Granulomas are organized aggregates of macrophages, often with characteristic morphological changes, and other immune cells. These evolutionarily ancient structures form in response to persistent particulate stimuli—infectious or noninfectious—that individual macrophages cannot eradicate. Granulomas evolved as protective responses to destroy or sequester particles but are frequently pathological in the context of foreign bodies, infections, and inflammatory diseases. We summarize recent findings that suggest that the granulomatous response unfolds in a stepwise program characterized by a series of macrophage activations and transformations that in turn recruit additional cells and produce structural changes. We explore why different granulomas vary and the reasons that granulomas are protective and pathogenic. Understanding the mechanisms and role of granuloma formation may uncover new therapies for the multitude of granulomatous diseases that constitute serious medical problems while enhancing the protective function of granulomas in infections.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adams DO. 1.  1976. The granulomatous inflammatory response: a review. Am. J. Pathol. 84:164–92 [Google Scholar]
  2. Spector WG. 2.  1969. The granulomatous inflammatory exudate. Int. Rev. Exp. Pathol. 8:1–55 [Google Scholar]
  3. Williams GT, Williams WJ. 3.  1983. Granulomatous inflammation—a review. J. Clin. Pathol. 36:723–33 [Google Scholar]
  4. Adams DO. 4.  1974. The structure of mononuclear phagocytes differentiating in vivo: I. Sequential fine and histologic studies of the effect of Bacillus Calmette-Guerin (BCG). Am. J. Pathol. 76:17–48 [Google Scholar]
  5. Cohn ZA. 5.  1968. The structure and function of monocytes and macrophages. Adv. Immunol. 9:163–214 [Google Scholar]
  6. Dannenberg AM Jr. 6.  1968. Cellular hypersensitivity and cellular immunity in the pathogenesis of tuberculosis: specificity, systemic and local nature, and associated macrophage enzymes. Bacteriol Rev 32:85–102. [Google Scholar]
  7. Helming L, Gordon S. 7.  2007. The molecular basis of macrophage fusion. Immunobiology 212:785–93 [Google Scholar]
  8. Peyron P, Vaubourgeix J, Poquet Y, Levillain F, Botanch C. 8.  et al. 2008. Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLOS Pathog 4:e1000204 [Google Scholar]
  9. Ramakrishnan L. 9.  2012. Revisiting the role of the granuloma in tuberculosis. Nat. Rev. Immunol. 12:352–66 [Google Scholar]
  10. Metchnikoff E. 10.  1968. Lectures on the Comparative Pathology of Inflammation New York: Dover [Google Scholar]
  11. Boros DL. 11.  2003. Granulomatous Infections and Inflammations: Cellular and Molecular Mechanisms Washington, DC: ASM [Google Scholar]
  12. Anderson JM, Rodriguez A, Chang DT. 12.  2008. Foreign body reaction to biomaterials. Semin. Immunol. 20:86–100 [Google Scholar]
  13. North RJ, Izzo AA. 13.  1993. Granuloma formation in severe combined immunodeficient (SCID) mice in response to progressive BCG infection: Tendency not to form granulomas in the lung is associated with faster bacterial growth in this organ. Am. J. Pathol. 142:1959–66 [Google Scholar]
  14. Kaufmann SH, Ladel CH. 14.  1994. Role of T cell subsets in immunity against intracellular bacteria: experimental infections of knock-out mice with Listeria monocytogenes and Mycobacterium bovis BCG. Immunobiology 191:509–19 [Google Scholar]
  15. Flynn JL, Chan J. 15.  2001. Immunology of tuberculosis. Annu. Rev. Immunol. 19:93–129 [Google Scholar]
  16. Pearce EJ, MacDonald AS. 16.  2002. The immunobiology of schistosomiasis. Nat. Rev. Immunol. 2:499–511 [Google Scholar]
  17. Lewis MR. 17.  1925. The formation of macrophages, epithelioid cells and giant cells from leucocytes in incubated blood. Am. J. Pathol. 1:91–100.1 [Google Scholar]
  18. Morton B. 18.  1974. Studies on the biology of Dreissena polymorpha: VI. The occurrence of chronic pallial and ctenidial inflammatory granulomas—the response to injury. J. Invertebr. Pathol. 23:106–13 [Google Scholar]
  19. Morton B. 19.  1977. The occurrence of inflammatory granulomas in the ctenidial marsupium of Corbicula fluminea (Mollusca: Bivalvia): a consequence of larval incubation. J. Invertebr. Pathol. 30:5–14 [Google Scholar]
  20. Cooper EL. 20.  1968. Multinucleate giant cells, granulomata, and “myoblastomas” in annelid worms. J. Invertebr. Pathol. 11:123–31 [Google Scholar]
  21. Nappi AJ. 21.  1973. Hemocytic changes associated with the encapsulation and melanization of some insect parasites. Exp. Parasitol. 33:285–302 [Google Scholar]
  22. Sorrentino RP, Carton Y, Govind S. 22.  2002. Cellular immune response to parasite infection in the Drosophila lymph gland is developmentally regulated. Dev. Biol. 243:65–80 [Google Scholar]
  23. Michelson EH. 23.  1961. An acid-fast pathogen of fresh-water snails. Am. J. Trop. Med. Hyg. 10:423–33 [Google Scholar]
  24. Grogan TM, Payne CM, Payne TB, Spier C, Cromey DW. 24.  et al. 1987. Cutaneous myiasis. Immunohistologic and ultrastructural morphometric features of a human botfly lesion. Am. J. Dermatopathol. 9:232–39 [Google Scholar]
  25. Hildemann WH, Walford RL. 25.  1960. Chronic skin homograft rejection in the Syrian hamster. Ann. N. Y. Acad. Sci. 87:56–77 [Google Scholar]
  26. Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L. 26.  2002. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 17:693–702 [Google Scholar]
  27. Cronan MR, Beerman RW, Rosenberg AF, Saelens JW, Johnson MG. 27.  et al. 2016. Macrophage epithelial reprogramming underlies mycobacterial granuloma formation and promotes infection. Immunity 45:861–76 [Google Scholar]
  28. Papadimitriou JM, Spector WG. 28.  1971. The origin, properties and fate of epithelioid cells. J. Pathol. 105:187–203 [Google Scholar]
  29. Papadimitriou JM, Spector WG. 29.  1972. The ultrastructure of high- and low-turnover inflammatory granulomata. J. Pathol. 106:37–43 [Google Scholar]
  30. Bouley DM, Ghori N, Mercer KL, Falkow S, Ramakrishnan L. 30.  2001. Dynamic nature of host-pathogen interactions in Mycobacterium marinum granulomas. Infect. Immun. 69:7820–31 [Google Scholar]
  31. Adams DO. 31.  1966. Experimental pine pollen granulomatous pneumonia in the rat. Am. J. Pathol. 49:153–65 [Google Scholar]
  32. Moreno JL, Mikhailenko I, Tondravi MM, Keegan AD. 32.  2007. IL-4 promotes the formation of multinucleated giant cells from macrophage precursors by a STAT6-dependent, homotypic mechanism: contribution of E-cadherin. J. Leukoc. Biol. 82:1542–53 [Google Scholar]
  33. Van den Bossche J, Bogaert P, van Hengel J, Guerin CJ, Berx G. 33.  et al. 2009. Alternatively activated macrophages engage in homotypic and heterotypic interactions through IL-4 and polyamine-induced E-cadherin/catenin complexes. Blood 114:4664–74 [Google Scholar]
  34. Cooper AM. 34.  2009. Cell-mediated immune responses in tuberculosis. Annu. Rev. Immunol. 27:393–422 [Google Scholar]
  35. Linke M, Pham HT, Katholnig K, Schnoller T, Miller A. 35.  et al. 2017. Chronic signaling via the metabolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis progression. Nat. Immunol. 18:293–302 [Google Scholar]
  36. Helming L, Gordon S. 36.  2009. Molecular mediators of macrophage fusion. Trends Cell Biol 19:514–22 [Google Scholar]
  37. McNally AK, Anderson JM. 37.  2015. Phenotypic expression in human monocyte-derived interleukin-4-induced foreign body giant cells and macrophages in vitro: dependence on material surface properties. J. Biomed. Mater. Res. A 103:1380–90 [Google Scholar]
  38. Mariano M, Spector WG. 38.  1974. The formation and properties of macrophage polykaryons (inflammatory giant cells). J. Pathol. 113:1–19 [Google Scholar]
  39. van der Rhee HJ, Hillebrands W, Daems WT. 39.  1978. Are Langhans giant cells precursors of foreign-body giant cells?. Arch. Dermatol. Res. 263:13–21 [Google Scholar]
  40. McInnes A, Rennick DM. 40.  1988. Interleukin 4 induces cultured monocytes/macrophages to form giant multinucleated cells. J. Exp. Med. 167:598–611 [Google Scholar]
  41. DeFife KM, Jenney CR, McNally AK, Colton E, Anderson JM. 41.  1997. Interleukin-13 induces human monocyte/macrophage fusion and macrophage mannose receptor expression. J. Immunol. 158:3385–90 [Google Scholar]
  42. McNally AK, Anderson JM. 42.  1995. Interleukin-4 induces foreign body giant cells from human monocytes/macrophages. Differential lymphokine regulation of macrophage fusion leads to morphological variants of multinucleated giant cells. Am. J. Pathol. 147:1487–99 [Google Scholar]
  43. Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N. 43.  et al. 2005. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J. Exp. Med. 202:345–51 [Google Scholar]
  44. Helming L, Gordon S. 44.  2007. Macrophage fusion induced by IL-4 alternative activation is a multistage process involving multiple target molecules. Eur. J. Immunol. 37:33–42 [Google Scholar]
  45. Miyamoto H, Katsuyama E, Miyauchi Y, Hoshi H, Miyamoto K. 45.  et al. 2012. An essential role for STAT6-STAT1 protein signaling in promoting macrophage cell-cell fusion. J. Biol. Chem. 287:32479–84 [Google Scholar]
  46. Kaplan MH, Whitfield JR, Boros DL, Grusby MJ. 46.  1998. Th2 cells are required for the Schistosoma mansoni egg-induced granulomatous response. J. Immunol. 160:1850–56 [Google Scholar]
  47. McKenzie GJ, Fallon PG, Emson CL, Grencis RK, McKenzie AN. 47.  1999. Simultaneous disruption of interleukin (IL)-4 and IL-13 defines individual roles in T helper cell type 2-mediated responses. J. Exp. Med. 189:1565–72 [Google Scholar]
  48. Chiaramonte MG, Schopf LR, Neben TY, Cheever AW, Donaldson DD, Wynn TA. 48.  1999. IL-13 is a key regulatory cytokine for Th2 cell-mediated pulmonary granuloma formation and IgE responses induced by Schistosoma mansoni eggs. J. Immunol. 162:920–30 [Google Scholar]
  49. Jankovic D, Kullberg MC, Noben-Trauth N, Caspar P, Ward JM. 49.  et al. 1999. Schistosome-infected IL-4 receptor knockout (KO) mice, in contrast to IL-4 KO mice, fail to develop granulomatous pathology while maintaining the same lymphokine expression profile. J. Immunol. 163:337–42 [Google Scholar]
  50. Herbert DR, Holscher C, Mohrs M, Arendse B, Schwegmann A. 50.  et al. 2004. Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology. Immunity 20:623–35 [Google Scholar]
  51. Herbert DR, Orekov T, Perkins C, Rothenberg ME, Finkelman FD. 51.  2008. IL-4R alpha expression by bone marrow-derived cells is necessary and sufficient for host protection against acute schistosomiasis. J. Immunol. 180:4948–55 [Google Scholar]
  52. Helming L, Tomasello E, Kyriakides TR, Martinez FO, Takai T. 52.  et al. 2008. Essential role of DAP12 signaling in macrophage programming into a fusion-competent state. Sci. Signal. 1:ra11 [Google Scholar]
  53. Turnbull IR, Colonna M. 53.  2007. Activating and inhibitory functions of DAP12. Nat. Rev. Immunol. 7:155–61 [Google Scholar]
  54. Herrtwich L, Nanda I, Evangelou K, Nikolova T, Horn V. 54.  et al. 2016. DNA damage signaling instructs polyploid macrophage fate in granulomas. Cell 167:1264–80.e18 [Google Scholar]
  55. Gharun K, Senges J, Seidl M, Lösslein A, Kolter J. 55.  et al. 2017. Mycobacteria exploit nitric oxide-induced transformation of macrophages into permissive giant cells. EMBO Rep 18:2144–59 [Google Scholar]
  56. Puissegur MP, Lay G, Gilleron M, Botella L, Nigou J. 56.  et al. 2007. Mycobacterial lipomannan induces granuloma macrophage fusion via a TLR2-dependent, ADAM9- and β1 integrin-mediated pathway. J. Immunol. 178:3161–69 [Google Scholar]
  57. Chambers TJ. 57.  1977. Studies on the phagocytic capacity of macrophage polykaryons. J. Pathol. 123:65–77 [Google Scholar]
  58. Schlesinger L, Musson RA, Johnston RB Jr. 58.  1984. Functional and biochemical studies of multinucleated giant cells derived from the culture of human monocytes. J. Exp. Med. 159:1289–94 [Google Scholar]
  59. Lay G, Poquet Y, Salek-Peyron P, Puissegur MP, Botanch C. 59.  et al. 2007. Langhans giant cells from M. tuberculosis-induced human granulomas cannot mediate mycobacterial uptake. J. Pathol. 211:76–85 [Google Scholar]
  60. Nakanishi-Matsui M, Yano S, Matsumoto N, Futai M. 60.  2012. Lipopolysaccharide induces multinuclear cell from RAW264.7 line with increased phagocytosis activity. Biochem. Biophys. Res. Commun. 425:144–49 [Google Scholar]
  61. Milde R, Ritter J, Tennent GA, Loesch A, Martinez FO. 61.  et al. 2015. Multinucleated giant cells are specialized for complement-mediated phagocytosis and large target destruction. Cell Rep 13:1937–48 [Google Scholar]
  62. Janeway CA Jr. 62.  1989. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54:Part 11–13 [Google Scholar]
  63. Jenkins MK, Khoruts A, Ingulli E, Mueller DL, McSorley SJ. 63.  et al. 2001. In vivo activation of antigen-specific CD4 T cells. Annu. Rev. Immunol. 19:23–45 [Google Scholar]
  64. Iwasaki A, Medzhitov R. 64.  2015. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16:343–53 [Google Scholar]
  65. Sher A, Coffman RL. 65.  1992. Regulation of immunity to parasites by T cells and T cell-derived cytokines. Annu. Rev. Immunol. 10:385–409 [Google Scholar]
  66. Tubo NJ, Jenkins MK. 66.  2014. CD4+ T cells: guardians of the phagosome. Clin. Microbiol. Rev. 27:200–13 [Google Scholar]
  67. Murphy KM, Ouyang W, Farrar JD, Yang J, Ranganath S. 67.  et al. 2000. Signaling and transcription in T helper development. Annu. Rev. Immunol. 18:451–94 [Google Scholar]
  68. Locksley RM. 68.  1994. Th2 cells: help for helminths. J. Exp. Med. 179:1405–7 [Google Scholar]
  69. Finkelman FD, Shea-Donohue T, Morris SC, Gildea L, Strait R. 69.  et al. 2004. Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunol. Rev. 201:139–55 [Google Scholar]
  70. Grencis RK. 70.  2015. Immunity to helminths: resistance, regulation, and susceptibility to gastrointestinal nematodes. Annu. Rev. Immunol. 33:201–25 [Google Scholar]
  71. Philips JA, Ernst JD. 71.  2012. Tuberculosis pathogenesis and immunity. Annu. Rev. Pathol. 7:353–84 [Google Scholar]
  72. Pagán AJ, Ramakrishnan L. 72.  2014. Immunity and immunopathology in the tuberculous granuloma. Cold Spring Harb. Perspect. Med. 5:a018499 [Google Scholar]
  73. Green AM, Difazio R, Flynn JL. 73.  2013. IFN-gamma from CD4 T cells is essential for host survival and enhances CD8 T cell function during Mycobacterium tuberculosis infection. J. Immunol. 190:270–77 [Google Scholar]
  74. O'Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MP. 74.  2013. The immune response in tuberculosis. Annu. Rev. Immunol. 31:475–527 [Google Scholar]
  75. Kwan CK, Ernst JD. 75.  2011. HIV and tuberculosis: a deadly human syndemic. Clin. Microbiol. Rev. 24:351–76 [Google Scholar]
  76. Srivastava S, Ernst JD. 76.  2013. Cutting edge: Direct recognition of infected cells by CD4 T cells is required for control of intracellular Mycobacterium tuberculosis in vivo. J. Immunol. 191:1016–20 [Google Scholar]
  77. Egen JG, Rothfuchs AG, Feng CG, Horwitz MA, Sher A, Germain RN. 77.  2011. Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. Immunity 34:807–19 [Google Scholar]
  78. Bold TD, Banaei N, Wolf AJ, Ernst JD. 78.  2011. Suboptimal activation of antigen-specific CD4+ effector cells enables persistence of M. tuberculosis in vivo. PLOS Pathog 7:e1002063 [Google Scholar]
  79. Gallegos AM, Xiong H, Leiner IM, Susac B, Glickman MS. 79.  et al. 2016. Control of T cell antigen reactivity via programmed TCR downregulation. Nat. Immunol. 17:379–86 [Google Scholar]
  80. Moguche AO, Musvosvi M, Penn-Nicholson A, Plumlee CR, Mearns H. 80.  et al. 2017. Antigen availability shapes T cell differentiation and function during tuberculosis. Cell Host Microbe 21:695–706.e5 [Google Scholar]
  81. Bean AG, Roach DR, Briscoe H, France MP, Korner H. 81.  et al. 1999. Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J. Immunol. 162:3504–11 [Google Scholar]
  82. Roach DR, Bean AG, Demangel C, France MP, Briscoe H, Britton WJ. 82.  2002. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J. Immunol. 168:4620–27 [Google Scholar]
  83. Saunders BM, Briscoe H, Britton WJ. 83.  2004. T cell-derived tumour necrosis factor is essential, but not sufficient, for protection against Mycobacterium tuberculosis infection. Clin. Exp. Immunol. 137:279–87 [Google Scholar]
  84. Allie N, Grivennikov SI, Keeton R, Hsu NJ, Bourigault ML. 84.  et al. 2013. Prominent role for T cell-derived tumour necrosis factor for sustained control of Mycobacterium tuberculosis infection. Sci. Rep. 3:1809 [Google Scholar]
  85. Lin PL, Myers A, Smith L, Bigbee C, Bigbee M. 85.  et al. 2010. Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum 62:340–50 [Google Scholar]
  86. Nascimento M, Huang SC, Smith A, Everts B, Lam W. 86.  et al. 2014. Ly6Chi monocyte recruitment is responsible for Th2 associated host-protective macrophage accumulation in liver inflammation due to schistosomiasis. PLOS Pathog 10:e1004282 [Google Scholar]
  87. Girgis NM, Gundra UM, Ward LN, Cabrera M, Frevert U, Loke P. 87.  2014. Ly6Chigh monocytes become alternatively activated macrophages in schistosome granulomas with help from CD4+ cells. PLOS Pathog 10:e1004080 [Google Scholar]
  88. Ragheb S, Mathew RC, Boros DL. 88.  1987. Establishment and characterization of an antigen-specific T-cell line from liver granulomas of Schistosoma mansoni-infected mice. Infect. Immun. 55:2625–30 [Google Scholar]
  89. Ruth JH, Warmington KS, Shang X, Lincoln P, Evanoff H. 89.  et al. 2000. Interleukin 4 and 13 participation in mycobacterial (type-1) and schistosomal (type-2) antigen-elicited pulmonary granuloma formation: multiparameter analysis of cellular recruitment, chemokine expression and cytokine networks. Cytokine 12:432–44 [Google Scholar]
  90. Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, El Kasmi KC. 90.  et al. 2009. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLOS Pathog 5:e1000371 [Google Scholar]
  91. Gordon S, Martinez FO. 91.  2010. Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604 [Google Scholar]
  92. Fairfax K, Nascimento M, Huang SC, Everts B, Pearce EJ. 92.  2012. Th2 responses in schistosomiasis. Semin. Immunopathol. 34:863–71 [Google Scholar]
  93. Fitzsimmons CM, Schramm G, Jones FM, Chalmers IW, Hoffmann KF. 93.  et al. 2005. Molecular characterization of omega-1: a hepatotoxic ribonuclease from Schistosoma mansoni eggs. Mol. Biochem. Parasitol. 144:123–27 [Google Scholar]
  94. Schramm G, Gronow A, Knobloch J, Wippersteg V, Grevelding CG. 94.  et al. 2006. IPSE/alpha-1: a major immunogenic component secreted from Schistosoma mansoni eggs. Mol. Biochem. Parasitol. 147:9–19 [Google Scholar]
  95. Schramm G, Mohrs K, Wodrich M, Doenhoff MJ, Pearce EJ. 95.  et al. 2007. Cutting edge: IPSE/alpha-1, a glycoprotein from Schistosoma mansoni eggs, induces IgE-dependent, antigen-independent IL-4 production by murine basophils in vivo. J. Immunol. 178:6023–27 [Google Scholar]
  96. Everts B, Perona-Wright G, Smits HH, Hokke CH, van der Ham AJ. 96.  et al. 2009. Omega-1, a glycoprotein secreted by Schistosoma mansoni eggs, drives Th2 responses. J. Exp. Med. 206:1673–80 [Google Scholar]
  97. Steinfelder S, Andersen JF, Cannons JL, Feng CG, Joshi M. 97.  et al. 2009. The major component in schistosome eggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega-1). J. Exp. Med. 206:1681–90 [Google Scholar]
  98. Hagen J, Young ND, Every AL, Pagel CN, Schnoeller C. 98.  et al. 2014. Omega-1 knockdown in Schistosoma mansoni eggs by lentivirus transduction reduces granuloma size in vivo. Nat. Commun. 5:5375 [Google Scholar]
  99. Abdulla MH, Lim KC, McKerrow JH, Caffrey CR. 99.  2011. Proteomic identification of IPSE/alpha-1 as a major hepatotoxin secreted by Schistosoma mansoni eggs. PLOS Negl. Trop. Dis. 5:e1368 [Google Scholar]
  100. Amiri P, Locksley RM, Parslow TG, Sadick M, Rector E. 100.  et al. 1992. Tumour necrosis factor alpha restores granulomas and induces parasite egg-laying in schistosome-infected SCID mice. Nature 356:604–7 [Google Scholar]
  101. Joseph AL, Boros DL. 101.  1993. Tumor necrosis factor plays a role in Schistosoma mansoni egg-induced granulomatous inflammation. J. Immunol. 151:5461–71 [Google Scholar]
  102. Leptak CL, McKerrow JH. 102.  1997. Schistosome egg granulomas and hepatic expression of TNF-alpha are dependent on immune priming during parasite maturation. J. Immunol. 158:301–7 [Google Scholar]
  103. Chensue SW, Warmington K, Ruth J, Lincoln P, Kuo MC, Kunkel SL. 103.  1994. Cytokine responses during mycobacterial and schistosomal antigen-induced pulmonary granuloma formation: production of Th1 and Th2 cytokines and relative contribution of tumor necrosis factor. Am. J. Pathol. 145:1105–13 [Google Scholar]
  104. Cheever AW, Poindexter RW, Wynn TA. 104.  1999. Egg laying is delayed but worm fecundity is normal in SCID mice infected with Schistosoma japonicum and S. mansoni with or without recombinant tumor necrosis factor alpha treatment. Infect. Immun. 67:2201–8 [Google Scholar]
  105. Saltini C, Winestock K, Kirby M, Pinkston P, Crystal RG. 105.  1989. Maintenance of alveolitis in patients with chronic beryllium disease by beryllium-specific helper T cells. N. Engl. J. Med. 320:1103–9 [Google Scholar]
  106. Fontenot AP, Kotzin BL, Comment CE, Newman LS. 106.  1998. Expansions of T-cell subsets expressing particular T-cell receptor variable regions in chronic beryllium disease. Am. J. Respir. Cell Mol. Biol. 18:581–89 [Google Scholar]
  107. Fontenot AP, Falta MT, Kappler JW, Dai S, McKee AS. 107.  2016. Beryllium-induced hypersensitivity: genetic susceptibility and neoantigen generation. J. Immunol. 196:22–27 [Google Scholar]
  108. Richeldi L, Sorrentino R, Saltini C. 108.  1993. HLA-DPB1 glutamate 69: a genetic marker of beryllium disease. Science 262:242–44 [Google Scholar]
  109. Clayton GM, Wang Y, Crawford F, Novikov A, Wimberly BT. 109.  et al. 2014. Structural basis of chronic beryllium disease: linking allergic hypersensitivity and autoimmunity. Cell 158:132–42 [Google Scholar]
  110. Lu L, Vollmer J, Moulon C, Weltzien HU, Marrack P, Kappler J. 110.  2003. Components of the ligand for a Ni++ reactive human T cell clone. J. Exp. Med. 197:567–74 [Google Scholar]
  111. McKee AS, Mack DG, Crawford F, Fontenot AP. 111.  2015. MyD88 dependence of beryllium-induced dendritic cell trafficking and CD4+ T-cell priming. Mucosal Immunol 8:1237–47 [Google Scholar]
  112. Wedrychowicz H, Romanik I, Szczygielska E, Bezubik B. 112.  1992. The effect of adjuvant and specific or non-specific vaccination on development of protective immunity of rabbits against Trichostrongylus colubriformis infection. Int. J. Parasitol. 22:991–96 [Google Scholar]
  113. Lee JY, Atochina O, King B, Taylor L, Elloso M. 113.  et al. 2000. Beryllium, an adjuvant that promotes gamma interferon production. Infect. Immun. 68:4032–39 [Google Scholar]
  114. Maier LA, Sawyer RT, Bauer RA, Kittle LA, Lympany P. 114.  et al. 2001. High beryllium-stimulated TNF-α is associated with the −308 TNF-α promoter polymorphism and with clinical severity in chronic beryllium disease. Am. J. Respir. Crit. Care Med. 164:1192–99 [Google Scholar]
  115. Mack DG, Falta MT, McKee AS, Martin AK, Simonian PL. 115.  et al. 2014. Regulatory T cells modulate granulomatous inflammation in an HLA-DP2 transgenic murine model of beryllium-induced disease. PNAS 111:8553–58 [Google Scholar]
  116. Iannuzzi MC, Rybicki BA, Teirstein AS. 116.  2007. Sarcoidosis. N. Engl. J. Med. 357:2153–65 [Google Scholar]
  117. Esteves T, Aparicio G, Garcia-Patos V. 117.  2016. Is there any association between sarcoidosis and infectious agents? A systematic review and meta-analysis. BMC Pulm. Med. 16:165 [Google Scholar]
  118. Grunewald J, Eklund A. 118.  2007. Role of CD4+ T cells in sarcoidosis. Proc. Am. Thorac. Soc. 4:461–64 [Google Scholar]
  119. Mishra BB, Poulter LW, Janossy G, James DG. 119.  1983. The distribution of lymphoid and macrophage like cell subsets of sarcoid and Kveim granulomata: possible mechanism of negative PPD reaction in sarcoidosis. Clin. Exp. Immunol. 54:705–15 [Google Scholar]
  120. Siltzbach LE. 120.  1961. The Kveim test in sarcoidosis: a study of 750 patients. JAMA 178:476–82 [Google Scholar]
  121. Grunewald J, Olerup O, Persson U, Ohrn MB, Wigzell H, Eklund A. 121.  1994. T-cell receptor variable region gene usage by CD4+ and CD8+ T cells in bronchoalveolar lavage fluid and peripheral blood of sarcoidosis patients. PNAS 91:4965–69 [Google Scholar]
  122. Glanville J, Huang H, Nau A, Hatton O, Wagar LE. 122.  et al. 2017. Identifying specificity groups in the T cell receptor repertoire. Nature 547:94–98 [Google Scholar]
  123. Rybicki BA, Walewski JL, Maliarik MJ, Kian H, Iannuzzi MC. 123. Access Res. Group 2005. The BTNL2 gene and sarcoidosis susceptibility in African Americans and Whites. Am. J. Hum. Genet. 77:491–99 [Google Scholar]
  124. Valentonyte R, Hampe J, Huse K, Rosenstiel P, Albrecht M. 124.  et al. 2005. Sarcoidosis is associated with a truncating splice site mutation in BTNL2. Nat. Genet. 37:357–64 [Google Scholar]
  125. Lin Y, Wei J, Fan L, Cheng D. 125.  2015. BTNL2 gene polymorphism and sarcoidosis susceptibility: a meta-analysis. PLOS ONE 10:e0122639 [Google Scholar]
  126. Arnett HA, Viney JL. 126.  2014. Immune modulation by butyrophilins. Nat. Rev. Immunol. 14:559–69 [Google Scholar]
  127. Medica I, Kastrin A, Maver A, Peterlin B. 127.  2007. Role of genetic polymorphisms in ACE and TNF-alpha gene in sarcoidosis: a meta-analysis. J. Hum. Genet. 52:836–47 [Google Scholar]
  128. Eming SA, Wynn TA, Martin P. 128.  2017. Inflammation and metabolism in tissue repair and regeneration. Science 356:1026–30 [Google Scholar]
  129. Wynn TA, Vannella KM. 129.  2016. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44:450–62 [Google Scholar]
  130. Cassel SL, Eisenbarth SC, Iyer SS, Sadler JJ, Colegio OR. 130.  et al. 2008. The Nalp3 inflammasome is essential for the development of silicosis. PNAS 105:9035–40 [Google Scholar]
  131. Wilson MS, Madala SK, Ramalingam TR, Gochuico BR, Rosas IO. 131.  et al. 2010. Bleomycin and IL-1β–mediated pulmonary fibrosis is IL-17A dependent. J. Exp. Med. 207:535–52 [Google Scholar]
  132. Mi S, Li Z, Yang HZ, Liu H, Wang JP. 132.  et al. 2011. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-β1–dependent and –independent mechanisms. J. Immunol. 187:3003–14 [Google Scholar]
  133. Fabre T, Kared H, Friedman SL, Shoukry NH. 133.  2014. IL-17A enhances the expression of profibrotic genes through upregulation of the TGF-β receptor on hepatic stellate cells in a JNK-dependent manner. J. Immunol. 193:3925–33 [Google Scholar]
  134. Negash AA, Ramos HJ, Crochet N, Lau DT, Doehle B. 134.  et al. 2013. IL-1β production through the NLRP3 inflammasome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease. PLOS Pathog 9:e1003330 [Google Scholar]
  135. Distler JH, Schett G, Gay S, Distler O. 135.  2008. The controversial role of tumor necrosis factor alpha in fibrotic diseases. Arthritis Rheum 58:2228–35 [Google Scholar]
  136. Satoh T, Nakagawa K, Sugihara F, Kuwahara R, Ashihara M. 136.  et al. 2017. Identification of an atypical monocyte and committed progenitor involved in fibrosis. Nature 541:96–101 [Google Scholar]
  137. Lo BC, Gold MJ, Hughes MR, Antignano F, Valdez Y. 137.  et al. 2016. The orphan nuclear receptor ROR alpha and group 3 innate lymphoid cells drive fibrosis in a mouse model of Crohn's disease. Sci. Immunol. 1:eaaf8864 [Google Scholar]
  138. Dondossola E, Holzapfel BM, Alexander S, Filippini S, Hutmacher DW, Friedl P. 138.  2016. Examination of the foreign body response to biomaterials by nonlinear intravital microscopy.. Nat. Biomed. Eng 1:0007 [Google Scholar]
  139. Doloff JC, Veiseh O, Vegas AJ, Tam HH, Farah S. 139.  et al. 2017. Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates. Nat. Mater. 16:671–80 [Google Scholar]
  140. King A, Sandler S, Andersson A. 140.  2001. The effect of host factors and capsule composition on the cellular overgrowth on implanted alginate capsules. J. Biomed. Mater. Res 57:374–83 [Google Scholar]
  141. Veiseh O, Doloff JC, Ma M, Vegas AJ, Tam HH. 141.  et al. 2015. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14:643–51 [Google Scholar]
  142. Zhang L, Cao Z, Bai T, Carr L, Ella-Menye JR. 142.  et al. 2013. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31:553–56 [Google Scholar]
  143. Vegas AJ, Veiseh O, Doloff JC, Ma M, Tam HH. 143.  et al. 2016. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 34:345–52 [Google Scholar]
  144. Kaviratne M, Hesse M, Leusink M, Cheever AW, Davies SJ. 144.  et al. 2004. IL-13 activates a mechanism of tissue fibrosis that is completely TGF-β independent. J. Immunol. 173:4020–29 [Google Scholar]
  145. Fallon PG, Richardson EJ, McKenzie GJ, McKenzie AN. 145.  2000. Schistosome infection of transgenic mice defines distinct and contrasting pathogenic roles for IL-4 and IL-13: IL-13 is a profibrotic agent. J. Immunol. 164:2585–91 [Google Scholar]
  146. Gieseck RL 3rd, Ramalingam TR, Hart KM, Vannella KM, Cantu DA. 146.  et al. 2016. Interleukin-13 activates distinct cellular pathways leading to ductular reaction, steatosis, and fibrosis. Immunity 45:145–58 [Google Scholar]
  147. Hams E, Armstrong ME, Barlow JL, Saunders SP, Schwartz C. 147.  et al. 2014. IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. PNAS 111:367–72 [Google Scholar]
  148. Vannella KM, Ramalingam TR, Borthwick LA, Barron L, Hart KM. 148.  et al. 2016. Combinatorial targeting of TSLP, IL-25, and IL-33 in type 2 cytokine-driven inflammation and fibrosis. Sci. Transl. Med. 8:337ra65 [Google Scholar]
  149. Reiman RM, Thompson RW, Feng CG, Hari D, Knight R. 149.  et al. 2006. Interleukin-5 (IL-5) augments the progression of liver fibrosis by regulating IL-13 activity. Infect. Immun. 74:1471–79 [Google Scholar]
  150. Swartz JM, Dyer KD, Cheever AW, Ramalingam T, Pesnicak L. 150.  et al. 2006. Schistosoma mansoni infection in eosinophil lineage-ablated mice. Blood 108:2420–27 [Google Scholar]
  151. Knipper JA, Willenborg S, Brinckmann J, Bloch W, Maass T. 151.  et al. 2015. Interleukin-4 receptor alpha signaling in myeloid cells controls collagen fibril assembly in skin repair. Immunity 43:803–16 [Google Scholar]
  152. Borthwick LA, Barron L, Hart KM, Vannella KM, Thompson RW. 152.  et al. 2016. Macrophages are critical to the maintenance of IL-13-dependent lung inflammation and fibrosis. Mucosal Immunol 9:38–55 [Google Scholar]
  153. Hesse M, Modolell M, La Flamme AC, Schito M, Fuentes JM. 153.  et al. 2001. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: Granulomatous pathology is shaped by the pattern of l-arginine metabolism. J. Immunol. 167:6533–44 [Google Scholar]
  154. Alves Oliveira LF, Moreno EC, Gazzinelli G, Martins-Filho OA, Silveira AM. 154.  et al. 2006. Cytokine production associated with periportal fibrosis during chronic schistosomiasis mansoni in humans. Infect. Immun. 74:1215–21 [Google Scholar]
  155. Rich AR. 155.  1946. The Pathogenesis of Tuberculosis Springfield, IL: Charles C. Thomas [Google Scholar]
  156. Canetti G. 156.  1955. The Tubercle Bacillus in the Pulmonary Lesion of Man: Histobacteriology and Its Bearing on the Therapy of Pulmonary Tuberculosis New York: Springer [Google Scholar]
  157. Grosset J. 157.  2003. Mycobacterium tuberculosis in the extracellular compartment: an underestimated adversary. Antimicrob. Agents Chemother. 47:833–36 [Google Scholar]
  158. Swaim LE, Connolly LE, Volkman HE, Humbert O, Born DE, Ramakrishnan L. 158.  2006. Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity. Infect. Immun. 74:6108–17 [Google Scholar]
  159. Lin PL, Ford CB, Coleman MT, Myers AJ, Gawande R. 159.  et al. 2014. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat. Med. 20:75–79 [Google Scholar]
  160. Clay H, Davis JM, Beery D, Huttenlocher A, Lyons SE, Ramakrishnan L. 160.  2007. Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish. Cell Host Microbe 2:29–39 [Google Scholar]
  161. Russell DG, Cardona PJ, Kim MJ, Allain S, Altare F. 161.  2009. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat. Immunol. 10:943–48 [Google Scholar]
  162. Clay H, Volkman HE, Ramakrishnan L. 162.  2008. Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity 29:283–94 [Google Scholar]
  163. Tobin DM, Vary JC Jr., Ray JP, Walsh GS, Dunstan SJ. 163.  et al. 2010. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell 140:717–30 [Google Scholar]
  164. Tobin DM, Roca FJ, Oh SF, McFarland R, Vickery TW. 164.  et al. 2012. Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell 148:434–46 [Google Scholar]
  165. Roca FJ, Ramakrishnan L. 165.  2013. TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell 153:521–34 [Google Scholar]
  166. Marakalala MJ, Raju RM, Sharma K, Zhang YJ, Eugenin EA. 166.  et al. 2016. Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nat. Med. 22:531–38 [Google Scholar]
  167. Davis JM, Ramakrishnan L. 167.  2009. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136:37–49 [Google Scholar]
  168. Pagán AJ, Yang CT, Cameron J, Swaim LE, Ellett F. 168.  et al. 2015. Myeloid growth factors promote resistance to mycobacterial infection by curtailing granuloma necrosis through macrophage replenishment. Cell Host Microbe 18:15–26 [Google Scholar]
  169. Berg RD, Levitte S, O'Sullivan MP, O'Leary SM, Cambier CJ. 169.  et al. 2016. Lysosomal disorders drive susceptibility to tuberculosis by compromising macrophage migration. Cell 165:139–52 [Google Scholar]
  170. Chen M, Divangahi M, Gan H, Shin DS, Hong S. 170.  et al. 2008. Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death. J. Exp. Med. 205:2791–801 [Google Scholar]
  171. Divangahi M, Chen M, Gan H, Desjardins D, Hickman TT. 171.  et al. 2009. Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat. Immunol. 10:899–906 [Google Scholar]
  172. Divangahi M, Desjardins D, Nunes-Alves C, Remold HG, Behar SM. 172.  2010. Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. . Nat. Immunol. 11:751–58 [Google Scholar]
  173. Srinivasan L, Ahlbrand S, Briken V. 173.  2014. Interaction of Mycobacterium tuberculosis with host cell death pathways. Cold Spring Harb. Perspect. Med. 4:a022459 [Google Scholar]
  174. Volkman HE, Clay H, Beery D, Chang JC, Sherman DR, Ramakrishnan L. 174.  2004. Tuberculous granuloma formation is enhanced by a Mycobacterium virulence determinant. PLOS Biol 2:e367 [Google Scholar]
  175. Lazar-Molnar E, Chen B, Sweeney KA, Wang EJ, Liu W. 175.  et al. 2010. Programmed death-1 (PD-1)-deficient mice are extraordinarily sensitive to tuberculosis. PNAS 107:13402–7 [Google Scholar]
  176. Barber DL, Mayer-Barber KD, Feng CG, Sharpe AH, Sher A. 176.  2011. CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition. J. Immunol. 186:1598–607 [Google Scholar]
  177. Comas I, Chakravartti J, Small PM, Galagan J, Niemann S. 177.  et al. 2010. Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat. Genet. 42:498–503 [Google Scholar]
  178. Coscolla M, Copin R, Sutherland J, Gehre F, de Jong B. 178.  et al. 2015. M. tuberculosis T cell epitope analysis reveals paucity of antigenic variation and identifies rare variable TB antigens. Cell Host Microbe 18:538–48 [Google Scholar]
  179. Ernst JD. 179.  2012. The immunological life cycle of tuberculosis. Nat. Rev. Immunol. 12:581–91 [Google Scholar]
  180. Urdahl KB. 180.  2014. Understanding and overcoming the barriers to T cell-mediated immunity against tuberculosis. Semin. Immunol. 26:578–87 [Google Scholar]
  181. Oehlers SH, Cronan MR, Scott NR, Thomas MI, Okuda KS. 181.  et al. 2015. Interception of host angiogenic signalling limits mycobacterial growth. Nature 517:612–15 [Google Scholar]
  182. Renault CA, Ernst JD. 182.  2017. Mycobacterium leprae (leprosy). Mandell, Douglas, and Bennett's Infectious Disease Essentials JE Bennett, R Dolin, MJ Blaser 371 Philadelphia: Elsevier [Google Scholar]
  183. Madigan CA, Cameron J, Ramakrishnan L. 183.  2017. A zebrafish model of Mycobacterium leprae granulomatous infection. J. Infect. Dis. 216:776–79 [Google Scholar]
  184. Talaat AM, Reimschuessel R, Wasserman SS, Trucksis M. 184.  1998. Goldfish, Carassius auratus, a novel animal model for the study of Mycobacterium marinum pathogenesis. Infect. Immun. 66:2938–42 [Google Scholar]
  185. Broussard GW, Ennis DG. 185.  2007. Mycobacterium marinum produces long-term chronic infections in medaka: a new animal model for studying human tuberculosis. Comp. Biochem. Physiol. C 145:45–54 [Google Scholar]
  186. Lin PL, Pawar S, Myers A, Pegu A, Fuhrman C. 186.  et al. 2006. Early events in Mycobacterium tuberculosis infection in cynomolgus macaques. Infect. Immun. 74:3790–803 [Google Scholar]
  187. Kramnik I, Dietrich WF, Demant P, Bloom BR. 187.  2000. Genetic control of resistance to experimental infection with virulent Mycobacterium tuberculosis. . PNAS 97:8560–65 [Google Scholar]
  188. Pan H, Yan BS, Rojas M, Shebzukhov YV, Zhou H. 188.  et al. 2005. Ipr1 gene mediates innate immunity to tuberculosis. Nature 434:767–72 [Google Scholar]
  189. Smith CM, Proulx MK, Olive AJ, Laddy D, Mishra BB. 189.  et al. 2016. Tuberculosis susceptibility and vaccine protection are independently controlled by host genotype. mBio 7:e01516–16 [Google Scholar]
  190. Cyktor JC, Carruthers B, Kominsky RA, Beamer GL, Stromberg P, Turner J. 190.  2013. IL-10 inhibits mature fibrotic granuloma formation during Mycobacterium tuberculosis infection. J. Immunol. 190:2778–90 [Google Scholar]
  191. Scuderi GJ, Vaccaro AR, Fitzhenry LN, Greenberg S, Eismont F. 191.  2004. Long-term clinical manifestations of retained bullet fragments within the intervertebral disk space. J. Spinal Disord. Tech. 17:108–11 [Google Scholar]
  192. Ward WK. 192.  2008. A review of the foreign-body response to subcutaneously-implanted devices: the role of macrophages and cytokines in biofouling and fibrosis. J. Diabetes Sci. Technol. 2:768–77 [Google Scholar]
  193. Brunet LR, Finkelman FD, Cheever AW, Kopf MA, Pearce EJ. 193.  1997. IL-4 protects against TNF-alpha-mediated cachexia and death during acute schistosomiasis. J. Immunol. 159:777–85 [Google Scholar]
  194. Fallon PG, Dunne DW. 194.  1999. Tolerization of mice to Schistosoma mansoni egg antigens causes elevated type 1 and diminished type 2 cytokine responses and increased mortality in acute infection. J. Immunol. 162:4122–32 [Google Scholar]
  195. Fallon PG, Richardson EJ, Smith P, Dunne DW. 195.  2000. Elevated type 1, diminished type 2 cytokines and impaired antibody response are associated with hepatotoxicity and mortalities during Schistosoma mansoni infection of CD4-depleted mice. Eur. J. Immunol. 30:470–80 [Google Scholar]
  196. Dunne DW, Jones FM, Doenhoff MJ. 196.  1991. The purification, characterization, serological activity and hepatotoxic properties of two cationic glycoproteins (alpha 1 and omega 1) from Schistosoma mansoni eggs. Parasitology 103:Part 2225–36 [Google Scholar]
  197. Shibuya K, Hirata A, Omuta J, Sugamata M, Katori S. 197.  et al. 2005. Granuloma and cryptococcosis. J. Infect. Chemother. 11:115–22 [Google Scholar]
  198. Pampiglione S, La Placa M, Schlick G. 198.  1974. Studies on Mediterranean leishmaniasis: I. An outbreak of visceral leishmaniasis in Northern Italy. Trans. R. Soc. Trop. Med. Hyg 68:349–59 [Google Scholar]
  199. Zijlstra EE, el-Hassan AM. 199.  2001. Leishmaniasis in Sudan: visceral leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 95:Suppl. 1S27–58 [Google Scholar]
  200. Volkman HE, Pozos TC, Zheng J, Davis JM, Rawls JF, Ramakrishnan L. 200.  2010. Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science 327:466–69 [Google Scholar]
  201. Doenhoff MJ. 201.  1998. Granulomatous inflammation and the transmission of infection: schistosomiasis—and TB too?. Immunol. Today 19:462–67 [Google Scholar]
  202. Cosma CL, Sherman DR, Ramakrishnan L. 202.  2003. The secret lives of the pathogenic mycobacteria. Annu. Rev. Microbiol. 57:641–76 [Google Scholar]
  203. Brincker H. 203.  1986. Sarcoid reactions in malignant tumours. Cancer Treat. Rev. 13:147–56 [Google Scholar]
  204. Piscioli I, Donato S, Morelli L, Del Nonno F, Licci S. 204.  2008. Renal cell carcinoma with sarcomatoid features and peritumoral sarcoid-like granulomatous reaction: report of a case and review of the literature. Int. J. Surg. Pathol. 16:345–48 [Google Scholar]
  205. Abrams J, Pearl P, Moody M, Schimpff SC. 205.  1988. Epithelioid granulomas revisited: long-term follow-up in Hodgkin's disease. Am. J. Clin. Oncol. 11:456–60 [Google Scholar]
  206. Haralambieva E, Rosati S, van Noesel C, Boers E, van Marwijk Kooy M. 206.  et al. 2004. Florid granulomatous reaction in Epstein-Barr virus-positive nonendemic Burkitt lymphomas: report of four cases. Am. J. Surg. Pathol. 28:379–83 [Google Scholar]
  207. Rosevear HM, Lightfoot AJ, O'Donnell MA, Griffith TS. 207.  2009. The role of neutrophils and TNF-related apoptosis-inducing ligand (TRAIL) in bacillus Calmette-Guerin (BCG) immunotherapy for urothelial carcinoma of the bladder. Cancer Metastasis Rev 28:345–53 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error