1932

Abstract

A mosaic state arises when pathogenic variants are acquired in certain cell lineages during postzygotic development, and mosaic individuals may present with a generalized or localized phenotype. Here, we review the current state of knowledge regarding mosaicism for eight common tumor suppressor genes—, , , , , , , and —and their related genetic syndromes/entities. We compare and discuss approaches for comprehensive diagnostic genetic testing, the spectrum of variant allele frequency, and disease severity. We also review affected individuals who have no mutation identified after conventional genetic analysis, as well as genotype–phenotype correlations and transmission risk for each tumor suppressor gene in full heterozygous and mosaic patients. This review provides new insight into similarities as well as marked differences regarding the appreciation of mosaicism in these tumor suppressor syndromes.

Keyword(s): mosaicismNF1NF2PTENRB1TP53TSC1TSC2tumor suppressorVHL
Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-120121-105450
2022-08-31
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/genom/23/1/annurev-genom-120121-105450.html?itemId=/content/journals/10.1146/annurev-genom-120121-105450&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Amadou A, Achatz MIW, Hainaut P. 2018. Revisiting tumor patterns and penetrance in germline TP53 mutation carriers: temporal phases of Li–Fraumeni syndrome. Curr. Opin. Oncol. 30:23–29
    [Google Scholar]
  2. 2.
    Amico S, Smith P, Tobi S, Perry M, Wallace A, Evans DG 2020. Neurofibromatosis type 2 discordance in monozygous twins. Fam. Cancer 19:37–40
    [Google Scholar]
  3. 3.
    Amitrano S, Marozza A, Somma S, Imperatore V, Hadjistilianou T et al. 2015. Next generation sequencing in sporadic retinoblastoma patients reveals somatic mosaicism. Eur. J. Hum. Genet. 23:1523–30
    [Google Scholar]
  4. 4.
    Barbosa RH, Vargas FR, Aguiar FCC, Ferman S, Lucena E et al. 2008. Hereditary retinoblastoma transmitted by maternal germline mosaicism. Pediatr. Blood Cancer 51:598–602
    [Google Scholar]
  5. 5.
    Baser M, Kuramoto L, Woods R, Joe H, Friedman J et al. 2005. The location of constitutional neurofibromatosis 2 (NF2) splice site mutations is associated with the severity of NF2. J. Med. Genet. 42:540–46
    [Google Scholar]
  6. 6.
    Batalini F, Peacock EG, Stobie L, Robertson A, Garber J et al. 2019. Li-Fraumeni syndrome: not a straightforward diagnosis anymore—the interpretation of pathogenic variants of low allele frequency and the differences between germline PVs, mosaicism, and clonal hematopoiesis. Breast Cancer Res 21:107
    [Google Scholar]
  7. 7.
    Behjati S, Maschietto M, Williams RD, Side L, Hubank M et al. 2014. A pathogenic mosaic TP53 mutation in two germ layers detected by next generation sequencing. PLOS ONE 9:e96531
    [Google Scholar]
  8. 8.
    Berger AH, Knudson AG, Pandolfi PP. 2011. A continuum model for tumour suppression. Nature 476:163–69
    [Google Scholar]
  9. 9.
    Biesecker LG, Spinner NB. 2013. A genomic view of mosaicism and human disease. Nat. Rev. Genet. 14:307–20
    [Google Scholar]
  10. 10.
    Bijlsma EK, Wallace AJ, Evans DG. 1997. Misleading linkage results in an NF2 presymptomatic test owing to mosaicism. J. Med. Genet. 34:934–36
    [Google Scholar]
  11. 11.
    Binderup MLM, Galanakis M, Budtz-Jørgensen E, Kosteljanetz M, Luise Bisgaard M. 2017. Prevalence, birth incidence, and penetrance of von Hippel-Lindau disease (vHL) in Denmark. Eur. J. Hum. Genet. 25:301–7
    [Google Scholar]
  12. 12.
    Boronat S, Caruso P, Thiele EA. 2014. Absence of subependymal nodules in patients with tubers suggests possible neuroectodermal mosaicism in tuberous sclerosis complex. Dev. Med. Child Neurol. 56:1207–11
    [Google Scholar]
  13. 13.
    Bourn D, Carter SA, Evans DG, Goodship J, Coakham H, Strachan T. 1994. A mutation in the neurofibromatosis type 2 tumor-suppressor gene, giving rise to widely different clinical phenotypes in two unrelated individuals. Am. J. Hum. Genet. 55:69–73
    [Google Scholar]
  14. 14.
    Büki G, Zsigmond A, Czakó M, Szalai R, Antal G et al. 2021. Genotype-phenotype associations in patients with type-1, type-2, and atypical NF1 microdeletions. Front. Genet. 12:673025
    [Google Scholar]
  15. 15.
    Campbell IM, Shaw CA, Stankiewicz P, Lupski JR. 2015. Somatic mosaicism: implications for disease and transmission genetics. Trends Genet 31:382–92
    [Google Scholar]
  16. 16.
    Caux F, Plauchu H, Chibon F, Faivre L, Fain O et al. 2007. Segmental overgrowth, lipomatosis, arteriovenous malformation and epidermal nevus (SOLAMEN) syndrome is related to mosaic PTEN nullizygosity. Eur. J. Hum. Genet. 15:767–73
    [Google Scholar]
  17. 17.
    Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO et al. 2012. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–4
    [Google Scholar]
  18. 18.
    Ceyhan-Birsoy O, Selenica P, Chui MH, Jayakumaran G, Ptashkin R et al. 2021. Paired tumor-normal sequencing provides insights into TP53-related cancer spectrum in Li-Fraumeni patients. J. Natl. Cancer Inst. 113:1751–60
    [Google Scholar]
  19. 19.
    Chen Z, Moran K, Richards-Yutz J, Toorens E, Gerhart D et al. 2014. Enhanced sensitivity for detection of low-level germline mosaic RB1 mutations in sporadic retinoblastoma cases using deep semiconductor sequencing. Hum. Mutat. 35:384–91
    [Google Scholar]
  20. 20.
    Coffee B, Cox HC, Bernhisel R, Manley S, Bowles K et al. 2020. A substantial proportion of apparently heterozygous TP53 pathogenic variants detected with a next-generation sequencing hereditary pan-cancer panel are acquired somatically. Hum. Mutat. 41:203–11
    [Google Scholar]
  21. 21.
    Contini E, Paganini I, Sestini R, Candita L, Capone GL et al. 2015. A systematic assessment of accuracy in detecting somatic mosaic variants by deep amplicon sequencing: application to NF2 gene. PLOS ONE 10:e0129099
    [Google Scholar]
  22. 22.
    Coppin L, Grutzmacher C, Crépin M, Destailleur E, Giraud S et al. 2014. VHL mosaicism can be detected by clinical next-generation sequencing and is not restricted to patients with a mild phenotype. Eur. J. Hum. Genet. 22:1149–52
    [Google Scholar]
  23. 23.
    Coppin L, Plouvier P, Crépin M, Jourdain A-S, Ait Yahya E et al. 2019. Optimization of next-generation sequencing technologies for von Hippel Lindau (VHL) mosaic mutation detection and development of confirmation methods. J. Mol. Diagn. 21:462–70
    [Google Scholar]
  24. 24.
    De S. 2011. Somatic mosaicism in healthy human tissues. Trends Genet 27:217–23
    [Google Scholar]
  25. 25.
    Dehainault C, Golmard L, Millot GA, Charpin A, Laugé A et al. 2017. Mosaicism and prenatal diagnosis options: insights from retinoblastoma. Eur. J. Hum. Genet. 25:381–83
    [Google Scholar]
  26. 26.
    Delnatte C, Sanlaville D, Mougenot J-F, Vermeesch J-R, Houdayer C et al. 2006. Contiguous gene deletion within chromosome arm 10q is associated with juvenile polyposis of infancy, reflecting cooperation between the BMPR1A and PTEN tumor-suppressor genes. Am. J. Hum. Genet. 78:1066–74
    [Google Scholar]
  27. 27.
    D'Gama AM, Walsh CA 2018. Somatic mosaicism and neurodevelopmental disease. Nat. Neurosci. 21:1504–14
    [Google Scholar]
  28. 28.
    Dimaras H, Corson TW, Cobrinik D, White A, Zhao J et al. 2015. Retinoblastoma. Nat. Rev. Dis. Primers 1:15021
    [Google Scholar]
  29. 29.
    Dommering CJ, Mol BM, Moll AC, Burton M, Cloos J et al. 2014. RB1 mutation spectrum in a comprehensive nationwide cohort of retinoblastoma patients. J. Med. Genet. 51:366–74
    [Google Scholar]
  30. 30.
    Ejerskov C, Farholt S, Skovby F, Vestergaard EM, Haagerup A. 2016. Clinical presentations of 23 half-siblings from a mosaic neurofibromatosis type 1 sperm donor. Clin. Genet. 89:346–50
    [Google Scholar]
  31. [Google Scholar]
  32. 32.
    Evans DG, Hartley CL, Smith PT, King AT, Bowers NL et al. 2020. Incidence of mosaicism in 1055 de novo NF2 cases: much higher than previous estimates with high utility of next-generation sequencing. Genet. Med. 22:53–59
    [Google Scholar]
  33. 33.
    Evans DG, King AT, Bowers NL, Tobi S, Wallace AJ et al. 2019. Identifying the deficiencies of current diagnostic criteria for neurofibromatosis 2 using databases of 2777 individuals with molecular testing. Genet. Med. 21:1525–33
    [Google Scholar]
  34. 34.
    Evans DG, Ramsden RT, Shenton A, Gokhale C, Bowers NL et al. 2007. Mosaicism in neurofibromatosis type 2: an update of risk based on uni/bilaterality of vestibular schwannoma at presentation and sensitive mutation analysis including multiple ligation-dependent probe amplification. J. Med. Genet. 44:424–28
    [Google Scholar]
  35. 35.
    Evans DG, Wallace A. 2009. An update on age related mosaic and offspring risk in neurofibromatosis 2 (NF2). J. Med. Genet. 46:792
    [Google Scholar]
  36. 36.
    Farschtschi S, Mautner V-F, McLean ACL, Schulz A, Friedrich RE, Rosahl SK. 2020. The neurofibromatoses. Dtsch. Arztebl. Int. 117:354–60
    [Google Scholar]
  37. 37.
    Fokkema IFAC, Taschner PEM, Schaafsma GCP, Celli J, Laros JFJ, den Dunnen JT. 2011. LOVD v.2.0: the next generation in gene variant databases. Hum. Mutat. 32:557–63
    [Google Scholar]
  38. 38.
    Forde C, King AT, Rutherford SA, Hammerbeck-Ward C, Lloyd SK et al. 2021. Disease course of neurofibromatosis type 2: a 30-year follow-up study of 353 patients seen at a single institution. Neuro-Oncology 23:1113–24
    [Google Scholar]
  39. 39.
    Friedman J. 2019. Neurofibromatosis 1. GeneReviews MP Adam, HH Ardinger, RA Pagon, SE Wallace, LJH Bean, et al Seattle: Univ. Wash https://www.ncbi.nlm.nih.gov/books/NBK1109
    [Google Scholar]
  40. 40.
    Fyrmpas G, Barkoulas E. 2021. Isolated malignant peripheral nerve sheath tumor of the scalp. Ear Nose Throat. J. In press. https://doi.org/10.1177/0145561321991317
    [Crossref] [Google Scholar]
  41. 41.
    Gammon A, Jasperson K, Pilarski R, Prior T, Kuwada S. 2013. PTEN mosaicism with features of Cowden syndrome. Clin. Genet. 84:593–95
    [Google Scholar]
  42. 42.
    Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B et al. 2013. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6:pl1
    [Google Scholar]
  43. 43.
    Garcia-Linares C, Fernández-Rodríguez J, Terribas E, Mercadé J, Pros E et al. 2011. Dissecting loss of heterozygosity (LOH) in neurofibromatosis type 1-associated neurofibromas: importance of copy neutral LOH. Hum. Mutat. 32:78–90
    [Google Scholar]
  44. 44.
    García-Romero MT, Parkin P, Lara-Corrales I. 2016. Mosaic neurofibromatosis type 1: a systematic review. Pediatr. Dermatol. 33:9–17
    [Google Scholar]
  45. 45.
    Garofola C, Jamal Z, Gross GP 2021. Cowden disease. StatPearls Treasure Island, FL: StatPearls https://www.ncbi.nlm.nih.gov/books/NBK525984
    [Google Scholar]
  46. 46.
    Gelli E, Pinto AM, Somma S, Imperatore V, Cannone MG et al. 2019. Evidence of predisposing epimutation in retinoblastoma. Hum. Mutat. 40:201–6
    [Google Scholar]
  47. 47.
    Giannikou K, Lasseter KD, Grevelink JM, Tyburczy ME, Dies KA et al. 2019. Low-level mosaicism in tuberous sclerosis complex: prevalence, clinical features, and risk of disease transmission. Genet. Med. 21:2639–43
    [Google Scholar]
  48. 48.
    Golas MM, Auber B, Ripperger T, Pabst B, Schmidt G et al. 2019. Looking for the hidden mutation: Bannayan-Riley-Ruvalcaba syndrome caused by constitutional and mosaic 10q23 microdeletions involving PTEN and BMPR1A. Am. J. Med. Genet. A 179:1383–89
    [Google Scholar]
  49. 49.
    Goldenberg A, Marguet F, Gilard V, Cardine A-M, Hassani A et al. 2019. Mosaic PTEN alteration in the neural crest during embryogenesis results in multiple nervous system hamartomas. Acta Neuropathol. Commun. 7:191
    [Google Scholar]
  50. 50.
    Grotta S, D'Elia G, Scavelli R, Genovese S, Surace C et al. 2015. Advantages of a next generation sequencing targeted approach for the molecular diagnosis of retinoblastoma. BMC Cancer 15:841
    [Google Scholar]
  51. 51.
    Guha T, Malkin D. 2017. Inherited TP53 mutations and the Li–Fraumeni syndrome. Cold Spring Harb. . Perspect. Med. 7:a026187
    [Google Scholar]
  52. 52.
    Gutmann DH, Ferner RE, Listernick RH, Korf BR, Wolters PL, Johnson KJ. 2017. Neurofibromatosis type 1. Nat. Rev. Dis. Primers 3:17004
    [Google Scholar]
  53. 53.
    Halliday D, Emmanouil B, Pretorius P, MacKeith S, Painter S et al. 2017. Genetic Severity Score predicts clinical phenotype in NF2. J. Med. Genet. 54:657–64
    [Google Scholar]
  54. 54.
    Halliday D, Emmanouil B, Vassallo G, Lascelles K, Nicholson J et al. 2019. Trends in phenotype in the English paediatric neurofibromatosis type 2 cohort stratified by genetic severity. Clin. Genet. 96:151–62
    [Google Scholar]
  55. 55.
    Happle R. 2017. The molecular revolution in cutaneous biology: era of mosaicism. J. Investig. Dermatol. 137:e73–77
    [Google Scholar]
  56. 56.
    Hexter A, Jones A, Joe H, Heap L, Smith MJ et al. 2015. Clinical and molecular predictors of mortality in neurofibromatosis 2: a UK national analysis of 1192 patients. J. Med. Genet. 52:699–705
    [Google Scholar]
  57. 57.
    Hino O, Kobayashi T. 2017. Mourning Dr. Alfred G. Knudson: the two-hit hypothesis, tumor suppressor genes, and the tuberous sclerosis complex. Cancer Sci 108:5–11
    [Google Scholar]
  58. 58.
    Hom GL, Moodley S, Rothner AD, Moodley M. 2020. The clinical spectrum of mosaic neurofibromatosis in children and adolescents. J. Child Neurol. 35:242–46
    [Google Scholar]
  59. 59.
    Imperatore V, Pinto AM, Gelli E, Trevisson E, Morbidoni V et al. 2018. Parent-of-origin effect of hypomorphic pathogenic variants and somatic mosaicism impact on phenotypic expression of retinoblastoma. Eur. J. Hum. Genet. 26:1026–37
    [Google Scholar]
  60. 60.
    Jacoby LB, Jones D, Davis K, Kronn D, Short MP et al. 1997. Molecular analysis of the NF2 tumor-suppressor gene in schwannomatosis. Am. J. Hum. Genet. 61:1293–302
    [Google Scholar]
  61. 61.
    Kapadia AS, Panda M. 2012. A young male with coexisting astrocytoma and renal cell carcinoma. Tenn. Med. 105:39–40
    [Google Scholar]
  62. 62.
    Kehrer-Sawatzki H, Kluwe L, Sandig C, Kohn M, Wimmer K et al. 2004. High frequency of mosaicism among patients with neurofibromatosis type 1 (NF1) with microdeletions caused by somatic recombination of the JJAZ1 gene. Am. J. Hum. Genet. 75:410–23
    [Google Scholar]
  63. 63.
    Kehrer-Sawatzki H, Mautner V-F, Cooper DN. 2017. Emerging genotype–phenotype relationships in patients with large NF1 deletions. Hum. Genet. 136:349–76
    [Google Scholar]
  64. 64.
    Ketteler P, Hülsenbeck I, Frank M, Schmidt B, Jöckel K-H, Lohmann DR. 2020. The impact of RB1 genotype on incidence of second tumours in heritable retinoblastoma. Eur. J. Cancer 133:47–55
    [Google Scholar]
  65. 65.
    Klonowska K, Thiele EA, Grevelink JM, Thorner AR, Kwiatkowski DJ. 2021. Sporadic facial angiofibroma and sporadic angiomyolipoma mimicking tuberous sclerosis complex. J. Med. Genet. In press. https://doi.org/10.1136/jmedgenet-2021-108160
    [Crossref] [Google Scholar]
  66. 66.
    Kluwe L. 2016. Digital PCR for discriminating mosaic deletions and for determining proportion of tumor cells in specimen. Eur. J. Hum. Genet. 24:1644–48
    [Google Scholar]
  67. 67.
    Kluwe L, Mautner V, Heinrich B, Dezube R, Jacoby LB et al. 2003. Molecular study of frequency of mosaicism in neurofibromatosis 2 patients with bilateral vestibular schwannomas. J. Med. Genet. 40:109–14
    [Google Scholar]
  68. 68.
    Koczkowska M, Callens T, Chen Y, Gomes A, Hicks AD et al. 2020. Clinical spectrum of individuals with pathogenic NF1 missense variants affecting p.Met1149, p.Arg1276, and p.Lys1423: genotype–phenotype study in neurofibromatosis type 1. Hum. Mutat. 41:299–315
    [Google Scholar]
  69. 69.
    Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M et al. 2019. VarSome: the human genomic variant search engine. Bioinformatics 35:1978–80
    [Google Scholar]
  70. 70.
    Kresak JL, Walsh M. 2016. Neurofibromatosis: a review of NF1, NF2, and schwannomatosis. J. Pediatr. Genet. 5:98–104
    [Google Scholar]
  71. 71.
    Kuhlen M, Taeubner J, Brozou T, Wieczorek D, Siebert R, Borkhardt A. 2019. Family-based germline sequencing in children with cancer. Oncogene 38:1367–80
    [Google Scholar]
  72. 72.
    Kwiatkowska J, Wigowska-Sowinska J, Napierala D, Slomski R, Kwiatkowski DJ. 1999. Mosaicism in tuberous sclerosis as a potential cause of the failure of molecular diagnosis. N. Engl. J. Med. 340:703–7
    [Google Scholar]
  73. 73.
    Landrum MJ, Lee JM, Benson M, Brown GR, Chao C et al. 2018. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 46:D1062–67
    [Google Scholar]
  74. 74.
    Lara-Corrales I, Moazzami M, García-Romero MT, Pope E, Parkin P et al. 2017. Mosaic neurofibromatosis type 1 in children: a single-institution experience. J. Cutan. Med. Surg. 21:379–82
    [Google Scholar]
  75. 75.
    Legius E, Messiaen L, Wolkenstein P, Pancza P, Avery RA et al. 2021. Revised diagnostic criteria for neurofibromatosis type 1 and Legius syndrome: an international consensus recommendation. Genet. Med. 23:1506–13
    [Google Scholar]
  76. 76.
    Li WL, Buckley J, Sanchez-Lara PA, Maglinte DT, Viduetsky L et al. 2016. A rapid and sensitive next-generation sequencing method to detect RB1 mutations improves care for retinoblastoma patients and their families. J. Mol. Diagn. 18:480–93
    [Google Scholar]
  77. 77.
    Lohmann DR, Gallie BL 2018. Retinoblastoma. GeneReviews MP Adam, HH Ardinger, RA Pagon, SE Wallace, LJH Bean, et al Seattle: Univ. Wash https://www.ncbi.nlm.nih.gov/books/NBK1452
    [Google Scholar]
  78. 78.
    Louvrier C, Pasmant E, Briand-Suleau A, Cohen J, Nitschké P et al. 2018. Targeted next-generation sequencing for differential diagnosis of neurofibromatosis type 2, schwannomatosis, and meningiomatosis. Neuro-Oncology 20:917–29
    [Google Scholar]
  79. 79.
    Magallón-Lorenz M, Fernández-Rodríguez J, Terribas E, Creus-Batchiller E, Romagosa C et al. 2021. Chromosomal translocations inactivating CDKN2A support a single path for malignant peripheral nerve sheath tumor initiation. Hum. Genet. 140:1241–52
    [Google Scholar]
  80. 80.
    Maranchie JK, Afonso A, Albert PS, Kalyandrug S, Phillips JL et al. 2004. Solid renal tumor severity in von Hippel Lindau disease is related to germline deletion length and location. Hum. Mutat. 23:40–46
    [Google Scholar]
  81. 81.
    Martin KR, Zhou W, Bowman MJ, Shih J, Au KS et al. 2017. The genomic landscape of tuberous sclerosis complex. Nat. Commun. 8:15816
    [Google Scholar]
  82. 82.
    Martínez-Glez V, Tenorio J, Nevado J, Gordo G, Rodríguez-Laguna L et al. 2020. A six-attribute classification of genetic mosaicism. Genet. Med. 22:1743–57
    [Google Scholar]
  83. 83.
    Messiaen L, Vogt J, Bengesser K, Fu C, Mikhail F et al. 2011. Mosaic type-1 NF1 microdeletions as a cause of both generalized and segmental neurofibromatosis type-1 (NF1). Hum. Mutat. 32:213–19
    [Google Scholar]
  84. 84.
    Mester JL, Jackson SA, Postula K, Stettner A, Solomon S et al. 2020. Apparently heterozygous TP53 pathogenic variants may be blood limited in patients undergoing hereditary cancer panel testing. J. Mol. Diagn. 22:396–404
    [Google Scholar]
  85. 85.
    Moog U, Felbor U, Has C, Zirn B. 2020. Disorders caused by genetic mosaicism. Dtsch. Arztebl. Int. 117:119–25
    [Google Scholar]
  86. 86.
    Morris SM, Gutmann DH. 2018. A genotype-phenotype correlation for quantitative autistic trait burden in neurofibromatosis 1. Neurology 90:377–79
    [Google Scholar]
  87. 87.
    Murgia A, Martella M, Vinanzi C, Polli R, Perilongo G, Opocher G. 2000. Somatic mosaicism in von Hippel-Lindau disease. Hum. Mutat. 15:114
    [Google Scholar]
  88. 88.
    Nathan N, Keppler-Noreuil KM, Biesecker LG, Moss J, Darling TN. 2017. Mosaic disorders of the PI3K/PTEN/AKT/TSC/mTORC1 signaling pathway. Dermatol. Clin. 35:51–60
    [Google Scholar]
  89. 89.
    Northrup H, Krueger DA (Int. Tuberous Scler. Complex Consens. Group). 2013. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr. Neurol. 49:243–54
    [Google Scholar]
  90. 90.
    Ogórek B, Hamieh L, Hulshof HM, Lasseter K, Klonowska K et al. 2020. TSC2 pathogenic variants are predictive of severe clinical manifestations in TSC infants: results of the EPISTOP study. Genet. Med. 22:1489–97
    [Google Scholar]
  91. 91.
    Pasmant E, Parfait B, Luscan A, Goussard P, Briand-Suleau A et al. 2015. Neurofibromatosis type 1 molecular diagnosis: What can NGS do for you when you have a large gene with loss of function mutations?. Eur. J. Hum. Genet. 23:596–601
    [Google Scholar]
  92. 92.
    Perez-Becerril C, Evans DG, Smith MJ. 2021. Pathogenic noncoding variants in the neurofibromatosis and schwannomatosis predisposition genes. Hum. Mutat. 42:1187–207
    [Google Scholar]
  93. 93.
    Perlman S. 2018. Von Hippel-Lindau disease and Sturge-Weber syndrome. Handb. Clin. Neurol. 148:823–26
    [Google Scholar]
  94. 94.
    Pilarski R. 2019. PTEN hamartoma tumor syndrome: a clinical overview. Cancers 11:844
    [Google Scholar]
  95. 95.
    Popova NV, Jücker M. 2021. The role of mTOR signaling as a therapeutic target in cancer. Int. J. Mol. Sci. 22:1743
    [Google Scholar]
  96. 96.
    Pritchard CC, Smith C, Marushchak T, Koehler K, Holmes H et al. 2013. A mosaic PTEN mutation causing Cowden syndrome identified by deep sequencing. Genet. Med. 15:1004–7
    [Google Scholar]
  97. 97.
    Prochazkova K, Pavlikova K, Minarik M, Sumerauer D, Kodet R, Sedlacek Z. 2009. Somatic TP53 mutation mosaicism in a patient with Li-Fraumeni syndrome. Am. J. Med. Genet. A 149A:206–11
    [Google Scholar]
  98. 98.
    Qin W, Kozlowski P, Taillon BE, Bouffard P, Holmes AJ et al. 2010. Ultra deep sequencing detects a low rate of mosaic mutations in tuberous sclerosis complex. Hum. Genet. 127:573–82
    [Google Scholar]
  99. 99.
    Rasmussen SA, Yang Q, Friedman JM 2001. Mortality in neurofibromatosis 1: an analysis using U.S. death certificates. Am. J. Hum. Genet. 68:1110–18
    [Google Scholar]
  100. 100.
    Raval V, DeBenedictis M, Bowen R, Soto H, Davanzo J, Singh A. 2021. Retinoblastoma in twins: risk assessment of genotypic variants. Indian J. Ophthalmol. 69:1230–33
    [Google Scholar]
  101. 101.
    Reddy MA, Butt M, Hinds A-M, Duncan C, Price EA et al. 2021. Prognostic information for known genetic carriers of RB1 pathogenic variants (germline and mosaic). Ophthalmol. Retina 5:381–87
    [Google Scholar]
  102. 102.
    Renaux-Petel M, Charbonnier F, Théry J-C, Fermey P, Lienard G et al. 2018. Contribution of de novo and mosaic TP53 mutations to Li-Fraumeni syndrome. J. Med. Genet. 55:173–80
    [Google Scholar]
  103. 103.
    Rodríguez-Martín, Robledo C, Gómez-Mariano G, Monzón S, Sastre A et al. 2020. Frequency of low-level and high-level mosaicism in sporadic retinoblastoma: genotype-phenotype relationships. J. Hum. Genet. 65:165–74
    [Google Scholar]
  104. 104.
    Rojnueangnit K, Xie J, Gomes A, Sharp A, Callens T et al. 2015. High incidence of Noonan syndrome features including short stature and pulmonic stenosis in patients carrying NF1 missense mutations affecting p.Arg1809: genotype–phenotype correlation. Hum. Mutat. 36:1052–63
    [Google Scholar]
  105. 105.
    Rose VM, Au KS, Pollom G, Roach ES, Prashner HR, Northrup H 1999. Germ-line mosaicism in tuberous sclerosis: how common?. Am. J. Hum. Genet. 64:986–92
    [Google Scholar]
  106. 106.
    Ruggieri M, Praticò AD, Evans DG. 2015. Diagnosis, management, and new therapeutic options in childhood neurofibromatosis type 2 and related forms. Semin. Pediatr. Neurol. 22:240–58
    [Google Scholar]
  107. 107.
    Ruggieri M, Praticò AD, Serra A, Maiolino L, Cocuzza S et al. 2016. Childhood neurofibromatosis type 2 (NF2) and related disorders: from bench to bedside and biologically targeted therapies. Acta Otorhinolaryngol. Ital. 36:345–67
    [Google Scholar]
  108. 108.
    Rushlow D, Piovesan B, Zhang K, Prigoda-Lee NL, Marchong MN et al. 2009. Detection of mosaic RB1 mutations in families with retinoblastoma. Hum. Mutat. 30:842–51
    [Google Scholar]
  109. 109.
    Sadler KV, Bowers NL, Hartley C, Smith PT, Tobi S et al. 2020. Sporadic vestibular schwannoma: a molecular testing summary. J. Med. Genet. 58:227–33
    [Google Scholar]
  110. 110.
    Salmena L, Carracedo A, Pandolfi PP. 2008. Tenets of PTEN tumor suppression. Cell 133:403–14
    [Google Scholar]
  111. 111.
    Salo-Mullen EE, Shia J, Brownell I, Allen P, Girotra M et al. 2014. Mosaic partial deletion of the PTEN gene in a patient with Cowden syndrome. Fam. Cancer 13:459–67
    [Google Scholar]
  112. 112.
    Salussolia CL, Klonowska K, Kwiatkowski DJ, Sahin M. 2019. Genetic etiologies, diagnosis, and treatment of tuberous sclerosis complex. Annu. Rev. Genom. Hum. Genet. 20:217–40
    [Google Scholar]
  113. 113.
    Salviat F, Gauthier-Villars M, Carton M, Cassoux N, Lumbroso-Le Rouic L et al. 2020. Association between genotype and phenotype in consecutive unrelated individuals with retinoblastoma. JAMA Ophthalmol 138:843–50
    [Google Scholar]
  114. 114.
    Santarpia L, Sarlis NJ, Santarpia M, Sherman SI, Trimarchi F, Benvenga S. 2007. Mosaicism in von Hippel-Lindau disease: an event important to recognize. J. Cell. Mol. Med. 11:1408–15
    [Google Scholar]
  115. 115.
    Schneider K, Zelley K, Nichols KE, Garber J 2019. Li-Fraumeni syndrome. GeneReviews MP Adam, HH Ardinger, RA Pagon, SE Wallace, LJH Bean et al. Seattle: Univ. Wash https://www.ncbi.nlm.nih.gov/books/NBK1311
    [Google Scholar]
  116. 116.
    Sgambati MT, Stolle C, Choyke PL, Walther MM, Zbar B et al. 2000. Mosaicism in von Hippel-Lindau disease: lessons from kindreds with germline mutations identified in offspring with mosaic parents. Am. J. Hum. Genet. 66:84–91
    [Google Scholar]
  117. 117.
    Sippel KC, Fraioli RE, Smith GD, Schalkoff ME, Sutherland J et al. 1998. Frequency of somatic and germ-line mosaicism in retinoblastoma: implications for genetic counseling. Am. J. Hum. Genet. 62:610–19
    [Google Scholar]
  118. 118.
    Sobjanek M, Dobosz-Kawałko M, Michajłowski I, Pęksa R, Nowicki R. 2014. Segmental neurofibromatosis. Postepy Dermatol. Alergol. 31:410–12
    [Google Scholar]
  119. 119.
    Spyra M, Otto B, Schön G, Kehrer-Sawatzki H, Mautner V-F. 2015. Determination of the mutant allele frequency in patients with neurofibromatosis type 2 and somatic mosaicism by means of deep sequencing. Genes Chromosomes Cancer 54:482–88
    [Google Scholar]
  120. 120.
    Staley BA, Vail EA, Thiele EA. 2011. Tuberous sclerosis complex: diagnostic challenges, presenting symptoms, and commonly missed signs. Pediatrics 127:e117–25
    [Google Scholar]
  121. 121.
    Steffann J, Michot C, Borghese R, Baptista-Fernandes M, Monnot S et al. 2014. Parental mosaicism is a pitfall in preimplantation genetic diagnosis of dominant disorders. Eur. J. Hum. Genet. 22:711–12
    [Google Scholar]
  122. 122.
    Steinke-Lange V, de Putter R, Holinski-Feder E, Claes KB. 2021. Somatic mosaics in hereditary tumor predisposition syndromes. Eur. J. Med. Genet. 64:104360
    [Google Scholar]
  123. 123.
    Summerer A, Schäfer E, Mautner V-F, Messiaen L, Cooper DN, Kehrer-Sawatzki H. 2019. Ultra-deep amplicon sequencing indicates absence of low-grade mosaicism with normal cells in patients with type-1 NF1 deletions. Hum. Genet. 138:73–81
    [Google Scholar]
  124. 124.
    Szymanski JJ, Sundby RT, Jones PA, Srihari D, Earland N et al. 2021. Cell-free DNA ultra-low-pass whole genome sequencing to distinguish malignant peripheral nerve sheath tumor (MPNST) from its benign precursor lesion: a cross-sectional study. PLOS Med 18:e1003734
    [Google Scholar]
  125. 125.
    Tadros S, Kondrashov A, Namagiri S, Chowdhury A, Banasavadi-Siddegowda YK, Ray-Chaudhury A. 2021. Pathological features of tumors of the nervous system in hereditary cancer predisposition syndromes: a review. Neurosurgery 89:343–63
    [Google Scholar]
  126. 126.
    Tan M-H, Mester J, Peterson C, Yang Y, Chen J-L et al. 2011. A clinical scoring system for selection of patients for PTEN mutation testing is proposed on the basis of a prospective study of 3042 probands. Am. J. Hum. Genet. 88:42–56
    [Google Scholar]
  127. 127.
    Ten Broek RW, Eijkelenboom A, van der Vleuten CJM, Kamping EJ, Kets M et al. 2019. Comprehensive molecular and clinicopathological analysis of vascular malformations: a study of 319 cases. Genes Chromosomes Cancer 58:541–50
    [Google Scholar]
  128. 128.
    Teranishi Y, Miyawaki S, Hongo H, Dofuku S, Okano A et al. 2020. Targeted deep sequencing of DNA from multiple tissue types improves the diagnostic rate and reveals a highly diverse phenotype of mosaic neurofibromatosis type 2. J. Med. Genet. 58:701–11
    [Google Scholar]
  129. 129.
    Tinschert S, Naumann I, Stegmann E, Buske A, Kaufmann D et al. 2000. Segmental neurofibromatosis is caused by somatic mutation of the neurofibromatosis type 1 (NF1) gene. Eur. J. Hum. Genet. 8:455–59
    [Google Scholar]
  130. 130.
    Tomar S, Sethi R, Sundar G, Quah TC, Quah BL, Lai PS. 2017. Mutation spectrum of RB1 mutations in retinoblastoma cases from Singapore with implications for genetic management and counselling. PLOS ONE 12:e0178776
    [Google Scholar]
  131. 131.
    Treichel AM, Hamieh L, Nathan NR, Tyburczy ME, Wang J-A et al. 2019. Phenotypic distinctions between mosaic forms of tuberous sclerosis complex. Genet. Med. 21:2594–604
    [Google Scholar]
  132. 132.
    Treichel AM, Kwiatkowski DJ, Moss J, Darling TN. 2020. A diagnostic algorithm for enhanced detection of mosaic tuberous sclerosis complex in adults. Br. J. Dermatol. 182:235–37
    [Google Scholar]
  133. 133.
    Tyburczy ME, Dies KA, Glass J, Camposano S, Chekaluk Y et al. 2015. Mosaic and intronic mutations in TSC1/TSC2 explain the majority of TSC patients with no mutation identified by conventional testing. PLOS Genet. 11:e1005637
    [Google Scholar]
  134. 134.
    Uchiyama H, Masunaga Y, Ishikawa T, Fukuoka T, Fukami M et al. 2020. TSC1 intragenic deletion transmitted from a mosaic father to two siblings with cardiac rhabdomyomas: identification of two aberrant transcripts. Eur. J. Med. Genet. 63:104060
    [Google Scholar]
  135. 135.
    van Leeuwaarde RS, Ahmad S, Links TP, Giles RH 2018. Von Hippel-Lindau syndrome. Gene-Reviews MP Adam, HH Ardinger, RA Pagon, SE Wallace, LJH Bean, et al Seattle: Univ. Wash https://www.ncbi.nlm.nih.gov/books/NBK1463
    [Google Scholar]
  136. 136.
    Vázquez-Osorio I, Duat-Rodríguez A, García-Martínez FJ, Torrelo A, Noguera-Morel L, Hernández-Martín A. 2017. Cutaneous and systemic findings in mosaic neurofibromatosis type 1. Pediatr. Dermatol. 34:271–76
    [Google Scholar]
  137. 137.
    Verhoef S, Bakker L, Tempelaars AM, Hesseling-Janssen AL, Mazurczak T et al. 1999. High rate of mosaicism in tuberous sclerosis complex. Am. J. Hum. Genet. 64:1632–37
    [Google Scholar]
  138. 138.
    Vogt J, Kohlhase J, Morlot S, Kluwe L, Mautner V-F et al. 2011. Monozygotic twins discordant for neurofibromatosis type 1 due to a postzygotic NF1 gene mutation. Hum. Mutat. 32:E2134–47
    [Google Scholar]
  139. 139.
    Wang L-H, Wu C-F, Rajasekaran N, Shin YK. 2018. Loss of tumor suppressor gene function in human cancer: an overview. Cell. Physiol. Biochem. 51:2647–93
    [Google Scholar]
  140. 140.
    Wu CL, Thakker N, Neary W, Black G, Lye R et al. 1998. Differential diagnosis of type 2 neurofibromatosis: molecular discrimination of NF2 and sporadic vestibular schwannomas. J. Med. Genet. 35:973–77
    [Google Scholar]
  141. 141.
    Wu P, Zhang N, Wang X, Li T, Ning X et al. 2013. Mosaicism in von Hippel-Lindau disease with severe renal manifestations. Clin. Genet. 84:581–84
    [Google Scholar]
  142. 142.
    Yamanaka R, Hayano A, Takashima Y. 2019. Trilateral retinoblastoma: a systematic review of 211 cases. Neurosurg. Rev. 42:39–48
    [Google Scholar]
  143. 143.
    Yates AD, Achuthan P, Akanni W, Allen J, Allen J et al. 2020. Ensembl 2020. Nucleic Acids Res 48:D682–88
    [Google Scholar]
  144. 144.
    Yehia L, Eng C 2021. PTEN hamartoma tumor syndrome. GeneReviews MP Adam, HH Ardinger, RA Pagon, SE Wallace, LJH Bean, et al Seattle: Univ. Wash https://www.ncbi.nlm.nih.gov/books/NBK1488
    [Google Scholar]
  145. 145.
    Yehia L, Keel E, Eng C. 2020. The clinical spectrum of PTEN mutations. Annu. Rev. Med. 71:103–16
    [Google Scholar]
  146. 146.
    Yehia L, Ngeow J, Eng C. 2019. PTEN-opathies: from biological insights to evidence-based precision medicine. J. Clin. Investig. 129:452–64
    [Google Scholar]
  147. 147.
    Zarei M, Giannikou K, Du H, Liu H-J, Duarte M et al. 2021. MITF is a driver oncogene and potential therapeutic target in kidney angiomyolipoma tumors through transcriptional regulation of CYR61. Oncogene 40:112–26
    [Google Scholar]
  148. 148.
    Zhang Z-Y-O, Wu Y-Y, Cai X-Y, Fang W-L, Xiao F-L. 2021. Molecular diagnosis of neurofibromatosis by multigene panel testing. Front. Genet. 12:603195
    [Google Scholar]
  149. 149.
    Zhou X-P, Marsh DJ, Hampel H, Mulliken JB, Gimm O, Eng C. 2000. Germline and germline mosaic PTEN mutations associated with a Proteus-like syndrome of hemihypertrophy, lower limb asymmetry, arteriovenous malformations and lipomatosis. Hum. Mol. Genet. 9:765–68
    [Google Scholar]
  150. 150.
    Zlotogora J. 1993. Mutations in von Recklinghausen neurofibromatosis: an hypothesis. Am. J. Med. Genet. 46:182–84
    [Google Scholar]
/content/journals/10.1146/annurev-genom-120121-105450
Loading
/content/journals/10.1146/annurev-genom-120121-105450
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error