T cell responses display two key characteristics. First, a small population of epitope-specific naive T cells expands by several orders of magnitude. Second, the T cells within this proliferating population take on diverse functional and phenotypic properties that determine their ability to exert effector functions and contribute to T cell memory. Recent technological advances in lineage tracing allow us for the first time to study these processes in vivo at single-cell resolution. Here, we summarize resulting data demonstrating that although epitope-specific T cell responses are reproducibly similar at the population level, expansion potential and diversification patterns of the offspring derived from individual T cells are highly variable during both primary and recall immune responses. In spite of this stochastic response variation, individual memory T cells can serve as adult stem cells that provide robust regeneration of an epitope-specific tissue through population averaging. We discuss the relevance of these findings for T cell memory formation and clinical immunotherapy.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Maus MV, Fraietta JA, Levine BL, Kalos M, Zhao Y, June CH. 1.  2014. Adoptive immunotherapy for cancer or viruses. Annu. Rev. Immunol. 32:189–225 [Google Scholar]
  2. Rosenberg SA, Restifo NP. 2.  2015. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348:623062–68 [Google Scholar]
  3. Jensen MC, Riddell SR. 3.  2014. Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells. Immunol. Rev. 257:1127–44 [Google Scholar]
  4. Williams MA, Bevan MJ. 4.  2007. Effector and memory CTL differentiation. Annu. Rev. Immunol. 25:171–92 [Google Scholar]
  5. Zhu J, Yamane H, Paul WE. 5.  2010. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28:445–89 [Google Scholar]
  6. Nikolich-Zugich J, Slifka MK, Messaoudi I. 6.  2004. The many important facets of T-cell repertoire diversity. Nat. Rev. Immunol. 4:2123–32 [Google Scholar]
  7. Jenkins MK, Chu HH, McLachlan JB, Moon JJ. 7.  2010. On the composition of the preimmune repertoire of T cells specific for peptide-major histocompatibility complex ligands. Annu. Rev. Immunol. 28:275–94 [Google Scholar]
  8. Burnet SFM. 8.  1957. A modification of Jerne's theory of antibody production using the concept of clonal selection. Aust. J. Sci. 20:367–69 [Google Scholar]
  9. Masopust D, Vezys V, Marzo AL, Lefrançois L. 9.  2001. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291:55122413–17 [Google Scholar]
  10. Sung JH, Zhang H, Moseman EA, Alvarez D, Iannacone M. 10.  et al. 2012. Chemokine guidance of central memory T cells is critical for antiviral recall responses in lymph nodes. Cell 150:61249–63 [Google Scholar]
  11. Kaech SM, Hemby S, Kersh E, Ahmed R. 11.  2002. Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111:6837–51 [Google Scholar]
  12. Wolint P, Betts MR, Koup RA, Oxenius A. 12.  2004. Immediate cytotoxicity but not degranulation distinguishes effector and memory subsets of CD8+ T cells. J. Exp. Med. 199:7925–36 [Google Scholar]
  13. Buchholz VR, Gräf P, Busch DH. 13.  2012. The origin of diversity: studying the evolution of multi-faceted CD8+ T cell responses. Cell Mol. Life Sci. 69:101585–95 [Google Scholar]
  14. Jameson SC, Masopust D. 14.  2009. Diversity in T cell memory: an embarrassment of riches. Immunity 31:6859–71 [Google Scholar]
  15. Darrah PA, Patel DT, De Luca PM, Lindsay RWB, Davey DF. 15.  et al. 2007. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat. Med. 13:7843–50 [Google Scholar]
  16. Seder RA, Darrah PA, Roederer M. 16.  2008. T-cell quality in memory and protection: implications for vaccine design. Nat. Rev. Immunol. 8:4247–58 [Google Scholar]
  17. Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GMA. 17.  2002. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat. Med. 8:4379–85 [Google Scholar]
  18. Appay V, Douek DC, Price DA. 18.  2008. CD8+ T cell efficacy in vaccination and disease. Nat. Med. 14:6623–28 [Google Scholar]
  19. Hulett HR, Bonner WA, Barrett J, Herzenberg LA. 19.  1969. Cell sorting: automated separation of mammalian cells as a function of intracellular fluorescence. Science 166:3906747–49 [Google Scholar]
  20. Parks DR, Hardy RR, Herzenberg LA. 20.  1984. Three-color immunofluorescence analysis of mouse B-lymphocyte subpopulations. Cytometry 5:2159–68 [Google Scholar]
  21. De Rosa SC, Herzenberg LA, Herzenberg LA, Roederer M. 21.  2001. 11-color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function, and T-cell receptor diversity. Nat. Med. 7:2245–48 [Google Scholar]
  22. Schmitz J, Assenmacher M, Radbruch A. 22.  1993. Regulation of T helper cell cytokine expression: functional dichotomy of antigen-presenting cells. Eur. J. Immunol. 23:1191–99 [Google Scholar]
  23. Jung T, Schauer U, Heusser C, Neumann C, Rieger C. 23.  1993. Detection of intracellular cytokines by flow cytometry. J. Immunol. Methods 159:1–2197–207 [Google Scholar]
  24. Openshaw P, Murphy EE, Hosken NA, Maino V, Davis K. 24.  et al. 1995. Heterogeneity of intracellular cytokine synthesis at the single-cell level in polarized T helper 1 and T helper 2 populations. J. Exp. Med. 182:51357–67 [Google Scholar]
  25. Manz R, Assenmacher M, Pflüger E, Miltenyi S, Radbruch A. 25.  1995. Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. PNAS 92:61921–25 [Google Scholar]
  26. Jacob J, Baltimore D. 26.  1999. Modelling T-cell memory by genetic marking of memory T cells in vivo. Nature 399:6736593–97 [Google Scholar]
  27. Irish JM, Hovland R, Krutzik PO, Perez OD, Bruserud Ø. 27.  et al. 2004. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118:2217–28 [Google Scholar]
  28. Newell EW, Sigal N, Bendall SC, Nolan GP, Davis MM. 28.  2012. Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 36:1142–52 [Google Scholar]
  29. Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT. 29.  et al. 2013. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498:7453236–40 [Google Scholar]
  30. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. 30.  1986. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136:72348–57 [Google Scholar]
  31. Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A. 31.  1999. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:6754708–12 [Google Scholar]
  32. Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR. 32.  2009. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10:5524–30 [Google Scholar]
  33. Gebhardt T, Whitney PG, Zaid A, Mackay LK, Brooks AG. 33.  et al. 2011. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477:7363216–19 [Google Scholar]
  34. Steinert EM, Schenkel JM, Fraser KA, Beura LK, Manlove LS. 34.  et al. 2015. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161:4737–49 [Google Scholar]
  35. King IL, Mohrs M. 35.  2009. IL-4-producing CD4+ T cells in reactive lymph nodes during helminth infection are T follicular helper cells. J. Exp. Med. 206:51001–7 [Google Scholar]
  36. Glatman Zaretsky A, Taylor JJ, King IL, Marshall FA, Mohrs M, Pearce EJ. 36.  2009. T follicular helper cells differentiate from Th2 cells in response to helminth antigens. J. Exp. Med. 206:5991–99 [Google Scholar]
  37. Nakayamada S, Kanno Y, Takahashi H, Jankovic D, Lu KT. 37.  et al. 2011. Early Th1 cell differentiation is marked by a Tfh cell-like transition. Immunity 35:6919–31 [Google Scholar]
  38. Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y. 38.  et al. 2011. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 12:3255–63 [Google Scholar]
  39. Pepper M, Pagán AJ, Igyártó BZ, Taylor JJ, Jenkins MK. 39.  2011. Opposing signals from the Bcl6 transcription factor and the interleukin-2 receptor generate T helper 1 central and effector memory cells. Immunity 35:4583–95 [Google Scholar]
  40. Pepper M, Jenkins MK. 40.  2011. Origins of CD4+ effector and central memory T cells. Nat. Immunol. 131:6467–71 [Google Scholar]
  41. Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R. 41.  2003. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. 4:121191–98 [Google Scholar]
  42. Huster KM, Busch V, Schiemann M, Linkemann K, Kerksiek KM. 42.  et al. 2004. Selective expression of IL-7 receptor on memory T cells identifies early CD40L-dependent generation of distinct CD8+ memory T cell subsets. PNAS 101:155610–15 [Google Scholar]
  43. Schluns KS, Williams K, Ma A, Zheng XX, Lefrançois L. 43.  2002. Cutting edge: requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells. J. Immunol. 168:104827–31 [Google Scholar]
  44. Goldrath AW, Sivakumar PV, Glaccum M, Kennedy MK, Bevan MJ. 44.  et al. 2002. Cytokine requirements for acute and basal homeostatic proliferation of naive and memory CD8+ T cells. J. Exp. Med. 195:121515–22 [Google Scholar]
  45. Becker TC, Wherry EJ, Boone D, Murali-Krishna K, Antia R. 45.  et al. 2002. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J. Exp. Med. 195:121541–48 [Google Scholar]
  46. Obar JJ, Jellison ER, Sheridan BS, Blair DA, Pham Q-M. 46.  et al. 2011. Pathogen-induced inflammatory environment controls effector and memory CD8+ T cell differentiation. J. Immunol. 187:104967–78 [Google Scholar]
  47. Newell EW, Davis MM. 47.  2014. Beyond model antigens: high-dimensional methods for the analysis of antigen-specific T cells. Nat. Biotechnol. 32:2149–57 [Google Scholar]
  48. Flatz L, Roychoudhuri R, Honda M, Filali-Mouhim A, Goulet JP. 48.  et al. 2011. Single-cell gene-expression profiling reveals qualitatively distinct CD8 T cells elicited by different gene-based vaccines. PNAS 108:145724–29 [Google Scholar]
  49. Harty JT, Badovinac VP. 49.  2008. Shaping and reshaping CD8+ T-cell memory. Nat. Rev. Immunol. 8:2107–19 [Google Scholar]
  50. Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P. 50.  1999. A direct estimate of the human αβ T cell receptor diversity. Science 286:5441958–61 [Google Scholar]
  51. Casrouge A, Beaudoing E, Dalle S, Pannetier C, Kanellopoulos J, Kourilsky P. 51.  2000. Size estimate of the αβ TCR repertoire of naive mouse splenocytes. J. Immunol. 164:115782–87 [Google Scholar]
  52. Blattman JN, Antia R, Sourdive DJD, Wang X, Kaech SM. 52.  et al. 2002. Estimating the precursor frequency of naive antigen-specific CD8 T cells. J. Exp. Med. 195:5657–64 [Google Scholar]
  53. Badovinac VP, Haring JS, Harty JT. 53.  2007. Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8+ T cell response to infection. Immunity 26:6827–41 [Google Scholar]
  54. Obar JJ, Khanna KM, Lefrançois L. 54.  2008. Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity 28:6859–69 [Google Scholar]
  55. Jenkins MK, Moon JJ. 55.  2012. The role of naive T cell precursor frequency and recruitment in dictating immune response magnitude. J. Immunol. 188:94135–40 [Google Scholar]
  56. van Heijst JWJ, Gerlach C, Swart E, Sie D, Nunes-Alves C. 56.  et al. 2009. Recruitment of antigen-specific CD8+ T cells in response to infection is markedly efficient. Science 325:59451265–69 [Google Scholar]
  57. Reiner SL, Sallusto F, Lanzavecchia A. 57.  2007. Division of labor with a workforce of one: challenges in specifying effector and memory T cell fate. Science 317:5838622–25 [Google Scholar]
  58. Zehn D, Lee SY, Bevan MJ. 58.  2009. Complete but curtailed T-cell response to very low-affinity antigen. Nature 458:7235211–14 [Google Scholar]
  59. Fazilleau N, McHeyzer-Williams LJ, Rosen H, McHeyzer-Williams MG. 59.  2009. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat. Immunol. 10:4375–84 [Google Scholar]
  60. Feinerman O, Veiga J, Dorfman JR, Germain RN, Altan-Bonnet G. 60.  2008. Variability and robustness in T cell activation from regulated heterogeneity in protein levels. Science 321:58921081–84 [Google Scholar]
  61. Raser JM, O’Shea EK. 61.  2005. Noise in gene expression: origins, consequences, and control. Science 309:57432010–13 [Google Scholar]
  62. Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S. 62.  2008. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453:7194544–47 [Google Scholar]
  63. Eldar A, Elowitz MB. 63.  2010. Functional roles for noise in genetic circuits. Nature 467:7312167–73 [Google Scholar]
  64. Schumacher TNM, Gerlach C, van Heijst JWJ. 64.  2010. Mapping the life histories of T cells. Nat. Rev. Immunol. 10:9621–31 [Google Scholar]
  65. Gaide O, Emerson RO, Jiang X, Gulati N, Nizza S. 65.  et al. 2015. Common clonal origin of central and resident memory T cells following skin immunization. Nat. Med. 21:6647–53 [Google Scholar]
  66. Kastenmüller W, Brandes M, Wang Z, Herz J, Egen JG, Germain RN. 66.  2013. Peripheral prepositioning and local CXCL9 chemokine-mediated guidance orchestrate rapid memory CD8+ T cell responses in the lymph node. Immunity 38:3502–13 [Google Scholar]
  67. Beuneu H, Lemaître F, Deguine J, Moreau HD, Bouvier I. 67.  et al. 2010. Visualizing the functional diversification of CD8+ T cell responses in lymph nodes. Immunity 33:3412–23 [Google Scholar]
  68. Livet J, Weissman TA, Kang H, Draft RW, Lu J. 68.  et al. 2007. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:716656–62 [Google Scholar]
  69. Cai D, Cohen KB, Luo T, Lichtman JW, Sanes JR. 69.  2013. Improved tools for the Brainbow toolbox. Nat. Methods 10:6540–47 [Google Scholar]
  70. Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M. 70.  et al. 2010. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143:1134–44 [Google Scholar]
  71. Simons BD, Clevers H. 71.  2011. Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 145:6851–62 [Google Scholar]
  72. Weber K, Thomaschewski M, Warlich M, Volz T, Cornils K. 72.  et al. 2011. RGB marking facilitates multicolor clonal cell tracking. Nat. Med. 17:4504–9 [Google Scholar]
  73. Martinez RJ, Neeld DK, Evavold BD. 73.  2015. Identification of T cell clones without the need for sequencing. J. Immunol. Methods 424:28–31 [Google Scholar]
  74. Schepers K, Swart E, van Heijst JW, Gerlach C, Castrucci M. 74.  et al. 2008. Dissecting T cell lineage relationships by cellular barcoding. J. Exp. Med. 205:102309–18 [Google Scholar]
  75. Gerlach C, van Heijst JWJ, Swart E, Sie D, Armstrong N. 75.  et al. 2010. One naive T cell, multiple fates in CD8+ T cell differentiation. J. Exp. Med. 207:61235–46 [Google Scholar]
  76. Gerlach C, Rohr JC, Perié L, van Rooij N, van Heijst JWJ. 76.  et al. 2013. Heterogeneous differentiation patterns of individual CD8+ T cells. Science 340:6132635–39 [Google Scholar]
  77. Stemberger C, Huster KM, Koffler M, Anderl F, Schiemann M. 77.  et al. 2007. A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 27:6985–97 [Google Scholar]
  78. Buchholz VR, Flossdorf M, Hensel I, Kretschmer L, Weissbrich B. 78.  et al. 2013. Disparate individual fates compose robust CD8+ T cell immunity. Science 340:6132630–35 [Google Scholar]
  79. Graef P, Buchholz VR, Stemberger C, Flossdorf M, Henkel L. 79.  et al. 2014. Serial transfer of single-cell-derived immunocompetence reveals stemness of CD8+ central memory T cells. Immunity 41:1116–26 [Google Scholar]
  80. Tubo NJ, Pagán AJ, Taylor JJ, Nelson RW, Linehan JL. 80.  et al. 2013. Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection. Cell 153:4785–96 [Google Scholar]
  81. Plumlee CR, Sheridan BS, Cicek BB, Lefrançois L. 81.  2013. Environmental cues dictate the fate of individual CD8+ T cells responding to infection. Immunity 39:2347–56 [Google Scholar]
  82. Buchholz VR, Gräf P, Busch DH. 82.  2013. The smallest unit: effector and memory CD8+ T cell differentiation on the single cell level. Front. Immunol. 4:31 [Google Scholar]
  83. Rohr JC, Gerlach C, Kok L, Schumacher TN. 83.  2014. Single cell behavior in T cell differentiation. Trends Immunol. 35:4170–77 [Google Scholar]
  84. Schroeder T. 84.  2008. Imaging stem-cell-driven regeneration in mammals. Nature 453:7193345–51 [Google Scholar]
  85. Eilken HM, Nishikawa S-I, Schroeder T. 85.  2009. Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 457:7231896–900 [Google Scholar]
  86. Rieger MA, Hoppe PS, Smejkal BM, Eitelhuber AC, Schroeder T. 86.  2009. Hematopoietic cytokines can instruct lineage choice. Science 325:5937217–18 [Google Scholar]
  87. Duffy KR, Wellard CJ, Markham JF, Zhou JHS, Holmberg R. 87.  et al. 2012. Activation-induced B cell fates are selected by intracellular stochastic competition. Science 335:6066338–41 [Google Scholar]
  88. Kinjyo I, Qin J, Tan S-Y, Wellard CJ, Mrass P. 88.  et al. 2015. Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation. Nat. Commun. 6:6301 [Google Scholar]
  89. Joshi NS, Cui W, Chandele A, Lee HK, Urso DR. 89.  et al. 2007. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 27:2281–95 [Google Scholar]
  90. Sarkar S, Kalia V, Haining WN, Konieczny BT, Subramaniam S, Ahmed R. 90.  2008. Functional and genomic profiling of effector CD8 T cell subsets with distinct memory fates. J. Exp. Med. 205:3625–40 [Google Scholar]
  91. Bannard O, Kraman M, Fearon DT. 91.  2009. Secondary replicative function of CD8+ T cells that had developed an effector phenotype. Science 323:5913505–9 [Google Scholar]
  92. Harrington LE, Janowski KM, Oliver JR, Zajac AJ, Weaver CT. 92.  2008. Memory CD4 T cells emerge from effector T-cell progenitors. Nature 452:7185356–60 [Google Scholar]
  93. Intlekofer AM, Takemoto N, Wherry EJ, Longworth SA, Northrup JT. 93.  et al. 2005. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol. 6:121236–44 [Google Scholar]
  94. Stefanová I, Dorfman JR, Germain RN. 94.  2002. Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature 420:6914429–34 [Google Scholar]
  95. Hochweller K, Wabnitz GH, Samstag Y, Suffner J, Hämmerling GJ, Garbi N. 95.  2010. Dendritic cells control T cell tonic signaling required for responsiveness to foreign antigen. PNAS 107:135931–36 [Google Scholar]
  96. Mandl JN, Monteiro JP, Vrisekoop N, Germain RN. 96.  2013. T cell-positive selection uses self-ligand binding strength to optimize repertoire recognition of foreign antigens. Immunity 38:2263–74 [Google Scholar]
  97. Fulton RB, Hamilton SE, Xing Y, Best JA, Goldrath AW. 97.  et al. 2014. The TCR's sensitivity to self peptide-MHC dictates the ability of naive CD8+ T cells to respond to foreign antigens. Nat. Immunol. 16:1107–17 [Google Scholar]
  98. Baron V, Bouneaud C, Cumano A, Lim A, Arstila TP. 98.  et al. 2003. The repertoires of circulating human CD8+ central and effector memory T cell subsets are largely distinct. Immunity 18:2193–204 [Google Scholar]
  99. Bouneaud C, Garcia Z, Kourilsky P, Pannetier C. 99.  2005. Lineage relationships, homeostasis, and recall capacities of central- and effector-memory CD8 T cells in vivo. J. Exp. Med. 201:4579–90 [Google Scholar]
  100. Neuenhahn M, Kerksiek KM, Nauerth M, Suhre MH, Schiemann M. 100.  et al. 2006. CD8α+ dendritic cells are required for efficient entry of Listeria monocytogenes into the spleen. Immunity 25:4619–30 [Google Scholar]
  101. Verschoor A, Neuenhahn M, Navarini AA, Graef P, Plaumann A. 101.  et al. 2011. A platelet-mediated system for shuttling blood-borne bacteria to CD8α+ dendritic cells depends on glycoprotein GPIb and complement C3. Nat. Immunol. 12:121194–201 [Google Scholar]
  102. Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C. 102.  et al. 2007. Differential antigen processing by dendritic cell subsets in vivo. Science 315:5808107–11 [Google Scholar]
  103. Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H. 103.  et al. 2008. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322:59041097–100 [Google Scholar]
  104. Ahmed R, Gray D. 104.  1996. Immunological memory and protective immunity: understanding their relation. Science 272:525854–60 [Google Scholar]
  105. Wherry EJ, Teichgräber V, Becker TC, Masopust D, Kaech SM. 105.  et al. 2003. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4:3225–34 [Google Scholar]
  106. Hikono H, Kohlmeier JE, Takamura S, Wittmer ST, Roberts AD, Woodland DL. 106.  2007. Activation phenotype, rather than central- or effector-memory phenotype, predicts the recall efficacy of memory CD8+ T cells. J. Exp. Med. 204:71625–36 [Google Scholar]
  107. Marshall HD, Chandele A, Jung YW, Meng H, Poholek AC. 107.  et al. 2011. Differential expression of Ly6C and T-bet distinguish effector and memory Th1 CD4+ cell properties during viral infection. Immunity 35:4633–46 [Google Scholar]
  108. Starbeck-Miller GR, Xue H-H, Harty JT. 108.  2014. IL-12 and type I interferon prolong the division of activated CD8 T cells by maintaining high-affinity IL-2 signaling in vivo. J. Exp. Med. 211:1105–20 [Google Scholar]
  109. Corbin GA, Harty JT. 109.  2004. Duration of infection and antigen display have minimal influence on the kinetics of the CD4+ T cell response to Listeria monocytogenes infection. J. Immunol. 173:95679–87 [Google Scholar]
  110. Badovinac VP, Messingham KAN, Jabbari A, Haring JS, Harty JT. 110.  2005. Accelerated CD8+ T-cell memory and prime-boost response after dendritic-cell vaccination. Nat. Med. 11:7748–56 [Google Scholar]
  111. Kaech SM, Wherry EJ, Ahmed R. 111.  2002. Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2:4251–62 [Google Scholar]
  112. Gett AV, Sallusto F, Lanzavecchia A, Geginat J. 112.  2003. T cell fitness determined by signal strength. Nat. Immunol. 4:4355–60 [Google Scholar]
  113. Sallusto F, Geginat J, Lanzavecchia A. 113.  2004. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22:745–63 [Google Scholar]
  114. Buchholz VR, Neuenhahn M, Busch DH. 114.  2011. CD8+ T cell differentiation in the aging immune system: until the last clone standing. Curr. Opin. Immunol. 23:4549–54 [Google Scholar]
  115. Nelson RW, Beisang D, Tubo NJ, Dileepan T, Wiesner DL. 115.  et al. 2014. T cell receptor cross-reactivity between similar foreign and self peptides influences naive cell population size and autoimmunity. Immunity 42:195–107 [Google Scholar]
  116. Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA. 116.  2008. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J. Exp. Med. 205:3711–23 [Google Scholar]
  117. Schlub TE, Venturi V, Kedzierska K, Wellard C, Doherty PC. 117.  et al. 2009. Division-linked differentiation can account for CD8+ T-cell phenotype in vivo. Eur. J. Immunol. 39:167–77 [Google Scholar]
  118. Schlub TE, Badovinac VP, Sabel JT, Harty JT, Davenport MP. 118.  2010. Predicting CD62L expression during the CD8+ T-cell response in vivo. Immunol. Cell Biol. 88:2157–64 [Google Scholar]
  119. Kalia V, Sarkar S, Subramaniam S, Haining WN, Smith KA, Ahmed R. 119.  2010. Prolonged interleukin-2Rα expression on virus-specific CD8+ T cells favors terminal-effector differentiation in vivo. Immunity 32:191–103 [Google Scholar]
  120. Pipkin ME, Sacks JA, Cruz-Guilloty F, Lichtenheld MG, Bevan MJ, Rao A. 120.  2010. Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 32:179–90 [Google Scholar]
  121. Rao RR, Li Q, Gubbels Bupp MR, Shrikant PA. 121.  2012. Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8+ T cell differentiation. Immunity 36:3374–87 [Google Scholar]
  122. Kim MV, Ouyang W, Liao W, Zhang MQ, Li MO. 122.  2013. The transcription factor Foxo1 controls central-memory CD8+ T cell responses to infection. Immunity 39:2286–97 [Google Scholar]
  123. Hedrick SM, Michelini RH, Doedens AL, Goldrath AW, Stone EL. 123.  2012. FOXO transcription factors throughout T cell biology. Nat. Rev. Immunol. 12:9649–61 [Google Scholar]
  124. Reiner SL, Adams WC. 124.  2014. Lymphocyte fate specification as a deterministic but highly plastic process. Nat. Rev. Immunol. 14:10699–704 [Google Scholar]
  125. Hodgkin PD, Dowling MR, Duffy KR. 125.  2014. Why the immune system takes its chances with randomness. Nat. Rev. Immunol. 14:10711 [Google Scholar]
  126. Chang JT, Palanivel VR, Kinjyo I, Schambach F, Intlekofer AM. 126.  et al. 2007. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315:58191687–91 [Google Scholar]
  127. Chang JT, Ciocca ML, Kinjyo I, Palanivel VR, McClurkin CE. 127.  et al. 2011. Asymmetric proteasome segregation as a mechanism for unequal partitioning of the transcription factor T-bet during T lymphocyte division. Immunity 34:4492–504 [Google Scholar]
  128. Ciocca ML, Barnett BE, Burkhardt JK, Chang JT, Reiner SL. 128.  2012. Cutting edge: asymmetric memory T cell division in response to rechallenge. J. Immunol. 188:94145–48 [Google Scholar]
  129. King CG, Koehli S, Hausmann B, Schmaler M, Zehn D, Palmer E. 129.  2012. T cell affinity regulates asymmetric division, effector cell differentiation, and tissue pathology. Immunity 37:4709–20 [Google Scholar]
  130. Flossdorf M, Rössler J, Buchholz VR, Busch DH, Höfer T. 130.  2015. CD8+ T cell diversification by asymmetric cell division. Nat. Immunol. 16:9891–93 [Google Scholar]
  131. Arsenio J, Kakaradov B, Metz PJ, Kim SH, Yeo GW, Chang JT. 131.  2014. Early specification of CD8+ T lymphocyte fates during adaptive immunity revealed by single-cell gene-expression analyses. Nat. Immunol. 15:4365–72 [Google Scholar]
  132. Hawkins ED, Oliaro J, Kallies A, Belz GT, Filby A. 132.  et al. 2013. Regulation of asymmetric cell division and polarity by Scribble is not required for humoral immunity. Nat. Commun. 4:1801 [Google Scholar]
  133. Lemaître F, Moreau HD, Vedele L, Bousso P. 133.  2013. Phenotypic CD8+ T cell diversification occurs before, during, and after the first T cell division. J. Immunol. 191:41578–85 [Google Scholar]
  134. Yamamoto R, Morita Y, Ooehara J, Hamanaka S, Onodera M. 134.  et al. 2013. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154:51112–26 [Google Scholar]
  135. Mascré G, Dekoninck S, Drogat B, Youssef KK, Brohée S. 135.  et al. 2012. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489:7415257–62 [Google Scholar]
  136. Hsu Y-C, Li L, Fuchs E. 136.  2014. Transit-amplifying cells orchestrate stem cell activity and tissue regeneration. Cell 157:4935–49 [Google Scholar]
  137. Weissman IL. 137.  2000. Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:1157–68 [Google Scholar]
  138. Hale JS, Boursalian TE, Turk GL, Fink PJ. 138.  2006. Thymic output in aged mice. PNAS 103:228447–52 [Google Scholar]
  139. Snyder CM, Cho KS, Bonnett EL, van Dommelen S, Shellam GR, Hill AB. 139.  2008. Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells. Immunity 29:4650–59 [Google Scholar]
  140. Morrison SJ, Shah NM, Anderson DJ. 140.  1997. Regulatory mechanisms in stem cell biology. Cell 88:3287–98 [Google Scholar]
  141. Becker AJ, McCulloch EA, Till JE. 141.  1963. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–54 [Google Scholar]
  142. Till JE, McCulloch EA, Siminovitch L. 142.  1964. A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. PNAS 51:29–36 [Google Scholar]
  143. Osawa M, Hanada K, Hamada H, Nakauchi H. 143.  1996. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273:5272242–45 [Google Scholar]
  144. Smith LG, Weissman IL, Heimfeld S. 144.  1991. Clonal analysis of hematopoietic stem-cell differentiation in vivo. PNAS 88:72788–92 [Google Scholar]
  145. Etzrodt M, Endele M, Schroeder T. 145.  2014. Quantitative single-cell approaches to stem cell research. Cell Stem Cell 15:5546–58 [Google Scholar]
  146. Fearon DT, Manders P, Wagner SD. 146.  2001. Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science 293:5528248–50 [Google Scholar]
  147. Gattinoni L, Klebanoff CA, Restifo NP. 147.  2012. Paths to stemness: building the ultimate antitumour T cell. Nat. Rev. Cancer 12:10671–84 [Google Scholar]
  148. Dykstra B, Kent D, Bowie M, McCaffrey L, Hamilton M. 148.  et al. 2007. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1:2218–29 [Google Scholar]
  149. Zhang Y, Joe G, Hexner E, Zhu J, Emerson SG. 149.  2005. Host-reactive CD8+ memory stem cells in graft-versus-host disease. Nat. Med. 11:121299–305 [Google Scholar]
  150. Gattinoni L, Zhong X-S, Palmer DC, Ji Y, Hinrichs CS. 150.  et al. 2009. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat. Med. 15:7808–13 [Google Scholar]
  151. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM. 151.  et al. 2011. A human memory T cell subset with stem cell-like properties. Nat. Med. 17:101290–97 [Google Scholar]
  152. Kretzschmar K, Watt FM. 152.  2012. Lineage tracing. Cell 148:1–233–45 [Google Scholar]
  153. Tischer D, Weiner OD. 153.  2014. Illuminating cell signalling with optogenetic tools. Nat. Rev. Mol. Cell Biol. 15:8551–58 [Google Scholar]
  154. Sun J, Ramos A, Chapman B, Johnnidis JB, Le L. 154.  et al. 2014. Clonal dynamics of native haematopoiesis. Nature 514:7522322–27 [Google Scholar]
  155. Stemberger C, Dreher S, Tschulik C, Piossek C, Bet J. 155.  et al. 2012. Novel serial positive enrichment technology enables clinical multiparameter cell sorting. PLOS ONE 7:4e35798 [Google Scholar]
  156. Shlush LI, Chapal-Ilani N, Adar R, Pery N, Maruvka Y. 156.  et al. 2012. Cell lineage analysis of acute leukemia relapse uncovers the role of replication-rate heterogeneity and microsatellite instability. Blood 120:3603–12 [Google Scholar]
  157. Bachmann MF, Wolint P, Schwarz K, Jäger P, Oxenius A. 157.  2005. Functional properties and lineage relationship of CD8+ T cell subsets identified by expression of IL-7 receptor alpha and CD62L. J. Immunol. 175:74686–96 [Google Scholar]
  158. Pahl-Seibert M-F, Juelch M, Podlech J, Thomas D, Deegen P. 158.  et al. 2005. Highly protective in vivo function of cytomegalovirus IE1 epitope-specific memory CD8 T cells purified by T-cell receptor-based cell sorting. J. Virol. 79:95400–413 [Google Scholar]
  159. Huster KM, Stemberger C, Busch DH. 159.  2006. Protective immunity towards intracellular pathogens. Curr. Opin. Immunol. 18:4458–64 [Google Scholar]
  160. Huster KM, Stemberger C, Gasteiger G, Kastenmüller W, Drexler I, Busch DH. 160.  2009. Cutting edge: Memory CD8 T cell compartment grows in size with immunological experience but nevertheless can lose function. J. Immunol. 183:116898–902 [Google Scholar]
  161. Taylor PC, Feldmann M. 161.  2009. Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat. Rev. Rheumatol. 5:10578–82 [Google Scholar]
  162. Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C. 162.  et al. 2012. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet 380:98561829–39 [Google Scholar]
  163. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS. 163.  et al. 1995. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N. Engl. J. Med. 333:161038–44 [Google Scholar]
  164. Cobbold M, Khan N, Pourgheysari B, Tauro S, McDonald D. 164.  et al. 2005. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J. Exp. Med. 202:3379–86 [Google Scholar]
  165. Stemberger C, Graef P, Odendahl M, Albrecht J, Dössinger G. 165.  et al. 2014. Lowest numbers of primary CD8+ T cells can reconstitute protective immunity upon adoptive immunotherapy. Blood 124:4628–37 [Google Scholar]
  166. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA. 166.  et al. 2011. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3:9595ra73 [Google Scholar]
  167. Rambaldi A, Biagi E, Bonini C, Biondi A, Introna M. 167.  2015. Cell-based strategies to manage leukemia relapse: efficacy and feasibility of immunotherapy approaches. Leukemia 29:11–10 [Google Scholar]
  168. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X. 168.  et al. 2013. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5:177177ra38 [Google Scholar]
  169. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL. 169.  et al. 2013. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368:161509–18 [Google Scholar]
  170. Porter DL, Levine BL, Kalos M, Bagg A, June CH. 170.  2011. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365:8725–33 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error