1932

Abstract

Proteins are the molecular effectors of the information encoded in the genome. Proteomics aims at understanding the molecular functions of proteins in their biological context. In contrast to transcriptomics and genomics, the study of proteomes provides deeper insight into the dynamic regulatory layers encoded at the protein level, such as posttranslational modifications, subcellular localization, cell signaling, and protein–protein interactions. Currently, mass spectrometry (MS)–based proteomics is the technology of choice for studying proteomes at a system-wide scale, contributing to clinical biomarker discovery and fundamental molecular biology. MS technologies are continuously being developed to fulfill the requirements of speed, resolution, and quantitative accuracy, enabling the acquisition of comprehensive proteomes. In this review, we present how MS technology and acquisition methods have evolved to meet the requirements of cutting-edge proteomics research, which is describing the human proteome and its dynamic posttranslational modifications with unprecedented depth. Finally, we provide a perspective on studying proteomes at single-cell resolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-112921-024948
2022-08-31
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/genom/23/1/annurev-genom-112921-024948.html?itemId=/content/journals/10.1146/annurev-genom-112921-024948&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adhikari S, Nice EC, Deutsch EW, Lane L, Omenn GS et al. 2020. A high-stringency blueprint of the human proteome. Nat. Commun. 11:5301
    [Google Scholar]
  2. 2.
    Aebersold R, Mann M. 2003. Mass spectrometry-based proteomics. Nature 422:198–207
    [Google Scholar]
  3. 3.
    Aggarwal S, Tolani P, Gupta S, Yadav AK 2021. Posttranslational modifications in systems biology. Proteomics and Systems Biology R Donev, T Karabencheva-Christova 93–126 Adv. Protein Chem. Struct. Biol. 127 Cambridge, MA: Academic
    [Google Scholar]
  4. 4.
    Ahmad Y, Lamond AI. 2014. A perspective on proteomics in cell biology. Trends Cell Biol 24:257–64
    [Google Scholar]
  5. 5.
    Akimov V, Barrio-Hernandez I, Hansen SVF, Hallenborg P, Pedersen A-K et al. 2018. UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites. Nat. Struct. Mol. Biol. 25:631–40
    [Google Scholar]
  6. 6.
    Anderson LC, DeHart CJ, Kaiser NK, Fellers RT, Smith DF et al. 2017. Identification and characterization of human proteoforms by top-down LC-21 Tesla FT-ICR mass spectrometry. J. Proteome Res. 16:1087–96
    [Google Scholar]
  7. 7.
    Andrews GL, Simons BL, Young JB, Hawkridge AM, Muddiman DC. 2011. Performance characteristics of a new hybrid quadrupole time-of-flight tandem mass spectrometer (TripleTOF 5600). Anal. Chem. 83:5442–46
    [Google Scholar]
  8. 8.
    Arribas Diez I, Govender I, Naicker P, Stoychev S, Jordaan J, Jensen ON 2021. Zirconium(IV)-IMAC revisited: improved performance and phosphoproteome coverage by magnetic microparticles for phosphopeptide affinity enrichment. J. Proteome Res. 20:453–62
    [Google Scholar]
  9. 9.
    Bache N, Geyer PE, Bekker-Jensen DB, Hoerning O, Falkenby L et al. 2018. A novel LC system embeds analytes in pre-formed gradients for rapid, ultra-robust proteomics. Mol. Cell. Proteom. 17:2284–96
    [Google Scholar]
  10. 10.
    Batth TS, Francavilla C, Olsen JV. 2014. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics. J. Proteome Res. 13:6176–86
    [Google Scholar]
  11. 11.
    Beck S, Michalski A, Raether O, Lubeck M, Kaspar S et al. 2015. The Impact II, a very high-resolution quadrupole time-of-flight instrument (QTOF) for deep shotgun proteomics. Mol. Cell. Proteom. 14:2014–29
    [Google Scholar]
  12. 12.
    Bedford MT, Richard S 2005. Arginine methylation an emerging regulator of protein function. Mol. Cell 18:263–72
    [Google Scholar]
  13. 13.
    Bekker-Jensen DB, Bernhardt OM, Hogrebe A, Martinez-Val A, Verbeke L et al. 2020. Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries. Nat. Commun. 11:787
    [Google Scholar]
  14. 14.
    Bekker-Jensen DB, Kelstrup CD, Batth TS, Larsen SC, Haldrup C et al. 2017. An optimized shotgun strategy for the rapid generation of comprehensive human proteomes. Cell Syst 4:587–99.e4
    [Google Scholar]
  15. 15.
    Bekker-Jensen DB, Martinez-Val A, Steigerwald S, Rüther P, Fort KL et al. 2020. A compact quadrupole-Orbitrap mass spectrometer with FAIMS interface improves proteome coverage in short LC gradients. Mol. Cell. Proteom. 19:716–29
    [Google Scholar]
  16. 16.
    Branca RMM, Orre LM, Johansson HJ, Granholm V, Huss M et al. 2014. HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics. Nat. Methods 11:59–62
    [Google Scholar]
  17. 17.
    Bruderer R, Bernhardt OM, Gandhi T, Miladinović SM, Cheng LY et al. 2015. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol. Cell. Proteom. 14:1400–10
    [Google Scholar]
  18. 18.
    Budnik B, Levy E, Harmange G, Slavov N. 2018. SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol 19:161
    [Google Scholar]
  19. 19.
    Cai X, Ge W, Yi X, Sun R, Zhu J et al. 2021. PulseDIA: data-independent acquisition mass spectrometry using multi-injection pulsed gas-phase fractionation. J. Proteome Res. 20:279–88
    [Google Scholar]
  20. 20.
    Calnan BJ, Tidor B, Biancalana S, Hudson D, Frankel AD. 1991. Arginine-mediated RNA recognition: the arginine fork. Science 252:1167–71
    [Google Scholar]
  21. 21.
    Cheung TK, Lee CY, Bayer FP, McCoy A, Kuster B, Rose CM. 2021. Defining the carrier proteome limit for single-cell proteomics. Nat. Methods 18:76–83
    [Google Scholar]
  22. 22.
    Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M et al. 2009. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–40
    [Google Scholar]
  23. 23.
    Choudhary C, Mann M. 2010. Decoding signalling networks by mass spectrometry-based proteomics. Nat. Rev. Mol. Cell Biol. 11:427–39
    [Google Scholar]
  24. 24.
    Chuderland D, Konson A, Seger R. 2008. Identification and characterization of a general nuclear translocation signal in signaling proteins. Mol. Cell 31:850–61
    [Google Scholar]
  25. 25.
    Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N et al. 2004. Regulation of p53 activity through lysine methylation. Nature 432:353–60
    [Google Scholar]
  26. 26.
    Ciechanover A, Heller H, Elias S, Haas AL, Hershko A. 1980. ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. PNAS 77:1365–68
    [Google Scholar]
  27. 27.
    Cong Y, Motamedchaboki K, Misal SA, Liang Y, Guise AJ et al. 2020. Ultrasensitive single-cell proteomics workflow identifies >1000 protein groups per mammalian cell. Chem. Sci. 12:1001–6
    [Google Scholar]
  28. 28.
    Cox J, Yu SH, Kyriakidou P. 2020. Isobaric matching between runs and novel PSM-level normalization in MaxQuant strongly improve reporter ion-based quantification. J. Proteome Res. 19:3945–54
    [Google Scholar]
  29. 29.
    de Godoy LMF, Olsen JV, Cox J, Nielsen ML, Hubner NC et al. 2008. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455:1251–54
    [Google Scholar]
  30. 30.
    Demichev V, Messner CB, Vernardis SI, Lilley KS, Ralser M. 2020. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17:41–44
    [Google Scholar]
  31. 31.
    Dix MM, Simon GM, Cravatt BF. 2008. Global mapping of the topography and magnitude of proteolytic events in apoptosis. Cell 134:679–91
    [Google Scholar]
  32. 32.
    Domon B, Aebersold R. 2006. Mass spectrometry and protein analysis. Science 312:212–17
    [Google Scholar]
  33. 33.
    Dou M, Zhu Y, Liyu A, Liang Y, Chen J et al. 2018. Nanowell-mediated two-dimensional liquid chromatography enables deep proteome profiling of <1000 mammalian cells. Chem. Sci. 9:6944–51
    [Google Scholar]
  34. 34.
    Ebhardt HA, Root A, Sander C, Aebersold R. 2015. Applications of targeted proteomics in systems biology and translational medicine. Proteomics 15:3193–208
    [Google Scholar]
  35. 35.
    Elia AEH, Boardman AP, Wang DC, Huttlin EL, Everley RA et al. 2015. Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response. Mol. Cell 59:867–81
    [Google Scholar]
  36. 36.
    Ezkurdia I, Vázquez J, Valencia A, Tress M. 2014. Analyzing the first drafts of the human proteome. J. Proteome Res. 13:3854–55
    [Google Scholar]
  37. 37.
    Francavilla C, Papetti M, Rigbolt KTG, Pedersen AK, Sigurdsson JO et al. 2016. Multilayered proteomics reveals molecular switches dictating ligand-dependent EGFR trafficking. Nat. Struct. Mol. Biol. 23:608–18
    [Google Scholar]
  38. 38.
    Geladaki A, Kočevar Britovšek N, Breckels LM, Smith TS, Vennard OL et al. 2019. Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics. Nat. Commun. 10:331
    [Google Scholar]
  39. 39.
    Gillet LC, Leitner A, Aebersold R. 2016. Mass spectrometry applied to bottom-up proteomics: entering the high-throughput era for hypothesis testing. Annu. Rev. Anal. Chem. 9:449–72
    [Google Scholar]
  40. 40.
    Gillet LC, Navarro P, Tate S, Röst H, Selevsek N et al. 2012. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteom. 11:O111.016717
    [Google Scholar]
  41. 41.
    Goulet I, Gauvin G, Boisvenue S, Côté J. 2007. Alternative splicing yields protein arginine methyltransferase 1 isoforms with distinct activity, substrate specificity, and subcellular localization. J. Biol. Chem. 282:33009–21
    [Google Scholar]
  42. 42.
    Guan K-L, Yu W, Lin Y, Xiong Y, Zhao S 2010. Generation of acetyllysine antibodies and affinity enrichment of acetylated peptides. Nat. Protoc. 5:1583–95
    [Google Scholar]
  43. 43.
    Guilhaus M, Selby D, Mlynski V. 2000. Orthogonal acceleration time-of-flight mass spectrometry. Mass Spectrom. Rev. 19:65–107
    [Google Scholar]
  44. 44.
    Guo X, Trudgian DC, Lemoff A, Yadavalli S, Mirzaei H. 2014. Confetti: a multiprotease map of the HeLa proteome for comprehensive proteomics. Mol. Cell. Proteom. 13:1573–84
    [Google Scholar]
  45. 45.
    Hansen BK, Gupta R, Baldus L, Lyon D, Narita T et al. 2019. Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation. Nat. Commun. 10:1055
    [Google Scholar]
  46. 46.
    Hardman M, Makarov AA. 2003. Interfacing the orbitrap mass analyzer to an electrospray ion source. Anal. Chem. 75:1699–705
    [Google Scholar]
  47. 47.
    Hebert AS, Prasad S, Belford MW, Bailey DJ, McAlister GC et al. 2018. Comprehensive single-shot proteomics with FAIMS on a hybrid Orbitrap mass spectrometer. Anal. Chem. 90:9529–37
    [Google Scholar]
  48. 48.
    Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE et al. 2014. The one hour yeast proteome. Mol. Cell. Proteom. 13:339–47
    [Google Scholar]
  49. 49.
    Henriksen P, Wagner SA, Weinert BT, Sharma S, Bacinskaja G et al. 2012. Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Mol. Cell. Proteom. 11:1510–22
    [Google Scholar]
  50. 50.
    Hofstadler SA, Severs JC, Smith RD, Swanek FD, Ewing AG. 1996. Analysis of single cells with capillary electrophoresis electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 10:919–22
    [Google Scholar]
  51. 51.
    Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. 2015. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 43:D512–20
    [Google Scholar]
  52. 52.
    Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M et al. 2006. Repression of p53 activity by Smyd2-mediated methylation. Nature 444:629–32
    [Google Scholar]
  53. 53.
    Jedrychowski MP, Huttlin EL, Haas W, Sowa ME, Rad R, Gygi SP 2011. Evaluation of HCD- and CID-type fragmentation within their respective detection platforms for murine phosphoproteomics. Mol. Cell. Proteom. 10:M111.009910
    [Google Scholar]
  54. 54.
    Jiang L, Wang M, Lin S, Jian R, Li X et al. 2020. A quantitative proteome map of the human body. Cell 183:269–83.e19
    [Google Scholar]
  55. 55.
    Kelstrup CD, Bekker-Jensen DB, Arrey TN, Hogrebe A, Harder A, Olsen JV. 2018. Performance evaluation of the Q Exactive HF-X for shotgun proteomics. J. Proteome Res. 17:727–38
    [Google Scholar]
  56. 56.
    Kelstrup CD, Young C, Lavallee R, Nielsen ML, Olsen JV. 2012. Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole Orbitrap mass spectrometer. J. Proteome Res. 11:3487–97
    [Google Scholar]
  57. 57.
    Kim M-S, Pinto SM, Getnet D, Nirujogi RS, Manda SS et al. 2014. A draft map of the human proteome. Nature 509:575–81
    [Google Scholar]
  58. 58.
    Kim M-S, Zhong J, Pandey A. 2016. Common errors in mass spectrometry-based analysis of post-translational modifications. Proteomics 16:700–14
    [Google Scholar]
  59. 59.
    Klaeger S, Heinzlmeir S, Wilhelm M, Polzer H, Vick B et al. 2017. The target landscape of clinical kinase drugs. Science 358:eaan4368
    [Google Scholar]
  60. 60.
    Lanucara F, Eyers CE. 2013. Top-down mass spectrometry for the analysis of combinatorial post-translational modifications. Mass Spectrom. Rev. 32:27–42
    [Google Scholar]
  61. 61.
    Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jørgensen TJD. 2005. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell. Proteom. 4:873–86
    [Google Scholar]
  62. 62.
    Larsen SC, Sylvestersen KB, Mund A, Lyon D, Mullari M et al. 2016. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells. Sci. Signal. 9:rs9
    [Google Scholar]
  63. 63.
    Lehtiö J, Arslan T, Siavelis I, Pan Y, Socciarelli F et al. 2021. Proteogenomics of non-small cell lung cancer reveals molecular subtypes associated with specific therapeutic targets and immune-evasion mechanisms. Nat. Cancer 2:1224–42
    [Google Scholar]
  64. 64.
    Li J, Cai Z, Bomgarden RD, Pike I, Kuhn K et al. 2021. TMTpro-18plex: the expanded and complete set of TMTpro reagents for sample multiplexing. J. Proteome Res. 20:2964–72
    [Google Scholar]
  65. 65.
    Liang Y, Zhu Y, Dou M, Xu K, Chu RK et al. 2018. Spatially resolved proteome profiling of <200 cells from tomato fruit pericarp by integrating laser-capture microdissection with nanodroplet sample preparation. Anal. Chem. 90:11106–14
    [Google Scholar]
  66. 66.
    Lundby A, Lage K, Weinert BT, Bekker-Jensen DB, Secher A et al. 2012. Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep 2:419–31
    [Google Scholar]
  67. 67.
    Makarov A. 2000. Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal. Chem. 72:1156–62
    [Google Scholar]
  68. 68.
    Martinez-Val A. 2019. Understanding naïve pluripotency using quantitative mass spectrometry PhD Thesis Univ. Autón. Madrid Madrid, Spain:
  69. 69.
    Martinez-Val A, Bekker-Jensen DB, Steigerwald S, Koenig C, Østergaard O et al. 2021. Spatial-proteomics reveals phospho-signaling dynamics at subcellular resolution. Nat. Commun. 12:7113
    [Google Scholar]
  70. 70.
    Martinez-Val A, Garcia F, Ximénez-Embún P, Martínez Teresa-Calleja A, Ibarz N et al. 2017. Urea artifacts interfere with immuno-purification of lysine acetylation. J. Proteome Res. 16:1061–68
    [Google Scholar]
  71. 71.
    Martinez-Val A, Lynch CJ, Calvo I, Ximénez-Embún P, Garcia F et al. 2021. Dissection of two routes to naïve pluripotency using different kinase inhibitors. Nat. Commun. 12:1863
    [Google Scholar]
  72. 72.
    Meier F, Brunner AD, Frank M, Ha A, Bludau I et al. 2020. diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition. Nat. Methods 17:1229–36
    [Google Scholar]
  73. 73.
    Meier F, Brunner AD, Koch S, Koch H, Lubeck M et al. 2018. Online parallel accumulation-serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer. Mol. Cell. Proteom. 17:2534–45
    [Google Scholar]
  74. 74.
    Meier F, Geyer PE, Virreira Winter S, Cox J, Mann M 2018. BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. Nat. Methods 15:440–48
    [Google Scholar]
  75. 75.
    Mertins P, Qiao JW, Patel J, Udeshi ND, Clauser KR et al. 2013. Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat. Methods 10:634–37
    [Google Scholar]
  76. 76.
    Messner CB, Demichev V, Bloomfield N, Yu JSL, White M et al. 2021. Ultra-fast proteomics with Scanning SWATH. Nat. Biotechnol. 39:846–54
    [Google Scholar]
  77. 77.
    Michalski A, Cox J, Mann M. 2011. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J. Proteome Res. 10:1785–93
    [Google Scholar]
  78. 78.
    Michalski A, Damoc E, Hauschild JP, Lange O, Wieghaus A et al. 2011. Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol. Cell. Proteom. 10:M111.011015
    [Google Scholar]
  79. 79.
    Mulvey CM, Breckels LM, Geladaki A, Britovšek NK, Nightingale DJH et al. 2017. Using hyperLOPIT to perform high-resolution mapping of the spatial proteome. Nat. Protoc. 12:1110–35
    [Google Scholar]
  80. 80.
    Muntel J, Gandhi T, Verbeke L, Bernhardt OM, Treiber T et al. 2019. Surpassing 10 000 identified and quantified proteins in a single run by optimizing current LC-MS instrumentation and data analysis strategy. Mol. Omics 15:348–60
    [Google Scholar]
  81. 81.
    Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M et al. 2011. Deep proteome and transcriptome mapping of a human cancer cell line. Mol. Syst. Biol. 7:548
    [Google Scholar]
  82. 82.
    Ochoa D, Jarnuczak AF, Viéitez C, Gehre M, Soucheray M et al. 2020. The functional landscape of the human phosphoproteome. Nat. Biotechnol. 38:365–73
    [Google Scholar]
  83. 83.
    Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann M. 2007. Higher-energy C-trap dissociation for peptide modification analysis. Nat. Methods 4:709–12
    [Google Scholar]
  84. 84.
    Olsen JV, Ong SE, Mann M. 2004. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol. Cell. Proteom. 3:608–14
    [Google Scholar]
  85. 85.
    Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML et al. 2010. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 3:ra3
    [Google Scholar]
  86. 86.
    Orre LM, Vesterlund M, Pan Y, Arslan T, Zhu Y et al. 2019. SubCellBarCode: proteome-wide mapping of protein localization and relocalization. Mol. Cell 73:166–82.e7
    [Google Scholar]
  87. 87.
    Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ. 2012. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol. Cell. Proteom. 11:1475–88
    [Google Scholar]
  88. 88.
    Pfammatter S, Bonneil E, McManus FP, Prasad S, Bailey DJ et al. 2018. A novel differential ion mobility device expands the depth of proteome coverage and the sensitivity of multiplex proteomic measurements. Mol. Cell. Proteom. 17:2051–67
    [Google Scholar]
  89. 89.
    Picotti P, Aebersold R. 2012. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat. Methods 9:555–66
    [Google Scholar]
  90. 90.
    Pinkse MWH, Uitto PM, Hilhorst MJ, Ooms B, Heck AJR. 2004. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal. Chem. 76:3935–43
    [Google Scholar]
  91. 91.
    Post H, Penning R, Fitzpatrick MA, Garrigues LB, Wu W et al. 2017. Robust, sensitive, and automated phosphopeptide enrichment optimized for low sample amounts applied to primary hippocampal neurons. J. Proteome Res. 16:728–37
    [Google Scholar]
  92. 92.
    Purvine S, Eppel JT, Yi EC, Goodlett DR 2003. Shotgun collision-induced dissociation of peptides using a time of flight mass analyzer. Proteomics 3:847–50
    [Google Scholar]
  93. 93.
    Samodova D, Hosfield CM, Cramer CN, Giuli MV, Cappellini E et al. 2020. ProAlanase is an effective alternative to trypsin for proteomics applications and disulfide bond mapping. Mol. Cell. Proteom. 19:2139–56
    [Google Scholar]
  94. 94.
    Schölz C, Weinert BT, Wagner SA, Beli P, Miyake Y et al. 2015. Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat. Biotechnol. 33:415–23
    [Google Scholar]
  95. 95.
    Sharma K, D'Souza RCJ, Tyanova S, Schaab C, Wiśniewski JRR et al. 2014. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8:1583–94
    [Google Scholar]
  96. 96.
    Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M. 2006. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1:2856–60
    [Google Scholar]
  97. 97.
    Shishkova E, Hebert AS, Coon JJ. 2016. Now, more than ever, proteomics needs better chromatography. Cell Syst 3:321–24
    [Google Scholar]
  98. 98.
    Steger M, Demichev V, Backman M, Ohmayer U, Ihmor P et al. 2021. Time-resolved in vivo ubiquitinome profiling by DIA-MS reveals USP7 targets on a proteome-wide scale. Nat. Commun. 12:5399
    [Google Scholar]
  99. 99.
    Stein DR, Hu X, McCorrister SJ, Westmacott GR, Plummer FA et al. 2013. High pH reversed-phase chromatography as a superior fractionation scheme compared to off-gel isoelectric focusing for complex proteome analysis. Proteomics 13:2956–66
    [Google Scholar]
  100. 100.
    Stopfer LE, Flower CT, Gajadhar AS, Patel B, Gallien S et al. 2021. High-density, targeted monitoring of tyrosine phosphorylation reveals activated signaling networks in human tumors. Cancer Res 81:2495–509
    [Google Scholar]
  101. 101.
    Svinkina T, Gu H, Silva JC, Mertins P, Qiao J et al. 2015. Deep, quantitative coverage of the lysine acetylome using novel anti-acetyl-lysine antibodies and an optimized proteomic workflow. Mol. Cell. Proteom. 14:2429–40
    [Google Scholar]
  102. 102.
    Swatek KN, Komander D. 2016. Ubiquitin modifications. Cell Res 26:399–422
    [Google Scholar]
  103. 103.
    Swiss Inst. Bioinform. 2021. neXtProt Data Release 2021-11-19 accessed March 7, 2022. https://www.nextprot.org
  104. 104.
    Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. 2004. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. PNAS 101:9528–33
    [Google Scholar]
  105. 105.
    The M, MacCoss MJ, Noble WS, Käll L. 2016. Fast and accurate protein false discovery rates on large-scale proteomics data sets with Percolator 3.0. J. Am. Soc. Mass Spectrom. 27:1719
    [Google Scholar]
  106. 106.
    Thul PJ, Akesson L, Wiking M, Mahdessian D, Geladaki A et al. 2017. A subcellular map of the human proteome. Science 356:eaal3321
    [Google Scholar]
  107. 107.
    Ting YS, Egertson JD, Bollinger JG, Searle BC, Payne SH et al. 2017. PECAN: library-free peptide detection for data-independent acquisition tandem mass spectrometry data. Nat. Methods 14:903–8
    [Google Scholar]
  108. 108.
    Tsai CF, Zhao R, Williams SM, Moore RJ, Schultz K et al. 2020. An improved boosting to amplify signal with isobaric labeling (iBASIL) strategy for precise quantitative single-cell proteomics. Mol. Cell. Proteom. 19:828–38
    [Google Scholar]
  109. 109.
    Tsou CC, Avtonomov D, Larsen B, Tucholska M, Choi H et al. 2015. DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat. Methods 12:258–64
    [Google Scholar]
  110. 110.
    Venable JD, Dong MQ, Wohlschlegel J, Dillin A, Yates JR. 2004. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat. Methods 1:39–45
    [Google Scholar]
  111. 111.
    Vermeulen M, Eberl HC, Matarese F, Marks H, Denissov S et al. 2010. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142:967–80
    [Google Scholar]
  112. 112.
    Walsh CT, Garneau-Tsodikova S, Gatto GJ. 2005. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew. Chem. Int. Ed. Engl. 44:7342–72
    [Google Scholar]
  113. 113.
    Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M et al. 2014. Mass-spectrometry-based draft of the human proteome. Nature 509:582–87
    [Google Scholar]
  114. 114.
    Wolff MM, Stephens WE. 1953. A pulsed mass spectrometer with time dispersion. Rev. Sci. Instrum. 24:616–17
    [Google Scholar]
  115. 115.
    Wolters DA, Washburn MP, Yates JR. 2001. An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 73:5683–90
    [Google Scholar]
  116. 116.
    Xu G, Paige JS, Jaffrey SR. 2010. Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat. Biotechnol. 28:868–73
    [Google Scholar]
  117. 117.
    Yu F, Haynes SE, Nesvizhskii AI. 2021. IonQuant enables accurate and sensitive label-free quantification with FDR-controlled match-between-runs. Mol. Cell. Proteom. 20:100077
    [Google Scholar]
  118. 118.
    Zahn-Zabal M, Michel PA, Gateau A, Nikitin F, Schaeffer M et al. 2020. The neXtProt knowledgebase in 2020: data, tools and usability improvements. Nucleic Acids Res 48:D328–34
    [Google Scholar]
  119. 119.
    Zhang F, Ge W, Ruan G, Cai X, Guo T. 2020. Data-independent acquisition mass spectrometry-based proteomics and software tools: a glimpse in 2020. Proteomics 20:1900276
    [Google Scholar]
  120. 120.
    Zhu Y, Dou M, Piehowski PD, Liang Y, Wang F et al. 2018. Spatially resolved proteome mapping of laser capture microdissected tissue with automated sample transfer to nanodroplets. Mol. Cell. Proteom. 17:1864–74
    [Google Scholar]
  121. 121.
    Zhu Y, Piehowski PD, Zhao R, Chen J, Shen Y et al. 2018. Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells. Nat. Commun. 9:882
    [Google Scholar]
  122. 122.
    Zubarev RA. 2013. The challenge of the proteome dynamic range and its implications for in-depth proteomics. Proteomics 13:723–26
    [Google Scholar]
/content/journals/10.1146/annurev-genom-112921-024948
Loading
/content/journals/10.1146/annurev-genom-112921-024948
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error