1932

Abstract

Do long noncoding RNAs (lncRNAs) contribute little or substantively to human biology? To address how lncRNA loci and their transcripts, structures, interactions, and functions contribute to human traits and disease, we adopt a genome-wide perspective. We intend to provoke alternative interpretation of questionable evidence and thorough inquiry into unsubstantiated claims. We discuss pitfalls of lncRNA experimental and computational methods as well as opposing interpretations of their results. The majority of evidence, we argue, indicates that most lncRNA transcript models reflect transcriptional noise or provide minor regulatory roles, leaving relatively few human lncRNAs that contribute centrally to human development, physiology, or behavior. These important few tend to be spliced and better conserved but lack a simple syntax relating sequence to structure and mechanism, and so resist simple categorization. This genome-wide view should help investigators prioritize individual lncRNAs based on their likely contribution to human biology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-112921-123710
2022-08-31
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/genom/23/1/annurev-genom-112921-123710.html?itemId=/content/journals/10.1146/annurev-genom-112921-123710&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Agostini F, Zagalak J, Attig J, Ule J, Luscombe NM. 2021. Intergenic RNA mainly derives from nascent transcripts of known genes. Genome Biol 22:136
    [Google Scholar]
  2. 2.
    Anderson DM, Anderson KM, Chang C-L, Makarewich CA, Nelson BR et al. 2015. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160:595–606
    [Google Scholar]
  3. 3.
    Bader AS, Hawley BR, Wilczynska A, Bushell M. 2020. The roles of RNA in DNA double-strand break repair. Br. J. Cancer 122:613–23
    [Google Scholar]
  4. 4.
    Bassett AR, Akhtar A, Barlow DP, Bird AP, Brockdorff N et al. 2014. Considerations when investigating lncRNA function in vivo. eLife 3:e03058
    [Google Scholar]
  5. 5.
    Birling M-C, Yoshiki A, Adams DJ, Ayabe S, Beaudet AL et al. 2021. A resource of targeted mutant mouse lines for 5,061 genes. Nat. Genet. 53:416–19
    [Google Scholar]
  6. 6.
    Bogu GK, Vizán P, Stanton LW, Beato M, Di Croce L, Marti-Renom MA. 2015. Chromatin and RNA maps reveal regulatory long noncoding RNAs in mouse. Mol. Cell. Biol. 36:809–19
    [Google Scholar]
  7. 7.
    Cabili MN, Dunagin MC, McClanahan PD, Biaesch A, Padovan-Merhar O et al. 2015. Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol 16:20
    [Google Scholar]
  8. 8.
    Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B et al. 2011. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–27
    [Google Scholar]
  9. 9.
    Cai Z, Cao C, Ji L, Ye R, Wang D et al. 2020. RIC-seq for global in situ profiling of RNA-RNA spatial interactions. Nature 582:432–37
    [Google Scholar]
  10. 10.
    Cao H, Wahlestedt C, Kapranov P. 2018. Strategies to annotate and characterize long noncoding RNAs: advantages and pitfalls. Trends Genet 34:704–21
    [Google Scholar]
  11. 11.
    Carlevaro-Fita J, Johnson R 2019. Global positioning system: understanding long noncoding RNAs through subcellular localization. Mol. Cell 73:869–83
    [Google Scholar]
  12. 12.
    Carlevaro-Fita J, Polidori T, Das M, Navarro C, Zoller TI, Johnson R 2019. Ancient exapted transposable elements promote nuclear enrichment of human long noncoding RNAs. Genome Res 29:208–22
    [Google Scholar]
  13. 13.
    Chen J, Brunner A-D, Cogan JZ, Nuñez JK, Fields AP et al. 2020. Pervasive functional translation of noncanonical human open reading frames. Science 367:1140–46
    [Google Scholar]
  14. 14.
    Cho C-S, Xi J, Si Y, Park S-R, Hsu J-E et al. 2021. Microscopic examination of spatial transcriptome using Seq-Scope. Cell 184:3559–72.e22
    [Google Scholar]
  15. 15.
    Clark BS, Blackshaw S. 2017. Understanding the role of lncRNAs in nervous system development. Adv. Exp. Med. Biol. 1008:253–82
    [Google Scholar]
  16. 16.
    Clark MB, Johnston RL, Inostroza-Ponta M, Fox AH, Fortini E et al. 2012. Genome-wide analysis of long noncoding RNA stability. Genome Res 22:885–98
    [Google Scholar]
  17. 17.
    Creamer KM, Kolpa HJ, Lawrence JB. 2021. Nascent RNA scaffolds contribute to chromosome territory architecture and counter chromatin compaction. Mol. Cell 81:3509–25.e5
    [Google Scholar]
  18. 18.
    Davidovich C, Wang X, Cifuentes-Rojas C, Goodrich KJ, Gooding AR et al. 2015. Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA. Mol. Cell 57:552–58
    [Google Scholar]
  19. 19.
    de Goede OM, Nachun DC, Ferraro NM, Gloudemans MJ, Rao AS et al. 2021. Population-scale tissue transcriptomics maps long non-coding RNAs to complex disease. Cell 184:2633–48.e19
    [Google Scholar]
  20. 20.
    De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S et al. 2010. A large fraction of extragenic RNA Pol II transcription sites overlap enhancers. PLOS Biol 8:e1000384
    [Google Scholar]
  21. 21.
    de Souza FSJ, Franchini LF, Rubinstein M. 2013. Exaptation of transposable elements into novel cis-regulatory elements: Is the evidence always strong?. Mol. Biol. Evol. 30:1239–51
    [Google Scholar]
  22. 22.
    Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S et al. 2012. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–89
    [Google Scholar]
  23. 23.
    Dimitrova N, Zamudio JR, Jong RM, Soukup D, Resnick R et al. 2014. LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol. Cell 54:777–90
    [Google Scholar]
  24. 24.
    Dukler N, Mughal MR, Ramani R, Huang Y-F, Siepel A. 2021. Extreme purifying selection against point mutations in the human genome. bioRxiv 2021.08.23.457339. https://doi.org/10.1101/2021.08.23.457339
    [Crossref]
  25. 25.
    Eddy SR. 2014. Computational analysis of conserved RNA secondary structure in transcriptomes and genomes. Annu. Rev. Biophys. 43:433–56
    [Google Scholar]
  26. 26.
    Elisaphenko EA, Kolesnikov NN, Shevchenko AI, Rogozin IB, Nesterova TB et al. 2008. A dual origin of the Xist gene from a protein-coding gene and a set of transposable elements. PLOS ONE 3:e2521
    [Google Scholar]
  27. 27.
    Eng C-HL, Lawson M, Zhu Q, Dries R, Koulena N et al. 2019. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568:235–39
    [Google Scholar]
  28. 28.
    Engreitz JM, Haines JE, Perez EM, Munson G, Chen J et al. 2016. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 539:452–55
    [Google Scholar]
  29. 29.
    Frankish A, Diekhans M, Jungreis I, Lagarde J, Loveland JE et al. 2021. GENCODE 2021. Nucleic Acids Res 49:D916–23
    [Google Scholar]
  30. 30.
    Ganser LR, Kelly ML, Herschlag D, Al-Hashimi HM. 2019. The roles of structural dynamics in the cellular functions of RNAs. Nat. Rev. Mol. Cell Biol. 20:474–89
    [Google Scholar]
  31. 31.
    Gao F, Cai Y, Kapranov P, Xu D. 2020. Reverse-genetics studies of lncRNAs—what we have learnt and paths forward. Genome Biol 21:93
    [Google Scholar]
  32. 32.
    Ghoussaini M, Mountjoy E, Carmona M, Peat G, Schmidt EM et al. 2021. Open Targets Genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics. Nucleic Acids Res 49:D1311–20
    [Google Scholar]
  33. 33.
    Gil N, Ulitsky I. 2018. Production of spliced long noncoding RNAs specifies regions with increased enhancer activity. Cell Syst 7:537–47.e3
    [Google Scholar]
  34. 34.
    Goyal A, Myacheva K, Groß M, Klingenberg M, Duran Arqué B, Diederichs S. 2017. Challenges of CRISPR/Cas9 applications for long non-coding RNA genes. Nucleic Acids Res 45:e12
    [Google Scholar]
  35. 35.
    Grote P, Wittler L, Hendrix D, Koch F, Währisch S et al. 2013. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev. Cell 24:206–14
    [Google Scholar]
  36. 36.
    GTEx Consort. 2020. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369:1318–30
    [Google Scholar]
  37. 37.
    Gudenas BL, Wang L. 2018. Prediction of LncRNA subcellular localization with deep learning from sequence features. Sci. Rep. 8:16385
    [Google Scholar]
  38. 38.
    Guttman M, Amit I, Garber M, French C, Lin MF et al. 2009. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–27
    [Google Scholar]
  39. 39.
    Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES. 2013. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 154:240–51
    [Google Scholar]
  40. 40.
    Haerty W, Ponting CP. 2013. Mutations within lncRNAs are effectively selected against in fruitfly but not in human. Genome Biol 14:R49
    [Google Scholar]
  41. 41.
    Haerty W, Ponting CP. 2015. Unexpected selection to retain high GC content and splicing enhancers within exons of multiexonic lncRNA loci. RNA 21:333–46
    [Google Scholar]
  42. 42.
    Hall LL, Carone DM, Gomez AV, Kolpa HJ, Byron M et al. 2014. Stable C0T-1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes. Cell 156:907–19
    [Google Scholar]
  43. 43.
    Hall LL, Lawrence JB. 2016. RNA as a fundamental component of interphase chromosomes: Could repeats prove key?. Curr. Opin. Genet. Dev. 37:137–47
    [Google Scholar]
  44. 44.
    Hangauer MJ, Vaughn IW, McManus MT. 2013. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLOS Genet 9:e1003569
    [Google Scholar]
  45. 45.
    Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V et al. 2018. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7:e34408
    [Google Scholar]
  46. 46.
    Hezroni H, Koppstein D, Schwartz MG, Avrutin A, Bartel DP, Ulitsky I. 2015. Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep 11:1110–22
    [Google Scholar]
  47. 47.
    Horlbeck MA, Liu SJ, Chang HY, Lim DA, Weissman JS. 2020. Fitness effects of CRISPR/Cas9-targeting of long noncoding RNA gene. Nat. Biotechnol. 38:573–76
    [Google Scholar]
  48. 48.
    Johnson R, Guigó R. 2014. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA 20:959–76
    [Google Scholar]
  49. 49.
    Johnsson P, Lipovich L, Grandér D, Morris KV. 2014. Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim. Biophys. Acta Gen. Subj. 1840:1063–71
    [Google Scholar]
  50. 50.
    Johnsson P, Ziegenhain C, Hartmanis L, Hendriks G-J, Hagemann-Jensen M et al. 2020. Transcriptional kinetics and molecular functions of long non-coding RNAs. bioRxiv 2020.05.05.079251. https://doi.org/10.1101/2020.05.05.079251
    [Crossref]
  51. 51.
    Kaewsapsak P, Shechner DM, Mallard W, Rinn JL, Ting AY. 2017. Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein-RNA crosslinking. eLife 6:e29224
    [Google Scholar]
  52. 52.
    Kannan S, Chernikova D, Rogozin IB, Poliakov E, Managadze D et al. 2015. Transposable element insertions in long intergenic non-coding RNA genes. Front. Bioeng. Biotechnol. 3:71
    [Google Scholar]
  53. 53.
    Kapusta A, Kronenberg Z, Lynch VJ, Zhuo X, Ramsay L et al. 2013. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLOS Genet 9:e1003470
    [Google Scholar]
  54. 54.
    Kim T-K, Hemberg M, Gray JM, Costa AM, Bear DM et al. 2010. Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–87
    [Google Scholar]
  55. 55.
    Kirk JM, Kim SO, Inoue K, Smola MJ, Lee DM et al. 2018. Functional classification of long non-coding RNAs by k-mer content. Nat. Genet. 50:1474–82
    [Google Scholar]
  56. 56.
    Kornienko AE, Dotter CP, Guenzl PM, Gisslinger H, Gisslinger B et al. 2016. Long non-coding RNAs display higher natural expression variation than protein-coding genes in healthy humans. Genome Biol 17:14
    [Google Scholar]
  57. 57.
    Kutter C, Watt S, Stefflova K, Wilson MD, Goncalves A et al. 2012. Rapid turnover of long noncoding RNAs and the evolution of gene expression. PLOS Genet 8:e1002841
    [Google Scholar]
  58. 58.
    Lam MTY, Li W, Rosenfeld MG, Glass CK. 2014. Enhancer RNAs and regulated transcriptional programs. Trends Biochem. Sci. 39:170–82
    [Google Scholar]
  59. 59.
    Li J-H, Liu S, Zhou H, Qu L-H, Yang J-H. 2014. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92–97
    [Google Scholar]
  60. 60.
    Liu SJ, Horlbeck MA, Cho SW, Birk HS, Malatesta M et al. 2017. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 355:aah7111
    [Google Scholar]
  61. 61.
    Liu SJ, Nowakowski TJ, Pollen AA, Lui JH, Horlbeck MA et al. 2016. Single-cell analysis of long non-coding RNAs in the developing human neocortex. Genome Biol 17:67
    [Google Scholar]
  62. 62.
    Liu Y, Cao Z, Wang Y, Guo Y, Xu P et al. 2018. Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites. Nat. Biotechnol. 36:1203–10
    [Google Scholar]
  63. 63.
    Lubelsky Y, Ulitsky I. 2018. Sequences enriched in Alu repeats drive nuclear localization of long RNAs in human cells. Nature 555:107–11
    [Google Scholar]
  64. 64.
    Lunter G, Ponting CP, Hein J. 2006. Genome-wide identification of human functional DNA using a neutral indel model. PLOS Comput. Biol. 2:e5
    [Google Scholar]
  65. 65.
    Ma L, Cao J, Liu L, Du Q, Li Z et al. 2019. LncBook: a curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res 47:D128–34
    [Google Scholar]
  66. 66.
    Magny EG, Pueyo JI, Pearl FMG, Cespedes MA, Niven JE et al. 2013. Conserved regulation of cardiac calcium uptake by peptides encoded in small open reading frames. Science 341:1116–20
    [Google Scholar]
  67. 67.
    Marques AC, Hughes J, Graham B, Kowalczyk MS, Higgs DR, Ponting CP. 2013. Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs. Genome Biol 14:R131
    [Google Scholar]
  68. 68.
    Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J et al. 2017. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature 541:228–32
    [Google Scholar]
  69. 69.
    Mattick JS. 2001. Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2:986–91
    [Google Scholar]
  70. 70.
    Mattick JS. 2009. The genetic signatures of noncoding RNAs. PLOS Genet 5:e1000459
    [Google Scholar]
  71. 71.
    Mattick JS. 2011. The central role of RNA in human development and cognition. FEBS Lett 585:1600–16
    [Google Scholar]
  72. 72.
    Mattick JS, Dinger ME. 2013. The extent of functionality in the human genome. HUGO J 7:2
    [Google Scholar]
  73. 73.
    Mattioli K, Volders P-J, Gerhardinger C, Lee JC, Maass PG et al. 2019. High-throughput functional analysis of lncRNA core promoters elucidates rules governing tissue specificity. Genome Res 29:344–55
    [Google Scholar]
  74. 74.
    Melé M, Rinn JL. 2016.. “ Cat's cradling” the 3D genome by the act of lncRNA transcription. Mol. Cell 62:657–64
    [Google Scholar]
  75. 75.
    Miao Y-R, Liu W, Zhang Q, Guo A-Y. 2018. lncRNASNP2: an updated database of functional SNPs and mutations in human and mouse lncRNAs. Nucleic Acids Res 46:D276–80
    [Google Scholar]
  76. 76.
    Michieletto D, Gilbert N. 2019. Role of nuclear RNA in regulating chromatin structure and transcription. Curr. Opin. Cell Biol. 58:120–25
    [Google Scholar]
  77. 77.
    Mukherjee N, Calviello L, Hirsekorn A, de Pretis S, Pelizzola M, Ohler U. 2017. Integrative classification of human coding and noncoding genes through RNA metabolism profiles. Nat. Struct. Mol. Biol. 24:86–96
    [Google Scholar]
  78. 78.
    Necsulea A, Soumillon M, Warnefors M, Liechti A, Daish T et al. 2014. The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505:635–40
    [Google Scholar]
  79. 79.
    Niu L, Lou F, Sun Y, Sun L, Cai X et al. 2020. A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflammation via modulating antigen presentation. Sci. Adv. 6:eaaz2059
    [Google Scholar]
  80. 80.
    Ouspenskaia T, Law T, Clauser KR, Klaeger S, Sarkizova S et al. 2022. Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer. Nat. Biotechnol. 40:209–17
    [Google Scholar]
  81. 81.
    Palazzo AF, Gregory TR. 2014. The case for junk DNA. PLOS Genet 10:e1004351
    [Google Scholar]
  82. 82.
    Palazzo AF, Lee ES. 2015. Non-coding RNA: What is functional and what is junk?. Front. Genet. 6:2
    [Google Scholar]
  83. 83.
    Pang KC, Frith MC, Mattick JS. 2006. Rapid evolution of noncoding RNAs: Lack of conservation does not mean lack of function. Trends Genet 22:1–5
    [Google Scholar]
  84. 84.
    Ponjavic J, Ponting CP, Lunter G. 2007. Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17:556–65
    [Google Scholar]
  85. 85.
    Rands CM, Meader S, Ponting CP, Lunter G. 2014. 8: 2% of the human genome is constrained: variation in rates of turnover across functional element classes in the human lineage. PLOS Genet 10:e1004525
    [Google Scholar]
  86. 86.
    Ransohoff JD, Wei Y, Khavari PA. 2018. The functions and unique features of long intergenic non-coding RNA. Nat. Rev. Mol. Cell Biol. 19:143–57
    [Google Scholar]
  87. 87.
    Ravasi T, Suzuki H, Pang KC, Katayama S, Furuno M et al. 2006. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res 16:11–19
    [Google Scholar]
  88. 88.
    Rinn JL, Chang HY. 2020. Long noncoding RNAs: molecular modalities to organismal functions. Annu. Rev. Biochem. 89:283–308
    [Google Scholar]
  89. 89.
    Rivas E, Clements J, Eddy SR. 2020. Estimating the power of sequence covariation for detecting conserved RNA structure. Bioinformatics 36:3072–76
    [Google Scholar]
  90. 90.
    Sartorelli V, Lauberth SM. 2020. Enhancer RNAs are an important regulatory layer of the epigenome. Nat. Struct. Mol. Biol. 27:521–28
    [Google Scholar]
  91. 91.
    Schlackow M, Nojima T, Gomes T, Dhir A, Carmo-Fonseca M, Proudfoot NJ. 2017. Distinctive patterns of transcription and RNA processing for human lincRNAs. Mol. Cell 65:25–38
    [Google Scholar]
  92. 92.
    Schmid M, Jensen TH. 2018. Controlling nuclear RNA levels. Nat. Rev. Genet. 19:518–29
    [Google Scholar]
  93. 93.
    Schüler A, Ghanbarian AT, Hurst LD. 2014. Purifying selection on splice-related motifs, not expression level nor RNA folding, explains nearly all constraint on human lincRNAs. Mol. Biol. Evol. 31:3164–83
    [Google Scholar]
  94. 94.
    Selleri L, Bartolomei MS, Bickmore WA, He L, Stubbs L et al. 2016. A Hox-embedded long noncoding RNA: Is it all hot air?. PLOS Genet 12:e1006485
    [Google Scholar]
  95. 95.
    Smith MA, Gesell T, Stadler PF, Mattick JS. 2013. Widespread purifying selection on RNA structure in mammals. Nucleic Acids Res 41:8220–36
    [Google Scholar]
  96. 96.
    Tan JY, Biasini A, Young RS, Marques AC. 2020. Splicing of enhancer-associated lincRNAs contributes to enhancer activity. Life Sci. Alliance 3:e202000663
    [Google Scholar]
  97. 97.
    Tilgner H, Knowles DG, Johnson R, Davis CA, Chakrabortty S et al. 2012. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res 22:1616–25
    [Google Scholar]
  98. 98.
    Tycko J, Wainberg M, Marinov GK, Ursu O, Hess GT et al. 2019. Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements. Nat. Commun. 10:4063
    [Google Scholar]
  99. 99.
    Ulitsky I, Bartel DP. 2013. lincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46
    [Google Scholar]
  100. 100.
    Vance KW, Sansom SN, Lee S, Chalei V, Kong L et al. 2014. The long non-coding RNA Paupar regulates the expression of both local and distal genes. EMBO J 33:296–311
    [Google Scholar]
  101. 101.
    Wang X-W, Liu C-X, Chen L-L, Zhang QC. 2021. RNA structure probing uncovers RNA structure-dependent biological functions. Nat. Chem. Biol. 17:755–66
    [Google Scholar]
  102. 102.
    Washietl S, Hofacker IL, Lukasser M, Hüttenhofer A, Stadler PF. 2005. Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat. Biotechnol. 23:1383–90
    [Google Scholar]
  103. 103.
    Washietl S, Kellis M, Garber M. 2014. Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals. Genome Res 24:616–28
    [Google Scholar]
  104. 104.
    Xia C, Fan J, Emanuel G, Hao J, Zhuang X. 2019. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. PNAS 116:19490–99
    [Google Scholar]
  105. 105.
    Zhao H, Shi J, Zhang Y, Xie A, Yu L et al. 2020. LncTarD: a manually-curated database of experimentally-supported functional lncRNA-target regulations in human diseases. Nucleic Acids Res 48:D118–26
    [Google Scholar]
  106. 106.
    Zhou B, Ji B, Liu K, Hu G, Wang F et al. 2021. EVLncRNAs 2.0: an updated database of manually curated functional long non-coding RNAs validated by low-throughput experiments. Nucleic Acids Res 49:D86–91
    [Google Scholar]
/content/journals/10.1146/annurev-genom-112921-123710
Loading
/content/journals/10.1146/annurev-genom-112921-123710
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error