Adoptive immunotherapy, or the infusion of lymphocytes, is a promising approach for the treatment of cancer and certain chronic viral infections. The application of the principles of synthetic biology to enhance T cell function has resulted in substantial increases in clinical efficacy. The primary challenge to the field is to identify tumor-specific targets to avoid off-tumor, on-target toxicity. Given recent advances in efficacy in numerous pilot trials, the next steps in clinical development will require multicenter trials to establish adoptive immunotherapy as a mainstream technology.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Anderson WF. 1.  1984. Prospects for human gene therapy. Science 226:401–9 [Google Scholar]
  2. Friedmann T. 2.  1992. A brief history of gene therapy. Nat. Genet. 2:93–98 [Google Scholar]
  3. Mitsuyasu RT, Anton PA, Deeks SG, Scadden DT, Connick E. 3.  et al. 2000. Prolonged survival and tissue trafficking following adoptive transfer of CD4ζ gene-modified autologous CD4+ and CD8+ T cells in human immunodeficiency virus-infected subjects. Blood 96:785–93 [Google Scholar]
  4. Deeks SG, Wagner B, Anton PA, Mitsuyasu RT, Scadden DT. 4.  et al. 2002. A phase II randomized study of HIV-specific T-cell gene therapy in subjects with undetectable plasma viremia on combination antiretroviral therapy. Mol. Ther. 5:788–97 [Google Scholar]
  5. Scholler J, Brady TL, Binder-Scholl G, Hwang WT, Plesa G. 5.  et al. 2012. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci. Transl. Med. 4:132ra53 [Google Scholar]
  6. Hütter G, Nowak D, Mossner M, Ganepola S, Müssig A. 6.  et al. 2009. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N. Engl. J. Med. 360:692–98 [Google Scholar]
  7. Liang M, Kamata M, Chen KN, Pariente N, An DS, Chen IS. 7.  2010. Inhibition of HIV-1 infection by a unique short hairpin RNA to chemokine receptor 5 delivered into macrophages through hematopoietic progenitor cell transduction. J. Gene Med. 12:255–65 [Google Scholar]
  8. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA. 8.  et al. 2008. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol. 26:808–16 [Google Scholar]
  9. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS. 9.  et al. 1995. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N. Engl. J. Med. 333:1038–44 [Google Scholar]
  10. Louis CU, Straathof K, Bollard CM, Ennamuri S, Gerken C. 10.  et al. 2010. Adoptive transfer of EBV-specific T cells results in sustained clinical responses in patients with locoregional nasopharyngeal carcinoma. J. Immunother. 33:983–90 [Google Scholar]
  11. Leen AM, Bollard CM, Mendizabal AM, Shpall EJ, Szabolcs P. 11.  et al. 2013. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood 121:5113–23 [Google Scholar]
  12. Haque T, Wilkie GM, Jones MM, Higgins CD, Urquhart G. 12.  et al. 2007. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood 110:1123–31 [Google Scholar]
  13. Barker JN, Doubrovina E, Sauter C, Jaroscak JJ, Perales MA. 13.  et al. 2010. Successful treatment of EBV-associated posttransplantation lymphoma after cord blood transplantation using third-party EBV-specific cytotoxic T lymphocytes. Blood 116:5045–49 [Google Scholar]
  14. Leen AM, Myers GD, Sili U, Huls MH, Weiss H. 14.  et al. 2006. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat. Med. 12:1160–66 [Google Scholar]
  15. Hanley PJ, Cruz CR, Savoldo B, Leen AM, Stanojevic M. 15.  et al. 2009. Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood 114:1958–67 [Google Scholar]
  16. Leen AM, Christin A, Myers GD, Liu H, Cruz CR. 16.  et al. 2009. Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplantation. Blood 114:4283–92 [Google Scholar]
  17. Hall SS. 17.  1997. A Commotion in the Blood: Life, Death, and the Immune System New York: Henry Holt544 [Google Scholar]
  18. Weiden PL, Flournoy N, Thomas ED, Prentice R, Fefer A. 18.  et al. 1979. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N. Engl. J. Med. 300:1068–73 [Google Scholar]
  19. Korngold R, Sprent J. 19.  1978. Lethal graft-versus-host disease after bone marrow transplantation across minor histocompatibility barriers in mice. Prevention by removing mature T cells from marrow. J. Exp. Med. 148:1687–98 [Google Scholar]
  20. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD. 20.  et al. 2002. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–100 [Google Scholar]
  21. Venstrom JM, Pittari G, Gooley TA, Chewning JH, Spellman S. 21.  et al. 2012. HLA-C-dependent prevention of leukemia relapse by donor activating KIR2DS1. N. Engl. J. Med. 367:805–16 [Google Scholar]
  22. Porter DL, Levine BL, Bunin N, Stadtmauer EA, Luger SM. 22.  et al. 2006. A phase 1 trial of donor lymphocyte infusions expanded and activated ex vivo via CD3/CD28 costimulation. Blood 107:1325–31 [Google Scholar]
  23. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA. 23.  et al. 2010. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363:711–23 [Google Scholar]
  24. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC. 24.  et al. 2012. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366:2443–54 [Google Scholar]
  25. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL. 25.  et al. 2012. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366:2455–65 [Google Scholar]
  26. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA. 26.  et al. 2013. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369:122–33 [Google Scholar]
  27. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS. 27.  et al. 2011. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17:4550–57 [Google Scholar]
  28. Yao X, Ahmadzadeh M, Lu YC, Liewehr DJ, Dudley ME. 28.  et al. 2012. Levels of peripheral CD4+FoxP3+ regulatory T cells are negatively associated with clinical response to adoptive immunotherapy of human cancer. Blood 119:5688–96 [Google Scholar]
  29. Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC. 29.  et al. 2005. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J. Exp. Med. 202:907–12 [Google Scholar]
  30. Wrzesinski C, Paulos CM, Kaiser A, Muranski P, Palmer DC. 30.  et al. 2010. Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells. J. Immunother. 33:1–7 [Google Scholar]
  31. Pagliara D, Savoldo B. 31.  2012. Cytotoxic T lymphocytes for the treatment of viral infections and posttransplant lymphoproliferative disorders in transplant recipients. Curr. Opin. Infect. Dis. 25:431–37 [Google Scholar]
  32. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL. 32.  et al. 2013. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368:1509–18 [Google Scholar]
  33. Maus MV, Haas AR, Beatty GL, Albelda SM, Levine BL. 33.  et al. 2013. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol. Res. 126–31 [Google Scholar]
  34. Koreth J, Matsuoka K, Kim HT, McDonough SM, Bindra B. 34.  et al. 2011. Interleukin-2 and regulatory T cells in graft-versus-host disease. N. Engl. J. Med. 365:2055–66 [Google Scholar]
  35. Perna SK, De Angelis B, Pagliara D, Hasan ST, Zhang L. 35.  et al. 2013. Interleukin 15 provides relief to CTLs from regulatory T cell-mediated inhibition: implications for adoptive T cell-based therapies for lymphoma. Clin. Cancer Res. 19:106–17 [Google Scholar]
  36. Liu C, Lewis CM, Lou Y, Xu C, Peng W. 36.  et al. 2012. Agonistic antibody to CD40 boosts the antitumor activity of adoptively transferred T cells in vivo. J. Immunother. 35:276–82 [Google Scholar]
  37. Noji S, Hosoi A, Takeda K, Matsushita H, Morishita Y. 37.  et al. 2012. Targeting spatiotemporal expression of CD137 on tumor-infiltrating cytotoxic T lymphocytes as a novel strategy for agonistic antibody therapy. J. Immunother. 35:460–72 [Google Scholar]
  38. Donia M, Fagone P, Nicoletti F, Andersen RS, Hogdall E. 38.  et al. 2012. BRAF inhibition improves tumor recognition by the immune system: potential implications for combinatorial therapies against melanoma involving adoptive T-cell transfer. Oncoimmunology 1:1476–83 [Google Scholar]
  39. Nishimura T, Kaneko S, Kawana-Tachikawa A, Tajima Y, Goto H. 39.  et al. 2013. Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell 12:114–26 [Google Scholar]
  40. Vizcardo R, Masuda K, Yamada D, Ikawa T, Shimizu K. 40.  et al. 2013. Regeneration of human tumor antigen-specific T cells from iPSCs derived from mature CD8+ T cells. Cell Stem Cell 12:31–36 [Google Scholar]
  41. Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV. 41.  et al. 2008. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat. Med. 14:1264–70 [Google Scholar]
  42. Terakura S, Yamamoto TN, Gardner RA, Turtle CJ, Jensen MC, Riddell SR. 42.  2012. Generation of CD19-chimeric antigen receptor modified CD8+ T cells derived from virus-specific central memory T cells. Blood 119:72–82 [Google Scholar]
  43. Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, Riddell SR. 43.  2008. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J. Clin. Investig. 118:294–305 [Google Scholar]
  44. Hinrichs CS, Borman ZA, Cassard L, Gattinoni L, Spolski R. 44.  et al. 2009. Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity. Proc. Natl. Acad. Sci. USA 106:17469–74 [Google Scholar]
  45. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM. 45.  et al. 2011. A human memory T cell subset with stem cell-like properties. Nat. Med. 17:1290–97 [Google Scholar]
  46. Lugli E, Dominguez MH, Gattinoni L, Chattopadhyay PK, Bolton DL. 46.  et al. 2013. Superior T memory stem cell persistence supports long-lived T cell memory. J. Clin. Investig. 123:594–99 [Google Scholar]
  47. Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ. 47.  et al. 2008. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N. Engl. J. Med. 358:2698–703 [Google Scholar]
  48. Parkhurst MR, Riley JP, Dudley ME, Rosenberg SA. 48.  2011. Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin. Cancer Res. 17:6287–97 [Google Scholar]
  49. Yee C, Thompson JA, Byrd D, Riddell SR, Roche P. 49.  et al. 2002. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc. Natl. Acad. Sci. USA 99:16168–73 [Google Scholar]
  50. Phuphanich S, Wheeler CJ, Rudnick JD, Mazer M, Wang H. 50.  et al. 2013. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol. Immunother. 62:125–35 [Google Scholar]
  51. Frohlich MW. 51.  2012. Sipuleucel-T for the treatment of advanced prostate cancer. Semin. Oncol. 39:245–52 [Google Scholar]
  52. Wheeler CJ, Black KL. 52.  2009. DCVax-Brain and DC vaccines in the treatment of GBM. Expert Opin. Investig. Drugs 18:509–19 [Google Scholar]
  53. Fishman M. 53.  2009. A changing world for DCvax: a PSMA loaded autologous dendritic cell vaccine for prostate cancer. Expert Opin. Biol. Ther. 9:1565–75 [Google Scholar]
  54. June CH, Ledbetter JA, Linsley PS, Thompson CB. 54.  1990. Role of the CD28 receptor in T-cell activation. Immunol. Today 11:211–16 [Google Scholar]
  55. Levine BL, Ueda Y, Craighead N, Huang ML, June CH. 55.  1995. CD28 ligands CD80 (B7-1) and CD86 (B7-2) induce long-term autocrine growth of CD4+ T cells and induce similar patterns of cytokine secretion in vitro. Int. Immunol. 7:891–904 [Google Scholar]
  56. Levine BL, Bernstein WB, Connors M, Craighead N, Lindsten T. 56.  et al. 1997. Effects of CD28 costimulation on long-term proliferation of CD4+ T cells in the absence of exogenous feeder cells. J. Immunol. 159:5921–30 [Google Scholar]
  57. Fowler DH, Odom J, Steinberg SM, Chow CK, Foley J. 57.  et al. 2006. Phase I clinical trial of costimulated, IL-4 polarized donor CD4+ T cells as augmentation of allogeneic hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 12:1150–60 [Google Scholar]
  58. Levine BL, Mosca JD, Riley JL, Carroll RG, Vahey MT. 58.  et al. 1996. Antiviral effect and ex vivo CD4+ T cell proliferation in HIV-positive patients as a result of CD28 costimulation. Science 272:1939–43 [Google Scholar]
  59. Riley JL, Carroll RG, Levine BL, Bernstein W, St Louis DC. 59.  et al. 1997. Intrinsic resistance to T cell infection with HIV type 1 induced by CD28 costimulation. J. Immunol. 158:5545–53 [Google Scholar]
  60. Carroll RG, Riley JL, Levine BL, Feng Y, Kaushal S. 60.  et al. 1997. Differential regulation of HIV-1 fusion cofactor expression by CD28 costimulation of CD4+ T cells. Science 276:273–76 [Google Scholar]
  61. Renner C, Ohnesorge S, Held G, Bauer S, Jung W. 61.  et al. 1996. T cells from patients with Hodgkin's disease have a defective T-cell receptor ζ chain expression that is reversible by T-cell stimulation with CD3 and CD28. Blood 88:236–41 [Google Scholar]
  62. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H. 62.  et al. 2001. Regulatory CD4+CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res. 61:4766–72 [Google Scholar]
  63. Bonyhadi M, Frohlich M, Rasmussen A, Ferrand C, Grosmaire L. 63.  et al. 2005. In vitro engagement of CD3 and CD28 corrects T cell defects in chronic lymphocytic leukemia. J. Immunol. 174:2366–75 [Google Scholar]
  64. Patten P, Devereux S, Buggins A, Bonyhadi M, Frohlich M, Berenson RJ. 64.  2005. Effect of CD3/CD28 bead-activated and expanded T cells on leukemic B cells in chronic lymphocytic leukemia. J. Immunol. 174:6562–63 [Google Scholar]
  65. Maus MV, Thomas AK, Leonard DG, Allman D, Addya K. 65.  et al. 2002. Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nat. Biotechnol. 20:143–48 [Google Scholar]
  66. Thomas AK, Maus MV, Shalaby WS, June CH, Riley JL. 66.  2002. A cell-based artificial antigen-presenting cell coated with anti-CD3 and CD28 antibodies enables rapid expansion and long-term growth of CD4 T lymphocytes. Clin. Immunol. 105:259–72 [Google Scholar]
  67. Suhoski MM, Golovina TN, Aqui NA, Tai VC, Varela-Rohena A. 67.  et al. 2007. Engineering artificial antigen-presenting cells to express a diverse array of co-stimulatory molecules. Mol. Ther. 15:981–88 [Google Scholar]
  68. 68.  Deleted in proof
  69. Smith BD, Kasamon YL, Kowalski J, Gocke C, Murphy K. 69.  et al. 2010. K562/GM-CSF immunotherapy reduces tumor burden in chronic myeloid leukemia patients with residual disease on imatinib mesylate. Clin. Cancer Res. 16:338–47 [Google Scholar]
  70. Broeren CP, Gray GS, Carreno BM, June CH. 70.  2000. Costimulation light: activation of CD4+ T cells with CD80 or CD86 rather than anti-CD28 leads to a Th2 cytokine profile. J. Immunol. 165:6908–14 [Google Scholar]
  71. Godfrey WR, Ge YG, Spoden DJ, Levine BL, June CH. 71.  et al. 2004. In vitro-expanded human CD4+CD25+ T-regulatory cells can markedly inhibit allogeneic dendritic cell-stimulated MLR cultures. Blood 104:453–61 [Google Scholar]
  72. Walker RE, Bechtel CM, Natarajan V, Baseler M, Hege KM. 72.  et al. 2000. Long-term in vivo survival of receptor-modified syngeneic T cells in patients with human immunodeficiency virus infection. Blood 96:467–74 [Google Scholar]
  73. Levine BL, Humeau LM, Boyer J, MacGregor RR, Rebello T. 73.  et al. 2006. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc. Natl. Acad. Sci. USA 103:17372–77 [Google Scholar]
  74. Maier DA, Brennan AL, Jiang S, Binder-Scholl GK, Lee G. 74.  et al. 2013. Efficient clinical scale gene modification via zinc finger nuclease-targeted disruption of the HIV co-receptor CCR5. Hum. Gene Ther. 24:245–58 [Google Scholar]
  75. Liu K, Rosenberg SA. 75.  2001. Transduction of an IL-2 gene into human melanoma-reactive lymphocytes results in their continued growth in the absence of exogenous IL-2 and maintenance of specific antitumor activity. J. Immunol. 167:6356–65 [Google Scholar]
  76. Kalbasi A, Shrimali RK, Chinnasamy D, Rosenberg SA. 76.  2010. Prevention of interleukin-2 withdrawal-induced apoptosis in lymphocytes retrovirally cotransduced with genes encoding an antitumor T-cell receptor and an antiapoptotic protein. J. Immunother. 33:672–83 [Google Scholar]
  77. Craddock JA, Lu A, Bear A, Pule M, Brenner MK. 77.  et al. 2010. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J. Immunother. 33:780–88 [Google Scholar]
  78. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC. 78.  et al. 2009. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114:535–46 [Google Scholar]
  79. Gross G, Waks T, Eshhar Z. 79.  1989. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl. Acad. Sci. USA 86:10024–28 [Google Scholar]
  80. Uchida N, Cone RD, Freeman GJ, Mulligan RC, Cantor H. 80.  1986. High efficiency gene transfer into murine T cell clones using a retroviral vector. J. Immunol. 136:1876–79 [Google Scholar]
  81. Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA. 81.  et al. 1990. Gene transfer into humans—immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N. Engl. J. Med. 323:570–78 [Google Scholar]
  82. Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T. 82.  et al. 1995. T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 270:475–80 [Google Scholar]
  83. Suerth JD, Schambach A, Baum C. 83.  2012. Genetic modification of lymphocytes by retrovirus-based vectors. Curr. Opin. Immunol. 24:598–608 [Google Scholar]
  84. Biasco L, Baricordi C, Aiuti A. 84.  2012. Retroviral integrations in gene therapy trials. Mol. Ther. 20:709–16 [Google Scholar]
  85. Bordignon C, Notarangelo LD, Nobili N, Ferrari G, Casorati G. 85.  et al. 1995. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immunodeficient patients. Science 270:470–75 [Google Scholar]
  86. Aiuti A, Slavin S, Aker M, Ficara F, Deola S. 86.  et al. 2002. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296:2410–13 [Google Scholar]
  87. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A. 87.  et al. 2008. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Investig. 118:3132–42 [Google Scholar]
  88. Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U. 88.  et al. 2006. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat. Med. 12:401–9 [Google Scholar]
  89. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M. 89.  et al. 2009. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326:818–23 [Google Scholar]
  90. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K. 90.  et al. 2010. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 467:318–22 [Google Scholar]
  91. Mavilio F, Pellegrini G, Ferrari S, Di Nunzio F, Di Iorio E. 91.  et al. 2006. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat. Med. 12:1397–402 [Google Scholar]
  92. Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M. 92.  et al. 2008. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J. Clin. Investig. 118:3143–50 [Google Scholar]
  93. Stein S, Ott MG, Schultze-Strasser S, Jauch A, Burwinkel B. 93.  et al. 2010. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat. Med. 16:198–204 [Google Scholar]
  94. Baum C, von Kalle C. 94.  2003. Gene therapy targeting hematopoietic cells: better not leave it to chance. Acta Haematol. 110:107–9 [Google Scholar]
  95. Kustikova OS, Schiedlmeier B, Brugman MH, Stahlhut M, Bartels S. 95.  et al. 2009. Cell-intrinsic and vector-related properties cooperate to determine the incidence and consequences of insertional mutagenesis. Mol. Ther. 17:1537–47 [Google Scholar]
  96. Newrzela S, Al-Ghaili N, Heinrich T, Petkova M, Hartmann S. 96.  et al. 2012. T-cell receptor diversity prevents T-cell lymphoma development. Leukemia 26:2499–507 [Google Scholar]
  97. Cassani B, Montini E, Maruggi G, Ambrosi A, Mirolo M. 97.  et al. 2009. Integration of retroviral vectors induces minor changes in the transcriptional activity of T cells from ADA-SCID patients treated with gene therapy. Blood 114:3546–56 [Google Scholar]
  98. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC. 98.  et al. 2006. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–29 [Google Scholar]
  99. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM. 99.  et al. 2011. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29:917–24 [Google Scholar]
  100. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X. 100.  et al. 2013. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5:177ra38 [Google Scholar]
  101. Newrzela S, Cornils K, Li Z, Baum C, Brugman MH. 101.  et al. 2008. Resistance of mature T cells to oncogene transformation. Blood 112:2278–86 [Google Scholar]
  102. Hsu C, Jones SA, Cohen CJ, Zheng Z, Kerstann K. 102.  et al. 2007. Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene. Blood 109:5168–77 [Google Scholar]
  103. Newrzela S, Cornils K, Heinrich T, Schlager J, Yi JH. 103.  et al. 2011. Retroviral insertional mutagenesis can contribute to immortalization of mature T lymphocytes. Mol. Med. 17:1223–32 [Google Scholar]
  104. Recchia A, Bonini C, Magnani Z, Urbinati F, Sartori D. 104.  et al. 2006. Retroviral vector integration deregulates gene expression but has no consequence on the biology and function of transplanted T cells. Proc. Natl. Acad. Sci. USA 103:1457–62 [Google Scholar]
  105. June CH, Blazar BR, Riley JL. 105.  2009. Engineering lymphocyte subsets: tools, trials and tribulations. Nat. Rev. Immunol. 9:704–16 [Google Scholar]
  106. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R. 106.  et al. 1996. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–67 [Google Scholar]
  107. Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. 107.  2002. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110:521–29 [Google Scholar]
  108. Biffi A, Bartolomae CC, Cesana D, Cartier N, Aubourg P. 108.  et al. 2011. Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection. Blood 117:5332–39 [Google Scholar]
  109. Ellis J. 109.  2005. Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum. Gene Ther. 16:1241–46 [Google Scholar]
  110. Wang GP, Levine BL, Binder GK, Berry CC, Malani N. 110.  et al. 2009. Analysis of lentiviral vector integration in HIV+ study subjects receiving autologous infusions of gene modified CD4+ T cells. Mol. Ther. 17:844–50 [Google Scholar]
  111. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA. 111.  et al. 2011. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3:95ra73 [Google Scholar]
  112. Schroers R, Hildebrandt Y, Hasenkamp J, Glass B, Lieber A. 112.  et al. 2004. Gene transfer into human T lymphocytes and natural killer cells by Ad5/F35 chimeric adenoviral vectors. Exp. Hematol. 32:536–46 [Google Scholar]
  113. Park JR, Digiusto DL, Slovak M, Wright C, Naranjo A. 113.  et al. 2007. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol. Ther. 15:825–33 [Google Scholar]
  114. Dupuy AJ, Akagi K, Largaespada DA, Copeland NG, Jenkins NA. 114.  2005. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436:221–26 [Google Scholar]
  115. Huang X, Wilber AC, Bao L, Tuong D, Tolar J. 115.  et al. 2006. Stable gene transfer and expression in human primary T cells by the Sleeping Beauty transposon system. Blood 107:483–91 [Google Scholar]
  116. Maiti SN, Huls H, Singh H, Dawson M, Figliola M. 116.  et al. 2013. Sleeping Beauty system to redirect T-cell specificity for human applications. J. Immunother. 36:112–23 [Google Scholar]
  117. Singh H, Manuri PR, Olivares S, Dara N, Dawson MJ. 117.  et al. 2008. Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system. Cancer Res. 68:2961–71 [Google Scholar]
  118. Zhao Y, Zheng Z, Cohen CJ, Gattinoni L, Palmer DC. 118.  et al. 2006. High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol. Ther. 13:151–59 [Google Scholar]
  119. Yoon SH, Lee JM, Cho HI, Kim EK, Kim HS. 119.  et al. 2009. Adoptive immunotherapy using human peripheral blood lymphocytes transferred with RNA encoding Her-2/neu-specific chimeric immune receptor in ovarian cancer xenograft model. Cancer Gene Ther. 16:489–97 [Google Scholar]
  120. Mitchell DA, Karikari I, Cui X, Xie W, Schmittling R, Sampson JH. 120.  2008. Selective modification of antigen-specific T cells by RNA electroporation. Hum. Gene Ther. 19:511–21 [Google Scholar]
  121. Rowley J, Monie A, Hung CF, Wu TC. 121.  2009. Expression of IL-15RA or an IL-15/IL-15RA fusion on CD8+ T cells modifies adoptively transferred T-cell function in cis. Eur. J. Immunol. 39:491–506 [Google Scholar]
  122. Birkholz K, Hombach A, Krug C, Reuter S, Kershaw M. 122.  et al. 2009. Transfer of mRNA encoding recombinant immunoreceptors reprograms CD4+ and CD8+ T cells for use in the adoptive immunotherapy of cancer. Gene Ther. 16:596–604 [Google Scholar]
  123. Wang W, Lin C, Lu D, Ning Z, Cox T. 123.  et al. 2008. Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 105:9290–95 [Google Scholar]
  124. Rabinovich PM, Komarovskaya ME, Wrzesinski SH, Alderman JL, Budak-Alpdogan T. 124.  et al. 2009. Chimeric receptor mRNA transfection as a tool to generate antineoplastic lymphocytes. Hum. Gene Ther. 20:51–61 [Google Scholar]
  125. Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X. 125.  et al. 2010. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res. 70:9053–61 [Google Scholar]
  126. Barrett DM, Zhao Y, Liu X, Jiang S, Carpenito C. 126.  et al. 2011. Treatment of advanced leukemia in mice with mRNA engineered T cells. Hum. Gene Ther. 22:1575–86 [Google Scholar]
  127. Kirkwood JM, Lee S, Moschos SJ, Albertini MR, Michalak JC. 127.  et al. 2009. Immunogenicity and antitumor effects of vaccination with peptide vaccine +/− granulocyte-monocyte colony-stimulating factor and/or IFN-α2b in advanced metastatic melanoma: Eastern Cooperative Oncology Group Phase II Trial E1696. Clin. Cancer Res. 15:1443–51 [Google Scholar]
  128. Rosenberg SA, Sherry RM, Morton KE, Scharfman WJ, Yang JC. 128.  et al. 2005. Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J. Immunol. 175:6169–76 [Google Scholar]
  129. Kirkwood JM, Butterfield LH, Tarhini AA, Zarour H, Kalinski P, Ferrone S. 129.  2012. Immunotherapy of cancer in 2012. CA Cancer J. Clin. 62:309–35 [Google Scholar]
  130. Bendle GM, Linnemann C, Hooijkaas AI, Bies L, de Witte MA. 130.  et al. 2010. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat. Med. 16:565–70 [Google Scholar]
  131. Ueno T, Fujiwara M, Tomiyama H, Onodera M, Takiguchi M. 131.  2004. Reconstitution of anti-HIV effector functions of primary human CD8 T lymphocytes by transfer of HIV-specific αβ TCR genes. Eur. J. Immunol. 34:3379–88 [Google Scholar]
  132. Cohen CJ, Zhao Y, Zheng Z, Rosenberg SA, Morgan RA. 132.  2006. Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res. 66:8878–86 [Google Scholar]
  133. Stanislawski T, Voss RH, Lotz C, Sadovnikova E, Willemsen RA. 133.  et al. 2001. Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat. Immunol. 2:962–70 [Google Scholar]
  134. Voss RH, Kuball J, Engel R, Guillaume P, Romero P. 134.  et al. 2006. Redirection of T cells by delivering a transgenic mouse-derived MDM2 tumor antigen-specific TCR and its humanized derivative is governed by the CD8 coreceptor and affects natural human TCR expression. Immunol. Res. 34:67–87 [Google Scholar]
  135. Boulter JM, Glick M, Todorov PT, Baston E, Sami M. 135.  et al. 2003. Stable, soluble T-cell receptor molecules for crystallization and therapeutics. Protein Eng. 16:707–11 [Google Scholar]
  136. Cohen CJ, Li YF, El-Gamil M, Robbins PF, Rosenberg SA, Morgan RA. 136.  2007. Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res. 67:3898–903 [Google Scholar]
  137. Kuball J, Dossett ML, Wolfl M, Ho WY, Voss RH. 137.  et al. 2007. Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood 109:2331–38 [Google Scholar]
  138. Thomas S, Xue SA, Cesco-Gaspere M, San Jose E, Hart DP. 138.  et al. 2007. Targeting the Wilms tumor antigen 1 by TCR gene transfer: TCR variants improve tetramer binding but not the function of gene modified human T cells. J. Immunol. 179:5803–10 [Google Scholar]
  139. Voss RH, Willemsen RA, Kuball J, Grabowski M, Engel R. 139.  et al. 2008. Molecular design of the Cαβ interface favors specific pairing of introduced TCRαβ in human T cells. J. Immunol. 180:391–401 [Google Scholar]
  140. Sebestyen Z, Schooten E, Sals T, Zaldivar I, San Jose E. 140.  et al. 2008. Human TCR that incorporate CD3ζ induce highly preferred pairing between TCRα and β chains following gene transfer. J. Immunol. 180:7736–46 [Google Scholar]
  141. Okamoto S, Mineno J, Ikeda H, Fujiwara H, Yasukawa M. 141.  et al. 2009. Improved expression and reactivity of transduced tumor-specific TCRs in human lymphocytes by specific silencing of endogenous TCR. Cancer Res. 69:9003–11 [Google Scholar]
  142. Torikai H, Reik A, Soldner F, Warren EH, Yuen C. 142.  et al. 2013. Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood 122:1341–49 [Google Scholar]
  143. Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF. 143.  et al. 2013. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J. Immunother. 36:133–51 [Google Scholar]
  144. Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL. 144.  et al. 2013. Cardiovascular toxicity and titin cross-reactivity of affinity enhanced T cells in myeloma and melanoma. Blood 122:853–54 [Google Scholar]
  145. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA. 145.  et al. 2011. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 19:620–26 [Google Scholar]
  146. Cameron BJ, Gerry A, Dukes J, Harper JV, Kannan V. 146.  et al. 2013. Identification of a titin-derived HLA-A1–presented peptide as a cross-reactive target for engineered MAGE A3–directed T cells. Sci. Transl. Med. 5:197ra103 [Google Scholar]
  147. Chapuis AG, Ragnarsson GB, Nguyen HN, Chaney CN, Pufnock JS. 147.  et al. 2013. Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post-transplant patients. Sci. Transl. Med. 5:174ra27 [Google Scholar]
  148. Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M. 148.  2002. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nat. Biotechnol. 20:70–75 [Google Scholar]
  149. Brentjens RJ, Latouche JB, Santos E, Marti F, Gong MC. 149.  et al. 2003. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat. Med. 9:279–86 [Google Scholar]
  150. Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M. 150.  et al. 2009. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl. Acad. Sci. USA 106:3360–65 [Google Scholar]
  151. Finney HM, Akbar AN, Lawson AD. 151.  2004. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCRζ chain. J. Immunol. 172:104–13 [Google Scholar]
  152. Zhong XS, Matsushita M, Plotkin J, Riviere I, Sadelain M. 152.  2010. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Mol. Ther. 18:413–20 [Google Scholar]
  153. Davila ML, Brentjens R, Wang X, Riviere I, Sadelain M. 153.  2012. How do CARs work? Early insights from recent clinical studies targeting CD19. Oncoimmunology 1:1577–83 [Google Scholar]
  154. Bridgeman JS, Hawkins RE, Bagley S, Blaylock M, Holland M, Gilham DE. 154.  2010. The optimal antigen response of chimeric antigen receptors harboring the CD3ζ transmembrane domain is dependent upon incorporation of the receptor into the endogenous TCR/CD3 complex. J. Immunol. 184:6938–49 [Google Scholar]
  155. Haso W, Lee DW, Shah NN, Stetler-Stevenson M, Yuan CM. 155.  et al. 2013. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood 121:1165–74 [Google Scholar]
  156. James SE, Greenberg PD, Jensen MC, Lin Y, Wang J. 156.  et al. 2010. Mathematical modeling of chimeric TCR triggering predicts the magnitude of target lysis and its impairment by TCR downmodulation. J. Immunol. 184:4284–94 [Google Scholar]
  157. Davis MM, Krogsgaard M, Huse M, Huppa J, Lillemeier BF, Li QJ. 157.  2007. T cells as a self-referential, sensory organ. Annu. Rev. Immunol. 25:681–95 [Google Scholar]
  158. Guy CS, Vignali KM, Temirov J, Bettini ML, Overacre AE. 158.  et al. 2013. Distinct TCR signaling pathways drive proliferation and cytokine production in T cells. Nat. Immunol. 14:262–70 [Google Scholar]
  159. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. 159.  2010. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18:843–51 [Google Scholar]
  160. Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M. 160.  et al. 2006. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J. Clin. Oncol. 24:e20–22 [Google Scholar]
  161. Davila ML, Kloss CC, Gunset G, Sadelain M. 161.  2013. CD19 CAR-targeted T cells induce long-term remission and B cell aplasia in an immunocompetent mouse model of B cell acute lymphoblastic leukemia. PLoS ONE 8:e61338 [Google Scholar]
  162. Pegram HJ, Lee JC, Hayman EG, Imperato GH, Tedder TF. 162.  et al. 2012. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119:4133–41 [Google Scholar]
  163. Mestas J, Hughes CC. 163.  2004. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172:2731–38 [Google Scholar]
  164. Lenschow DJ, Walunas TL, Bluestone JA. 164.  1996. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14:233–58 [Google Scholar]
  165. Melenhorst JJ, Levine BL. 165.  2013. Innovation and opportunity for chimeric antigen receptor targeted T cells. Cytotherapy 15:1046–53 [Google Scholar]
  166. Hosing C, Kebriaei P, Wierda W, Jena B, Cooper LJ, Shpall E. 166.  2013. CARs in chronic lymphocytic leukemia—ready to drive. Curr. Hematol. Malig. Rep. 8:60–70 [Google Scholar]
  167. Brentjens RJ, Curran KJ. 167.  2012. Novel cellular therapies for leukemia: CAR-modified T cells targeted to the CD19 antigen. Hematol. Am. Soc. Hematol. Educ. Program 2012:143–51 [Google Scholar]
  168. June C, Rosenberg SA, Sadelain M, Weber JS. 168.  2012. T-cell therapy at the threshold. Nat. Biotechnol. 30:611–14 [Google Scholar]
  169. Kohn DB, Dotti G, Brentjens R, Savoldo B, Jensen M. 169.  et al. 2011. CARs on track in the clinic. Mol. Ther. 19:432–38 [Google Scholar]
  170. Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE. 170.  et al. 2012. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119:2709–20 [Google Scholar]
  171. Jensen MC, Popplewell L, Cooper LJ, DiGiusto D, Kalos M. 171.  et al. 2010. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol. Blood Marrow Transplant. 16:1245–56 [Google Scholar]
  172. Brentjens RJ, Riviere I, Park JH, Davila ML, Wang X. 172.  et al. 2011. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118:4817–28 [Google Scholar]
  173. Porter DL, Levine BL, Kalos M, Bagg A, June CH. 173.  2011. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365:725–33 [Google Scholar]
  174. Ellison J. 174.  2013. Leukemia patient at Children's disease free after new treatment. seattlepi July 11. http://www.seattlepi.com/national/article/T-cell-leukemia-cure-shows-early-positive-4657999.php [Google Scholar]
  175. Tettamanti S, Marin V, Pizzitola I, Magnani CF, Giordano Attianese GM. 175.  et al. 2013. Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor. Br. J. Haematol. 161:389–401 [Google Scholar]
  176. Carpenter RO, Evbuomwan MO, Pittaluga S, Rose JJ, Raffeld M. 176.  et al. 2013. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin. Cancer Res. 19:2048–60 [Google Scholar]
  177. Morgan R, Yang J, Kitano M, Dudley M, Laurencot C, Rosenberg S. 177.  2010. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18:843–51 [Google Scholar]
  178. Kakarla S, Chow KK, Mata M, Shaffer DR, Song XT. 178.  et al. 2013. Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol. Ther. 21:1611–20 [Google Scholar]
  179. Tran E, Chinnasamy D, Yu Z, Morgan RA, Lee CC. 179.  et al. 2013. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J. Exp. Med. 210:1125–35 [Google Scholar]
  180. Louis CU, Savoldo B, Dotti G, Pule M, Yvon E. 180.  et al. 2011. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118:6050–56 [Google Scholar]
  181. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A. 181.  et al. 2011. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365:1673–83 [Google Scholar]
  182. Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. 182.  2013. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat. Biotechnol. 31:71–75 [Google Scholar]
  183. Reshef R, Luger SM, Hexner EO, Loren AW, Frey NV. 183.  et al. 2012. Blockade of lymphocyte chemotaxis in visceral graft-versus-host disease. N. Engl. J. Med. 367:135–45 [Google Scholar]
  184. Kalos M. 184.  2010. An integrative paradigm to impart quality to correlative science. J. Transl. Med. 8:26 [Google Scholar]
  185. Britten CM, Janetzki S, Butterfield LH, Ferrari G, Gouttefangeas C. 185.  et al. 2012. T cell assays and MIATA: the essential minimum for maximum impact. Immunity 37:1–2 [Google Scholar]
  186. Kalos M. 186.  2011. Biomarkers in T cell therapy clinical trials. J. Transl. Med. 9:138 [Google Scholar]
  187. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P. 187.  et al. 2002. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–54 [Google Scholar]
  188. Robbins PF, Dudley ME, Wunderlich J, El-Gamil M, Li YF. 188.  et al. 2004. Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J. Immunol. 173:7125–30 [Google Scholar]
  189. Tran KQ, Zhou J, Durflinger KH, Langhan MM, Shelton TE. 189.  et al. 2008. Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy. J. Immunother. 31:742–51 [Google Scholar]
  190. Hinrichs CS, Borman ZA, Gattinoni L, Yu Z, Burns WR. 190.  et al. 2011. Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy. Blood 117:808–14 [Google Scholar]
  191. Powell DJ Jr, Dudley ME, Robbins PF, Rosenberg SA. 191.  2005. Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood 105:241–50 [Google Scholar]
  192. Stemberger C, Neuenhahn M, Gebhardt FE, Schiemann M, Buchholz VR, Busch DH. 192.  2009. Stem cell-like plasticity of naive and distinct memory CD8+ T cell subsets. Semin. Immunol. 21:62–68 [Google Scholar]
  193. Melenhorst JJ, Scheinberg P, Chattopadhyay PK, Gostick E, Ladell K. 193.  et al. 2009. High avidity myeloid leukemia-associated antigen-specific CD8+ T cells preferentially reside in the bone marrow. Blood 113:2238–44 [Google Scholar]
  194. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M. 194.  et al. 2003. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348:203–13 [Google Scholar]
  195. Robins H, Desmarais C, Matthis J, Livingston R, Andriesen J. 195.  et al. 2012. Ultra-sensitive detection of rare T cell clones. J. Immunol. Methods 375:14–19 [Google Scholar]
  196. White AK, VanInsberghe M, Petriv OI, Hamidi M, Sikorski D. 196.  et al. 2011. High-throughput microfluidic single-cell RT-qPCR. Proc. Natl. Acad. Sci. USA 108:13999–4004 [Google Scholar]
  197. Lamers CH, Willemsen R, van Elzakker P, van Steenbergen-Langeveld S, Broertjes M. 197.  et al. 2011. Immune responses to transgene and retroviral vector in patients treated with ex vivo–engineered T cells. Blood 117:72–82 [Google Scholar]
  198. Hadrup SR, Bakker AH, Shu CJ, Andersen RS, van Veluw J. 198.  et al. 2009. Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat. Methods 6:520–26 [Google Scholar]
  199. Bodenmiller B, Zunder ER, Finck R, Chen TJ, Savig ES. 199.  et al. 2012. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat. Biotechnol. 30:858–67 [Google Scholar]
  200. Amir el AD, Davis KL, Tadmor MD, Simonds EF, Levine JH. 200.  et al. 2013. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31:545–52 [Google Scholar]
  201. Teachey DT, Rheingold SR, Maude SL, Zugmaier G, Barrett DM. 201.  et al. 2013. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood 121:5154–57 [Google Scholar]
  202. Levine BL, June CH. 202.  2013. Perspective: assembly line immunotherapy. Nature 498:S17 [Google Scholar]
  203. 203. Worldw. Netw. Blood Marrow Transpl 2013. 1 millionth blood stem cell transplant marks major medical milestone. Press release, Jan. 30. http://www.wbmt.org/fileadmin/pdf/01_General/Press_release_final.pdf [Google Scholar]
  204. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P. 204.  et al. 2011. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364:2507–16 [Google Scholar]
  205. Gattinoni L, Klebanoff CA, Restifo NP. 205.  2012. Paths to stemness: building the ultimate antitumour T cell. Nat. Rev. Cancer 12:671–84 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error