1932

Abstract

Genome-wide association studies (GWASs) have successfully identified thousands of genetic variants that are reliably associated with human traits. Although GWASs are restricted to certain variant frequencies, they have improved our understanding of the genetic architecture of complex traits and diseases. The UK Biobank (UKBB) has brought substantial analytical opportunity and performance to association studies. The dramatic expansion of many GWAS sample sizes afforded by the inclusion of UKBB data has improved the power of estimation of effect sizes but, critically, has done so in a context where phenotypic depth and precision enable outcome dissection and the application of epidemiological approaches. However, at the same time, the availability of such a large, well-curated, and deeply measured population-based collection has the capacity to increase our exposure to the many complications and inferential complexities associated with GWASs and other analyses. In this review, we discuss the impact that UKBB has had in the GWAS era, some of the opportunities that it brings, and exemplar challenges that illustrate the reality of using data from this world-leading resource.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-121321-093606
2022-08-31
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/genom/23/1/annurev-genom-121321-093606.html?itemId=/content/journals/10.1146/annurev-genom-121321-093606&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Allison DB, Thiel B, St. Jean P, Elston RC, Infante MC, Schork NJ 1998. Multiple phenotype modeling in gene-mapping studies of quantitative traits: power advantages. Am. J. Hum. Genet. 63:1190–201
    [Google Scholar]
  2. 2.
    Anisul M, Shilts J, Schwartzentruber J, Hayhurst J, Buniello A et al. 2021. A proteome-wide genetic investigation identifies several SARS-CoV-2-exploited host targets of clinical relevance. eLife 10:e69719
    [Google Scholar]
  3. 3.
    Aragam KG, Chaffin M, Levinson RT, McDermott G, Choi SH et al. 2019. Phenotypic refinement of heart failure in a national biobank facilitates genetic discovery. Circulation 11:489–501
    [Google Scholar]
  4. 4.
    Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D et al. 2016. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 167:1415–29.e19
    [Google Scholar]
  5. 5.
    Au Yeung SL, Zhao JV, Schooling CM 2021. Evaluation of glycemic traits in susceptibility to COVID-19 risk: a Mendelian randomization study. BMC Med 19:72
    [Google Scholar]
  6. 6.
    Aung N, Khanji MY, Munroe PB, Petersen SE. 2020. Causal inference for genetic obesity, cardiometabolic profile and COVID-19 susceptibility: a Mendelian randomization study. Front. Genet. 11:586308
    [Google Scholar]
  7. 7.
    Baranova A, Cao H, Zhang F. 2021. Unraveling risk genes of COVID-19 by multi-omics integrative analyses. Front. Med. 8:738687
    [Google Scholar]
  8. 8.
    Baselmans BML, Jansen R, Ip HF, van Dongen J, Abdellaoui A et al. 2019. Multivariate genome-wide analyses of the well-being spectrum. Nat. Genet. 51:445–51
    [Google Scholar]
  9. 9.
    Blasco H, Nadal-Desbarats L, Pradat PF, Gordon PH, Madji Hounoum B et al. 2016. Biomarkers in amyotrophic lateral sclerosis: combining metabolomic and clinical parameters to define disease progression. Eur. J. Neurol. 23:346–53
    [Google Scholar]
  10. 10.
    Bowden J, Davey Smith G, Burgess S 2015. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44:512–25
    [Google Scholar]
  11. 11.
    Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR et al. 2015. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47:1236–41
    [Google Scholar]
  12. 12.
    Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P et al. 2007. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–78
    [Google Scholar]
  13. 13.
    Butler-Laporte G, Nakanishi T, Mooser V, Morrison DR, Abdullah T et al. 2021. Vitamin D and COVID-19 susceptibility and severity in the COVID-19 Host Genetics Initiative: a Mendelian randomization study. PLOS Med 18:e1003605
    [Google Scholar]
  14. 14.
    Butler-Laporte G, Nakanishi T, Mooser V, Renieri A, Amitrano S et al. 2021. The effect of angiotensin-converting enzyme levels on COVID-19 susceptibility and severity: a Mendelian randomization study. Int. J. Epidemiol. 50:75–86
    [Google Scholar]
  15. 15.
    Bycroft C, Freeman C, Petkova D, Band G, Elliott LT et al. 2018. The UK Biobank resource with deep phenotyping and genomic data. Nature 562:203–9
    [Google Scholar]
  16. 16.
    Cai G, Du M, Bossé Y, Albrecht H, Qin F et al. 2021. SARS-CoV-2 impairs dendritic cells and regulates DC-SIGN gene expression in tissues. Int. J. Mol. Sci. 22:9228
    [Google Scholar]
  17. 17.
    Cecelja M, Lewis CM, Shah AM, Chowienczyk P. 2021. Cardiovascular health and risk of hospitalization with COVID-19: a Mendelian randomization study. JRSM Cardiovasc. Dis. 10:20480040211059374
    [Google Scholar]
  18. 18.
    Chavali S, Barrenas F, Kanduri K, Benson M. 2010. Network properties of human disease genes with pleiotropic effects. BMC Syst. Biol. 4:78
    [Google Scholar]
  19. 19.
    Conroy M, Sellors J, Effingham M, Littlejohns TJ, Boultwood C et al. 2019. The advantages of UK Biobank's open-access strategy for health research. J. Intern. Med. 286:389–97
    [Google Scholar]
  20. 20.
    Cook JP, Mahajan A, Morris AP. 2020. Fine-scale population structure in the UK Biobank: implications for genome-wide association studies. Hum. Mol. Genet. 29:2803–11
    [Google Scholar]
  21. 21.
    COVID-19 Host Genet. Init. 2020. The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. Eur. J. Hum. Genet. 28:715–18
    [Google Scholar]
  22. 22.
    COVID-19 Host Genet. Init. 2021. Mapping the human genetic architecture of COVID-19. Nature 600:472–77
    [Google Scholar]
  23. 23.
    Cui Z, Tian Y. 2021. Using genetic variants to evaluate the causal effect of serum vitamin D concentration on COVID-19 susceptibility, severity and hospitalization traits: a Mendelian randomization study. J. Transl. Med. 19:300
    [Google Scholar]
  24. 24.
    Davey Smith G, Ebrahim S 2003.. ‘ Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease?. Int. J. Epidemiol. 32:1–22
    [Google Scholar]
  25. 25.
    Draisma HHM, Pool R, Kobl M, Jansen R, Petersen AK et al. 2015. Genome-wide association study identifies novel genetic variants contributing to variation in blood metabolite levels. Nat. Commun. 6:7208
    [Google Scholar]
  26. 26.
    Du M, Garcia JGN, Christie JD, Xin J, Cai G et al. 2021. Integrative omics provide biological and clinical insights into acute respiratory distress syndrome. Intensive Care Med 47:761–71
    [Google Scholar]
  27. 27.
    Elliott LT, Sharp K, Alfaro-Almagro F, Shi S, Miller KL et al. 2018. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 562:210–16
    [Google Scholar]
  28. 28.
    Elsworth B, Lyon M, Alexander T, Liu Y, Matthews P et al. 2020. The MRC IEU OpenGWAS data infrastructure. bioRxiv 2020.08.10.244293. https://doi.org/10.1101/2020.08.10.244293
    [Crossref]
  29. 29.
    Fadista J, Kraven LM, Karjalainen J, Andrews SJ, Geller F et al. 2021. Shared genetic etiology between idiopathic pulmonary fibrosis and COVID-19 severity. EBioMedicine 65:103277
    [Google Scholar]
  30. 30.
    Fan X, Liu Z, Poulsen KL, Wu X, Miyata T et al. 2021. Alcohol consumption is associated with poor prognosis in obese patients with COVID-19: a Mendelian randomization study using UK Biobank. Nutrients 13:1592
    [Google Scholar]
  31. 31.
    Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM et al. 2007. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889–94
    [Google Scholar]
  32. 32.
    Freuer D, Linseisen J, Meisinger C. 2021. Impact of body composition on COVID-19 susceptibility and severity: a two-sample multivariable Mendelian randomization study. Metabolism 118:154732
    [Google Scholar]
  33. 33.
    Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L et al. 2017. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186:1026–34
    [Google Scholar]
  34. 34.
    Galesloot TE, Van Steen K, Kiemeney LALM, Janss LL, Vermeulen SH. 2014. A comparison of multivariate genome-wide association methods. PLOS ONE 9:e95923
    [Google Scholar]
  35. 35.
    Gallois A, Mefford J, Ko A, Vaysse A, Julienne H et al. 2019. A comprehensive study of metabolite genetics reveals strong pleiotropy and heterogeneity across time and context. Nat. Commun. 10:4788
    [Google Scholar]
  36. 36.
    Gaziano L, Giambartolomei C, Pereira AC, Gaulton A, Posner DC et al. 2021. Actionable druggable genome-wide Mendelian randomization identifies repurposing opportunities for COVID-19. Nat. Med. 27:668–76
    [Google Scholar]
  37. 37.
    Gill D, Arvanitis M, Carter P, Hernández Cordero AI, Jo B et al. 2020. ACE inhibition and cardiometabolic risk factors, lung ACE2 and TMPRSS2 gene expression, and plasma ACE2 levels: a Mendelian randomization study. R. Soc. Open Sci. 7:200958
    [Google Scholar]
  38. 38.
    Guida F, Tan VY, Corbin LJ, Smith-Byrne K, Alcala K et al. 2021. The blood metabolome of incident kidney cancer: a case-control study nested within the MetKid consortium. PLOS Med 18:e1003786
    [Google Scholar]
  39. 39.
    Haworth S, Mitchell R, Corbin L, Wade KH, Dudding T et al. 2019. Apparent latent structure within the UK Biobank sample has implications for epidemiological analysis. Nat. Commun. 10:333
    [Google Scholar]
  40. 40.
    Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V et al. 2018. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7:e34408
    [Google Scholar]
  41. 41.
    Hernández Cordero AI, Li X, Milne S, Yang CX, Bossé Y et al. 2021. Multi-omics highlights ABO plasma protein as a causal risk factor for COVID-19. Hum. Genet. 140:969–79
    [Google Scholar]
  42. 42.
    Hill WD, Marioni RE, Maghzian O, Ritchie SJ, Hagenaars SP et al. 2019. A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence. Mol. Psychiatry 24:169–81
    [Google Scholar]
  43. 43.
    Hilser JR, Han Y, Biswas S, Gukasyan J, Cai Z et al. 2021. Association of serum HDL-cholesterol and apolipoprotein A1 levels with risk of severe SARS-CoV-2 infection. J. Lipid Res. 62:100061
    [Google Scholar]
  44. 44.
    Hou K, Burch KS, Majumdar A, Shi H, Mancuso N et al. 2019. Accurate estimation of SNP-heritability from biobank-scale data irrespective of genetic architecture. Nat. Genet. 51:1244–51
    [Google Scholar]
  45. 45.
    Hu Y, Lu Q, Liu W, Zhang Y, Li M, Zhao H. 2017. Joint modeling of genetically correlated diseases and functional annotations increases accuracy of polygenic risk prediction. PLOS Genet 13:e1006836
    [Google Scholar]
  46. 46.
    Huang W, Xiao J, Ji J, Chen L. 2021. Association of lipid-lowering drugs with COVID-19 outcomes from a Mendelian randomization study. eLife 10:e73873
    [Google Scholar]
  47. 47.
    Illig T, Gieger C, Zhai G, Römisch-Margl W, Wang-Sattler R et al. 2010. A genome-wide perspective of genetic variation in human metabolism. Nat. Genet. 42:137–41
    [Google Scholar]
  48. 48.
    Julkunen H, Cichońska A, Slagboom PE, Würtz P. 2021. Metabolic biomarker profiling for identification of susceptibility to severe pneumonia and COVID-19 in the general population. eLife 10:e63033
    [Google Scholar]
  49. 49.
    Kalra G, Milon B, Casella AM, Herb BR, Humphries E et al. 2020. Biological insights from multi-omic analysis of 31 genomic risk loci for adult hearing difficulty. PLOS Genet 16:e1009025
    [Google Scholar]
  50. 50.
    Kastenmüller G, Raffler J, Gieger C, Suhre K. 2015. Genetics of human metabolism: an update. Hum. Mol. Genet. 24:R93–101
    [Google Scholar]
  51. 51.
    Kettunen J, Demirkan A, Würtz P, Draisma HHM, Haller T et al. 2016. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat. Commun. 7:11122
    [Google Scholar]
  52. 52.
    Keyes KM, Westreich D. 2019. UK Biobank, big data, and the consequences of non-representativeness. Lancet 393:1297
    [Google Scholar]
  53. 53.
    Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C et al. 2018. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50:1219–24
    [Google Scholar]
  54. 54.
    Khera AV, Chaffin M, Wade KH, Zahid S, Brancale J et al. 2019. Polygenic prediction of weight and obesity trajectories from birth to adulthood. Cell 177:587–96.e9
    [Google Scholar]
  55. 55.
    Klei L, Luca D, Devlin B, Roeder K. 2008. Pleiotropy and principal components of heritability combine to increase power for association analysis. Genet. Epidemiol. 32:9–19
    [Google Scholar]
  56. 56.
    Kopeček M, Höschl C. 2020. Season of the year, vitamin D and COVID-19. Cas. Lek. Cesk. 159:312–16
    [Google Scholar]
  57. 57.
    Larsson SC, Burgess S, Gill D. 2021. Genetically proxied interleukin-6 receptor inhibition: opposing associations with COVID-19 and pneumonia. Eur. Respir. J. 57:2003545
    [Google Scholar]
  58. 58.
    Lawlor DA. 2016. Commentary: two-sample Mendelian randomization: opportunities and challenges. Int. J. Epidemiol. 45:908–15
    [Google Scholar]
  59. 59.
    Lawson DJ, Davies NM, Haworth S, Ashraf B, Howe L et al. 2020. Is population structure in the genetic biobank era irrelevant, a challenge, or an opportunity?. Hum. Genet. 139:23–41
    [Google Scholar]
  60. 60.
    Leong A, Cole JB, Brenner LN, Meigs JB, Florez JC, Mercader JM. 2021. Cardiometabolic risk factors for COVID-19 susceptibility and severity: a Mendelian randomization analysis. PLOS Med 18:e1003553
    [Google Scholar]
  61. 61.
    Lewis GD, Wei R, Liu E, Yang E, Shi X et al. 2008. Metabolite profiling of blood from individuals undergoing planned myocardial infarction reveals early markers of myocardial injury. J. Clin. Investig. 118:3503–12
    [Google Scholar]
  62. 62.
    Li GHY, Lam SKK, Wong ICK, Chu JKP, Cheung CL. 2021. Education attainment, intelligence and COVID-19: a Mendelian randomization study. J. Clin. Med. 10:4870
    [Google Scholar]
  63. 63.
    Li M, Yeung CHC, Schooling CM. 2021. Circulating cytokines and coronavirus disease: a bi-directional Mendelian randomization study. Front. Genet. 12:680646
    [Google Scholar]
  64. 64.
    Li S, Hua X. 2021. Modifiable lifestyle factors and severe COVID-19 risk: a Mendelian randomisation study. BMC Med. Genom. 14:38
    [Google Scholar]
  65. 65.
    Li X, van Geffen J, van Weele M, Zhang X, He Y et al. 2021. An observational and Mendelian randomisation study on vitamin D and COVID-19 risk in UK Biobank. Sci. Rep. 11:18262
    [Google Scholar]
  66. 66.
    Littlejohns TJ, Sudlow C, Allen NE, Collins R. 2019. UK Biobank: opportunities for cardiovascular research. Eur. Heart J. 40:1158–66
    [Google Scholar]
  67. 67.
    Liu D, Tian QY, Zhang J, Hou HF, Li Y et al. 2021. Association between 25 hydroxyvitamin D concentrations and the risk of COVID-19: a Mendelian randomization study. Biomed. Environ. Sci. 34:750–54
    [Google Scholar]
  68. 68.
    Liu D, Yang J, Feng B, Lu W, Zhao C, Li L. 2021. Mendelian randomization analysis identified genes pleiotropically associated with the risk and prognosis of COVID-19. J. Infect. 82:126–32
    [Google Scholar]
  69. 69.
    Liu H, Xin J, Cai S, Jiang X. 2021. Mendelian randomization analysis provides causality of smoking on the expression of ACE2, a putative SARS-CoV-2 receptor. eLife 10:e64188
    [Google Scholar]
  70. 70.
    Liu N, Tan JS, Liu L, Wang Y, Hua L, Qian Q. 2021. Genetic predisposition between COVID-19 and four mental illnesses: a bidirectional, two-sample Mendelian randomization study. Front. Psychiatry 12:746276
    [Google Scholar]
  71. 71.
    Long T, Hicks M, Yu HC, Biggs WH, Kirkness EF et al. 2017. Whole-genome sequencing identifies common-to-rare variants associated with human blood metabolites. Nat. Genet. 49:568–78
    [Google Scholar]
  72. 72.
    Loos RJF, Janssens ACJW. 2017. Predicting polygenic obesity using genetic information. Cell Metab 25:535–43
    [Google Scholar]
  73. 73.
    Lorincz-Comi N, Zhu X. 2021. Cardiometabolic risks of SARS-CoV-2 hospitalization using Mendelian randomization. Sci. Rep. 11:7848
    [Google Scholar]
  74. 74.
    Lotta LA, Pietzner M, Stewart ID, Wittemans LBL, Li C et al. 2021. A cross-platform approach identifies genetic regulators of human metabolism and health. Nat. Genet. 53:54–64
    [Google Scholar]
  75. 75.
    Luykx JJ, Lin BD. 2021. Are psychiatric disorders risk factors for COVID-19 susceptibility and severity? A two-sample, bidirectional, univariable, and multivariable Mendelian randomization study. Transl. Psychiatry 11:210
    [Google Scholar]
  76. 76.
    Maier R, Moser G, Chen GB, Ripke S, Coryell WH et al. 2015. Joint analysis of psychiatric disorders increases accuracy of risk prediction for schizophrenia, bipolar disorder, and major depressive disorder. Am. J. Hum. Genet. 96:283–94
    [Google Scholar]
  77. 77.
    McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J et al. 2008. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet. 9:356–69
    [Google Scholar]
  78. 78.
    Neale BM. 2017. Insights from estimates of SNP-heritability for >2,000 traits and disorders in UK Biobank. Neale Lab http://www.nealelab.is/blog/2017/9/20/insights-from-estimates-of-snp-heritability-for-2000-traits-and-disorders-in-uk-biobank
    [Google Scholar]
  79. 79.
    Neale BM. 2018. UK Biobank. Neale Lab. http://www.nealelab.is/uk-biobank
    [Google Scholar]
  80. 80.
    Neale BM. 2020. Genetic correlation between traits and disorders in the UK Biobank. Neale Lab. https://ukbb-rg.hail.is
    [Google Scholar]
  81. 81.
    Ong J-S, Gharahkhani P, Vaughan TL, Whiteman D, Kendall BJ, MacGregor S. 2022. Assessing the genetic relationship between gastro-esophageal reflux disease and risk of COVID-19 infection. Hum. Mol. Genet. 31:471–80
    [Google Scholar]
  82. 82.
    Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K et al. 2021. Genetic mechanisms of critical illness in COVID-19. Nature 591:92–98
    [Google Scholar]
  83. 83.
    Panagiotou OA, Willer CJ, Hirschhorn JN, Ioannidis JPA. 2013. The power of meta-analysis in genome-wide association studies. Annu. Rev. Genom. Hum. Genet. 14:441–65
    [Google Scholar]
  84. 84.
    Papadopoulou A, Musa H, Sivaganesan M, McCoy D, Deloukas P, Marouli E. 2021. COVID-19 susceptibility variants associate with blood clots, thrombophlebitis and circulatory diseases. PLOS ONE 16:e0256988
    [Google Scholar]
  85. 85.
    Ponsford MJ, Gkatzionis A, Walker VM, Grant AJ, Wootton RE et al. 2020. Cardiometabolic traits, sepsis, and severe COVID-19: a Mendelian randomization investigation. Circulation 142:1791–93
    [Google Scholar]
  86. 86.
    Porter HF, O'Reilly PF 2017. Multivariate simulation framework reveals performance of multi-trait GWAS methods. Sci. Rep. 7:38837
    [Google Scholar]
  87. 87.
    Qiu S, Wang D, Zhang Y, Hu Y. 2022. Mendelian randomization reveals potential causal candidates for COVID-19 in 123 blood metabolites. J. Infect. 84:248–88
    [Google Scholar]
  88. 88.
    Ran S, Su K, Zhang S, Liu B. 2021. The association between coronavirus disease 2019 infection and blood constituents: a Mendelian randomization analysis. J. Infect. Dis. 224:922–24
    [Google Scholar]
  89. 89.
    Ran S, Zhang S, Chen H, Zhao M, Liu B. 2021. Total body bone mineral density and severe COVID-19: a Mendelian randomization analysis in five age strata. Bone 155:116281
    [Google Scholar]
  90. 90.
    Rao S, Baranova A, Cao H, Chen J, Zhang X, Zhang F. 2021. Genetic mechanisms of COVID-19 and its association with smoking and alcohol consumption. Brief. Bioinform. 22:bbab284 Correction 2021. Brief. Bioinform. 22:bbab357
    [Google Scholar]
  91. 91.
    Rao S, Lau A, So HC. 2020. Exploring diseases/traits and blood proteins causally related to expression of ACE2, the putative receptor of SARS-CoV-2: a Mendelian randomization analysis highlights tentative relevance of diabetes-related traits. Diabetes Care 43:1416–26
    [Google Scholar]
  92. 92.
    Rashkin SR, Graff RE, Kachuri L, Thai KK, Alexeeff SE et al. 2020. Pan-cancer study detects genetic risk variants and shared genetic basis in two large cohorts. Nat. Commun. 11:4423
    [Google Scholar]
  93. 93.
    Rhee EP, Ho JE, Chen MH, Shen D, Cheng S et al. 2013. A genome-wide association study of the human metabolome in a community-based cohort. Cell Metab 18:130–43
    [Google Scholar]
  94. 94.
    Rhee EP, Yang Q, Yu B, Liu X, Cheng S et al. 2016. An exome array study of the plasma metabolome. Nat. Commun. 7:12360
    [Google Scholar]
  95. 95.
    Richardson TG, Fang S, Mitchell RE, Holmes MV, Davey Smith G. 2021. Evaluating the effects of cardiometabolic exposures on circulating proteins which may contribute to severe SARS-CoV-2. EBioMedicine 64:103228
    [Google Scholar]
  96. 96.
    Ripatti S, Tikkanen E, Orho-Melander M, Havulinna AS, Silander K et al. 2010. A multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses. Lancet 376:1393–400
    [Google Scholar]
  97. 97.
    Ritchie SC, Surendran P, Karthikeyan S, Lambert SA, Bolton T et al. 2021. Quality control and removal of technical variation of NMR metabolic biomarker data in ∼120,000 UK Biobank participants. medRxiv 2021.09.24.21264079. https://doi.org/10.1101/2021.09.24.21264079
    [Crossref]
  98. 98.
    Roh J, Kitchen R, Guseh JS, McNeill J, Aid M et al. 2021. Plasma proteomics of COVID-19 associated cardiovascular complications: implications for pathophysiology and therapeutics. Res. Square 539712. https://doi.org/10.21203/rs.3.rs-539712/v1
    [Crossref]
  99. 99.
    Rosoff DB, Yoo J, Lohoff FW. 2021. Smoking is significantly associated with increased risk of COVID-19 and other respiratory infections. Commun. Biol. 4:1230
    [Google Scholar]
  100. 100.
    Sanderson E, Davey Smith G, Windmeijer F, Bowden J 2019. An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int. J. Epidemiol. 48:713–27 Correction 2020. Int. J. Epidemiol. 49:1057
    [Google Scholar]
  101. 101.
    Sanderson E, Spiller W, Bowden J. 2021. Testing and correcting for weak and pleiotropic instruments in two-sample multivariable Mendelian randomization. Stat. Med. 40:5434–52
    [Google Scholar]
  102. 102.
    Scuteri A, Sanna S, Chen WM, Uda M, Albai G et al. 2007. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLOS Genet 3:e115
    [Google Scholar]
  103. 103.
    Sharma A, Tiwari S, Deb MK, Marty JL 2020. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies. Int. J. Antimicrob. Agents 56:106054
    [Google Scholar]
  104. 104.
    Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R et al. 2014. An atlas of genetic influences on human blood metabolites. Nat. Genet. 46:543–50
    [Google Scholar]
  105. 105.
    Sinnott-Armstrong N, Tanigawa Y, Amar D, Mars NJ, Aguirre M et al. 2019. Genetics of 38 blood and urine biomarkers in the UK Biobank. Nat. Genet. 53:185–94
    [Google Scholar]
  106. 106.
    Smith JG. 2017. Molecular epidemiology of heart failure: translational challenges and opportunities. JACC Basic Transl. Sci. 2:757–69
    [Google Scholar]
  107. 107.
    Soininen P, Kangas AJ, Würtz P, Suna T, Ala-Korpela M. 2015. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ. Cardiovasc. Genet. 8:192–206
    [Google Scholar]
  108. 108.
    Spencer CCA, Su Z, Donnelly P, Marchini J. 2009. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLOS Genet 5:e1000477
    [Google Scholar]
  109. 109.
    Sudlow C, Gallacher J, Allen N, Beral V, Burton P et al. 2015. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLOS Med 12:e1001779
    [Google Scholar]
  110. 110.
    Suhre K, Shin SY, Petersen AK, Mohney RP, Meredith D et al. 2011. Human metabolic individuality in biomedical and pharmaceutical research. Nature 477:54–60
    [Google Scholar]
  111. 111.
    Sun Y, Zhou J, Ye K. 2021. White blood cells and severe COVID-19: a Mendelian randomization study. J. Pers. Med. 11:195
    [Google Scholar]
  112. 112.
    Swanson JM. 2012. The UK Biobank and selection bias. Lancet 380:110
    [Google Scholar]
  113. 113.
    Tan JS, Liu NN, Guo TT, Hu S, Hua L. 2021. Genetic predisposition to COVID-19 may increase the risk of hypertension disorders in pregnancy: a two-sample Mendelian randomization study. Pregnancy Hypertens 26:17–23
    [Google Scholar]
  114. 114.
    Timpson NJ, Greenwood CMT, Soranzo N, Lawson DJ, Richards JB. 2018. Genetic architecture: the shape of the genetic contribution to human traits and disease. Nat. Rev. Genet. 19:110–24
    [Google Scholar]
  115. 115.
    Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ et al. 2018. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat. Genet. 50:229–37
    [Google Scholar]
  116. 116.
    van der Sluis S, Verhage M, Posthuma D, Dolan CV. 2010. Phenotypic complexity, measurement bias, and poor phenotypic resolution contribute to the missing heritability problem in genetic association studies. PLOS ONE 5:e13929
    [Google Scholar]
  117. 117.
    Verbanck M, Chen CY, Neale B, Do R 2018. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50:693–98
    [Google Scholar]
  118. 118.
    Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI et al. 2017. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101:5–22
    [Google Scholar]
  119. 119.
    Wang K, Qu M, Ding L, Shi X, Wang C et al. 2021. Liver and kidney function biomarkers, blood cell traits and risk of severe COVID-19: a Mendelian randomization study. Front. Genet. 12:647303
    [Google Scholar]
  120. 120.
    Wang M, Gao J, Liu J, Zhao X, Lei Y. 2021. Genomic association versus serological determination of ABO blood types in a Chinese cohort, with application in Mendelian randomization. Genes 12:959
    [Google Scholar]
  121. 121.
    Wang Q, Codd V, Raisi-Estabragh Z, Musicha C, Bountziouka V et al. 2021. Shorter leukocyte telomere length is associated with adverse COVID-19 outcomes: a cohort study in UK Biobank. EBioMedicine 70:103485
    [Google Scholar]
  122. 122.
    Yazdani A, Yazdani A, Saniei A, Boerwinkle E. 2016. A causal network analysis in an observational study identifies metabolomics pathways influencing plasma triglyceride levels. Metabolomics 12:104
    [Google Scholar]
  123. 123.
    Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR et al. 2018. Meta-analysis of genome-wide association studies for height and body mass index in ∼700 000 individuals of European ancestry. Hum. Mol. Genet. 27:3641–49
    [Google Scholar]
  124. 124.
    Yoshikawa M, Asaba K. 2021. Educational attainment decreases the risk of COVID-19 severity in the European population: a two-sample Mendelian randomization study. Front. Public Health 9:673451
    [Google Scholar]
  125. 125.
    Yoshikawa M, Asaba K, Nakayama T. 2021. Estimating causal effects of atherogenic lipid-related traits on COVID-19 susceptibility and severity using a two-sample Mendelian randomization approach. BMC Med. Genom. 14:269
    [Google Scholar]
  126. 126.
    Zeng H, Lin C, Wang S, Zheng Y, Gao X. 2021. Genetically predicted body composition in relation to cardiometabolic traits: a Mendelian randomization study. Eur. J. Epidemiol. 36:1157–68
    [Google Scholar]
  127. 127.
    Zhang K, Dong SS, Guo Y, Tang SH, Wu H et al. 2021. Causal associations between blood lipids and COVID-19 risk: a two-sample Mendelian randomization study. Arterioscler. Thromb. Vasc. Biol. 41:2802–10
    [Google Scholar]
  128. 128.
    Zhang S, Cooper-Knock J, Weimer AK, Harvey C, Julian TH et al. 2021. Common and rare variant analyses combined with single-cell multiomics reveal cell-type-specific molecular mechanisms of COVID-19 severity. medRxiv 2021.06.15.21258703. https://doi.org/10.1101/2021.06.15.21258703
    [Crossref]
  129. 129.
    Zhang X, Li X, Sun Z, He Y, Xu W et al. 2020. Physical activity and COVID-19: an observational and Mendelian randomisation study. J. Glob. Health 10:020514
    [Google Scholar]
  130. 130.
    Zhao JV, Schooling CM. 2021. Using genetics to understand the role of kidney function in COVID-19: a Mendelian randomization study. BMC Nephrol 22:381
    [Google Scholar]
  131. 131.
    Zhao Q, Wang J, Spiller W, Bowden J, Small DS. 2019. Two-sample instrumental variable analyses using heterogeneous samples. Stat. Sci. 34:317–33
    [Google Scholar]
  132. 132.
    Zhou S, Butler-Laporte G, Nakanishi T, Morrison DR, Afilalo J et al. 2021. A Neanderthal OAS1 isoform protects individuals of European ancestry against COVID-19 susceptibility and severity. Nat. Med. 27:659–67
    [Google Scholar]
  133. 133.
    Zhou Y, Qian X, Liu Z, Yang H, Liu T et al. 2021. Coagulation factors and the incidence of COVID-19 severity: Mendelian randomization analyses and supporting evidence. Signal Transduct. Target. Ther. 6:222
    [Google Scholar]
  134. 134.
    Zhu H, Zheng F, Li L, Jin Y, Luo Y et al. 2021. A Chinese host genetic study discovered IFNs and causality of laboratory traits on COVID-19 severity. iScience 24:103186
    [Google Scholar]
  135. 135.
    Zhu W, Zhang H. 2009. Why do we test multiple traits in genetic association studies?. J. Korean Stat. Soc. 38:1–10
    [Google Scholar]
  136. 136.
    Zuber V, Cameron A, Myserlis EP, Bottolo L, Fernandez-Cadenas I et al. 2021. Leveraging genetic data to elucidate the relationship between COVID-19 and ischemic stroke. J. Am. Heart Assoc. 10:e022433
    [Google Scholar]
/content/journals/10.1146/annurev-genom-121321-093606
Loading
/content/journals/10.1146/annurev-genom-121321-093606
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error