA copy number is one of the many ways that gene expression and function may be modified. Some variations are found among normal individuals (14, 35, 103), others occur in the course of normal processes in some species (33), and still others participate in causing various disease states. For example, many defects in human development are due to gains and losses of chromosomes and chromosomal segments that occur prior to or shortly after fertilization, whereas DNA dosage alterations that occur in somatic cells are frequent contributors to cancer. Detecting these aberrations, and interpreting them within the context of broader knowledge, facilitates identification of critical genes and pathways involved in biological processes and diseases, and provides clinically relevant information. Over the past several years array comparative genomic hybridization (array CGH) has demonstrated its value for analyzing DNA copy number variations. In this review we discuss the state of the art of array CGH and its applications in medical genetics and cancer, emphasizing general concepts rather than specific results.
-
-
-
SULFATASES AND HUMAN DISEASE
Vol. 6 (2005), pp. 355–379More Less▪ AbstractSulfatases are a highly conserved family of proteins that cleave sulfate esters from a wide range of substrates. The importance of sulfatases in human metabolism is underscored by the presence of at least eight human monogenic diseases caused by the deficiency of individual sulfatases. Sulfatase activity requires a unique posttranslational modification, which is impaired in patients with multiple sulfatase deficiency (MSD) due to a mutation of the sulfatase modifying factor 1 (SUMF1). Here we review current knowledge and future perspectives on the evolution of the sulfatase gene family, on the role of these enzymes in human metabolism, and on new developments in the therapy of sulfatase deficiencies.
-
-
-
DISEASE GENE DISCOVERY THROUGH INTEGRATIVE GENOMICS
Vol. 6 (2005), pp. 381–406More Less▪ AbstractThe availability of complete genome sequences and the wealth of large-scale biological data sets now provide an unprecedented opportunity to elucidate the genetic basis of rare and common human diseases. Here we review some of the emerging genomics technologies and data resources that can be used to infer gene function to prioritize candidate genes. We then describe some computational strategies for integrating these large-scale data sets to provide more faithful descriptions of gene function, and how such approaches have recently been applied to discover genes underlying Mendelian disorders. Finally, we discuss future prospects and challenges for using integrative genomics to systematically discover not only single genes but also entire gene networks that underlie and modify human disease.
-
-
-
BIG CAT GENOMICS*
Vol. 6 (2005), pp. 407–429More Less▪ AbstractAdvances in population and quantitative genomics, aided by the computational algorithms that employ genetic theory and practice, are now being applied to biological questions that surround free-ranging species not traditionally suitable for genetic enquiry. Here we review how applications of molecular genetic tools have been used to describe the natural history, present status, and future disposition of wild cat species. Insight into phylogenetic hierarchy, demographic contractions, geographic population substructure, behavioral ecology, and infectious diseases have revealed strategies for survival and adaptation of these fascinating predators. Conservation, stabilization, and management of the big cats are important areas that derive benefit from the genome resources expanded and applied to highly successful species, imperiled by an expanding human population.
-
Previous Volumes
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
-
Volume 0 (1932)