CD47 is a broadly expressed membrane protein that interacts with the myeloid inhibitory immunoreceptor SIRPα (also termed CD172a or SHPS-1). SIRPα is the prototypic member of the SIRP paired receptor family of closely related SIRP proteins. Engagement of SIRPα by CD47 provides a downregulatory signal that inhibits host cell phagocytosis, and CD47 therefore functions as a “don't-eat-me” signal. Here, we discuss recent structural analysis of CD47-SIRPα interactions and implications of this for the function and evolution of SIRPα and paired receptors in general. Furthermore, we review the proposed roles of CD47-SIRPα interactions in phagocytosis, (auto)immunity, and host defense, as well as its potential significance as a therapeutic target in cancer and inflammation and for improving graft survival in xenotransplantation.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Fujioka Y, Matozaki T, Noguchi T, Iwamatsu A, Yamao T. 1.  et al. 1996. A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion. Mol. Cell. Biol. 16:6887–99 [Google Scholar]
  2. Jiang P, Lagenaur CF, Narayanan V. 2.  1999. Integrin-associated protein is a ligand for the P84 neural adhesion molecule. J. Biol. Chem. 274:559–62 [Google Scholar]
  3. Seiffert M, Cant C, Chen Z, Rappold I, Brugger W. 3.  et al. 1999. Human signal-regulatory protein is expressed on normal, but not on subsets of leukemic myeloid cells and mediates cellular adhesion involving its counterreceptor CD47. Blood 94:3633–43 [Google Scholar]
  4. Vernon-Wilson EF, Kee WJ, Willis AC, Barclay AN, Simmons DL, Brown MH. 4.  2000. CD47 is a ligand for rat macrophage membrane signal regulatory protein SIRP (OX41) and human SIRPα 1. Eur. J. Immunol. 30:2130–37 [Google Scholar]
  5. Campbell IG, Freemont PS, Foulkes W, Trowsdale J. 5.  1992. An ovarian tumor marker with homology to vaccinia virus contains an IgV-like region and multiple transmembrane domains. Cancer Res. 52:5416–20 [Google Scholar]
  6. Barclay AN, Brown MH. 6.  2006. The SIRP family of receptors and immune regulation. Nat. Rev. Immunol. 6:457–64 [Google Scholar]
  7. Van den Berg TK, Van der Schoot CE. 7.  2008. Innate immune ‘self’ recognition: a role for CD47-SIRPα interactions in hematopoietic stem cell transplantation. Trends Immunol. 29:203–6 [Google Scholar]
  8. Mi ZP, Jiang P, Weng WL, Lindberg FP, Narayanan V, Lagenaur CF. 8.  2000. Expression of a synapse-associated membrane protein, P84/SHPS-1, and its ligand, IAP/CD47, in mouse retina. J. Comp. Neurol. 416:335–44 [Google Scholar]
  9. Umemori H, Sanes JR. 9.  2008. Signal regulatory proteins (SIRPS) are secreted presynaptic organizing molecules. J. Biol. Chem. 283:34053–61 [Google Scholar]
  10. Van Beek EM, Cochrane F, Barclay AN, Van den Berg TK. 10.  2005. Signal regulatory proteins in the immune system. J. Immunol. 175:7781–87 [Google Scholar]
  11. Stefanidakis M, Newton G, Lee WY, Parkos CA, Luscinskas FW. 11.  2008. Endothelial CD47 interaction with SIRPγ is required for human T-cell transendothelial migration under shear flow conditions in vitro. Blood 112:1280–89 [Google Scholar]
  12. Alenghat FJ, Baca QJ, Rubin NT, Pao LI, Matozaki T. 12.  et al. 2012. Macrophages require Skap2 and Sirpα for integrin-stimulated cytoskeletal rearrangement. J. Cell Sci. 125:5535–45 [Google Scholar]
  13. Piccio L, Vermi W, Boles KS, Fuchs A, Strader CA. 13.  et al. 2005. Adhesion of human T cells to antigen-presenting cells through SIRPβ2-CD47 interaction costimulates T-cell proliferation. Blood 105:2421–27 [Google Scholar]
  14. Van den Berg TK, Van Beek EM, Buhring HJ, Colonna M, Hamaguchi M. 14.  et al. 2005. A nomenclature for signal regulatory protein family members. J. Immunol. 175:7788–89Sets out the nomenclature on this complicated family of proteins. [Google Scholar]
  15. Viertlboeck BC, Schmitt R, Gobel TW. 15.  2006. The chicken immunoregulatory receptor families SIRP, TREM, and CMRF35/CD300L. Immunogenetics 58:180–90 [Google Scholar]
  16. Kaur S, Soto-Pantoja DR, Stein EV, Liu C, Elkahloun AG. 16.  et al. 2013. Thrombospondin-1 signaling through CD47 inhibits self-renewal by regulating c-Myc and other stem cell transcription factors. Sci. Rep. 3:1673 [Google Scholar]
  17. Csanyi G, Yao M, Rodriguez AI, Al Ghouleh I, Sharifi-Sanjani M. 17.  et al. 2012. Thrombospondin-1 regulates blood flow via CD47 receptor-mediated activation of NADPH oxidase 1. Arterioscler. Thromb. Vasc. Biol. 32:2966–73 [Google Scholar]
  18. Oldenborg P-A. 18.  2013. CD47: a cell surface glycoprotein which regulates multiple functions of hematopoietic cells in health and disease. ISRN Hematol. 2013:614619 [Google Scholar]
  19. Soto-Pantoja DR, Stein EV, Rogers NM, Sharifi-Sanjani M, Isenberg JS, Roberts DD. 19.  2013. Therapeutic opportunities for targeting the ubiquitous cell surface receptor CD47. Expert Opin. Ther. Targets 17:89–103 [Google Scholar]
  20. Janssen WJ, McPhillips KA, Dickinson MG, Linderman DJ, Morimoto K. 20.  et al. 2008. Surfactant proteins A and D suppress alveolar macrophage phagocytosis via interaction with SIRPα. Am. J. Respir. Crit. Care Med. 178:158–67 [Google Scholar]
  21. Fournier B, Andargachew R, Robin AZ, Laur O, Voelker DR. 21.  et al. 2012. Surfactant protein D (Sp-D) binds to membrane-proximal domain (D3) of signal regulatory protein α (SIRPα), a site distant from binding domain of CD47, while also binding to analogous region on signal regulatory protein β (SIRPβ). J. Biol. Chem. 287:19386–98 [Google Scholar]
  22. Adams S, Van der Laan LJ, Vernon-Wilson E, Renardel de Lavalette C, Dopp EA. 22.  et al. 1998. Signal-regulatory protein is selectively expressed by myeloid and neuronal cells. J. Immunol. 161:1853–59 [Google Scholar]
  23. Veillette A, Thibaudeau E, Latour S. 23.  1998. High expression of inhibitory receptor SHPS-1 and its association with protein-tyrosine phosphatase SHP-1 in macrophages. J. Biol. Chem. 273:22719–28 [Google Scholar]
  24. Milling S, Yrlid U, Cerovic V, MacPherson G. 24.  2010. Subsets of migrating intestinal dendritic cells. Immunol. Rev. 234:259–67 [Google Scholar]
  25. Brooke G, Holbrook JD, Brown MH, Barclay AN. 25.  2004. Human lymphocytes interact directly with CD47 through a novel member of the signal regulatory protein (SIRP) family. J. Immunol. 173:2562–70 [Google Scholar]
  26. Dietrich J, Cella M, Seiffert M, Buhring HJ, Colonna M. 26.  2000. Cutting edge: signal-regulatory protein β1 is a DAP12-associated activating receptor expressed in myeloid cells. J. Immunol. 164:9–12 [Google Scholar]
  27. Zhao XW, Van Beek EM, Schornagel K, Van der Maaden H, Van Houdt M. 27.  et al. 2011. CD47-signal regulatory protein-α (SIRPα) interactions form a barrier for antibody-mediated tumor cell destruction. Proc. Natl. Acad. Sci. USA 108:18342–47Demonstrates that targeting the CD47-SIRPα interaction and interfering with SIRPα signaling potentiates therapeutic antibody-mediated cancer cell destruction by ADCC. [Google Scholar]
  28. Akkaya M, Barclay AN. 28.  2013. How do pathogens drive the evolution of paired receptors?. Eur. J. Immunol. 43:303–13 [Google Scholar]
  29. Carlyle JR, Mesci A, Fine JH, Chen P, Belanger S. 29.  et al. 2008. Evolution of the Ly49 and Nkrp1 recognition systems. Semin. Immunol. 20:321–30 [Google Scholar]
  30. Van VQ, Raymond M, Baba N, Rubio M, Wakahara K. 30.  et al. 2012. CD47high expression on CD4 effectors identifies functional long-lived memory T cell progenitors. J. Immunol. 188:4249–55 [Google Scholar]
  31. Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP. 31.  et al. 2009. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138:271–85 [Google Scholar]
  32. Jaiswal S, Chao MP, Majeti R, Weissman IL. 32.  2010. Macrophages as mediators of tumor immunosurveillance. Trends Immunol. 31:212–19 [Google Scholar]
  33. Chao MP, Alizadeh AA, Tang C, Myklebust JH, Varghese B. 33.  et al. 2010. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142:699–713 [Google Scholar]
  34. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S. 34.  et al. 2009. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138:286–99Identifies the link between CD47 expression and poor cancer prognosis. [Google Scholar]
  35. Kuriyama T, Takenaka K, Kohno K, Yamauchi T, Daitoku S. 35.  et al. 2012. Engulfment of hematopoietic stem cells caused by down-regulation of CD47 is critical in the pathogenesis of hemophagocytic lymphohistiocytosis. Blood 120:4058–67 [Google Scholar]
  36. Hatherley D, Graham SC, Harlos K, Stuart DI, Barclay AN. 36.  2009. Structure of signal-regulatory protein α: a link to antigen receptor evolution. J. Biol. Chem. 284:26613–19 [Google Scholar]
  37. Nettleship JE, Ren J, Scott DJ, Rahman N, Hatherley D. 37.  et al. 2013. Crystal structure of signal regulatory protein gamma (SIRPγ) in complex with an antibody Fab fragment reveals the potential to form head-to-head dimers. BMC Struct. Biol. 13:13 [Google Scholar]
  38. Hatherley D, Graham SC, Turner J, Harlos K, Stuart DI, Barclay AN. 38.  2008. Paired receptor specificity explained by structures of signal regulatory proteins alone and complexed with CD47. Mol. Cell 31:266–77Reveals the structures of the extracellular regions of CD47 and members of the SIRP family. [Google Scholar]
  39. Hatherley D, Harlos K, Dunlop DC, Stuart DI, Barclay AN. 39.  2007. The structure of the macrophage signal regulatory protein α (SIRPα) inhibitory receptor reveals a binding face reminiscent of that used by T cell receptors. J. Biol. Chem. 282:14567–75 [Google Scholar]
  40. Nakaishi A, Hirose M, Yoshimura M, Oneyama C, Saito K. 40.  et al. 2008. Structural insight into the specific interaction between murine SHPS-1/SIRPα and its ligand CD47. J. Mol. Biol. 375:650–60 [Google Scholar]
  41. Van der Merwe PA, Davis SJ. 41.  2003. Molecular interactions mediating T cell antigen recognition. Annu. Rev. Immunol. 21:659–84 [Google Scholar]
  42. Seiffert M, Brossart P, Cant C, Cella M, Colonna M. 42.  et al. 2001. Signal-regulatory protein α (SIRPα) but not SIRPβ is involved in T-cell activation, binds to CD47 with high affinity, and is expressed on immature CD34+CD38 hematopoietic cells. Blood 97:2741–49 [Google Scholar]
  43. Barclay AN, Hatherley D. 43.  2008. The counterbalance theory for evolution and function of paired receptors. Immunity 29:675–78 [Google Scholar]
  44. Van den Berg TK, Yoder JA, Litman GW. 44.  2004. On the origins of adaptive immunity: innate immune receptors join the tale. Trends Immunol. 25:11–16 [Google Scholar]
  45. Agrawal A, Eastman QM, Schatz DG. 45.  1998. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394:744–51 [Google Scholar]
  46. Abi-Rached L, Parham P. 46.  2005. Natural selection drives recurrent formation of activating killer cell immunoglobulin-like receptor and Ly49 from inhibitory homologues. J. Exp. Med. 201:1319–32 [Google Scholar]
  47. Takenaka K, Prasolava TK, Wang JC, Mortin-Toth SM, Khalouei S. 47.  et al. 2007. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat. Immunol. 8:1313–23The allelic form of SIRPα present in NOD/SCID mice interacts particularly well with human CD47, and this paper explains why the NOD background is superior in supporting engraftment of human cells. [Google Scholar]
  48. Cameron CM, Barrett JW, Mann M, Lucas A, McFadden G. 48.  2005. Myxoma virus M128L is expressed as a cell surface CD47-like virulence factor that contributes to the downregulation of macrophage activation in vivo. Virology 337:55–67 [Google Scholar]
  49. Angus KL, Griffiths GM. 49.  2013. Cell polarisation and the immunological synapse. Curr. Opin. Cell Biol. 25:85–91 [Google Scholar]
  50. Xie J, Tato CM, Davis MM. 50.  2013. How the immune system talks to itself: the varied role of synapses. Immunol. Rev. 251:65–79 [Google Scholar]
  51. Hatherley D, Lea SM, Johnson S, Barclay AN. 51.  2013. Structures of CD200/CD200 receptor family and implications for topology, regulation, and evolution. Structure 21:820–32 [Google Scholar]
  52. Tsai RK, Discher DE. 52.  2008. Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J. Cell Biol. 180:989–1003 [Google Scholar]
  53. Van Spriel AB, Leusen JH, Van Egmond M, Dijkman HB, Assmann KJ. 53.  et al. 2001. Mac-1 (CD11b/CD18) is essential for Fc receptor–mediated neutrophil cytotoxicity and immunologic synapse formation. Blood 97:2478–86 [Google Scholar]
  54. Takada T, Matozaki T, Takeda H, Fukunaga K, Noguchi T. 54.  et al. 1998. Roles of the complex formation of SHPS-1 with SHP-2 in insulin-stimulated mitogen-activated protein kinase activation. J. Biol. Chem. 273:9234–42 [Google Scholar]
  55. Lorenz U. 55.  2009. SHP-1 and SHP-2 in T cells: two phosphatases functioning at many levels. Immunol. Rev. 228:342–59 [Google Scholar]
  56. Van Beek EM, Zarate JA, Van Bruggen R, Schornagel K, Tool AT. 56.  et al. 2012. SIRPα controls the activity of the phagocyte NADPH oxidase by restricting the expression of gp91phox. Cell Rep. 2:748–55 [Google Scholar]
  57. Carter-Su C, Rui L, Stofega MR. 57.  2000. SH2-B and SIRP: JAK2 binding proteins that modulate the actions of growth hormone. Recent Prog. Horm. Res. 55:293–311 [Google Scholar]
  58. Timms JF, Swanson KD, Marie-Cardine A, Raab M, Rudd CE. 58.  et al. 1999. SHPS-1 is a scaffold for assembling distinct adhesion-regulated multi-protein complexes in macrophages. Curr. Biol. 9:927–30 [Google Scholar]
  59. Johansen ML, Brown EJ. 59.  2007. Dual regulation of SIRPα phosphorylation by integrins and CD47. J. Biol. Chem. 282:24219–30 [Google Scholar]
  60. Brown EJ, Frazier WA. 60.  2001. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 11:130–35 [Google Scholar]
  61. de Vries HE, Hendriks JJ, Honing H, De Lavalette CR, Van der Pol SM. 61.  et al. 2002. Signal-regulatory protein α-CD47 interactions are required for the transmigration of monocytes across cerebral endothelium. J. Immunol. 168:5832–39 [Google Scholar]
  62. Liu Y, Buhring HJ, Zen K, Burst SL, Schnell FJ. 62.  et al. 2002. Signal regulatory protein (SIRPα), a cellular ligand for CD47, regulates neutrophil transmigration. J. Biol. Chem. 277:10028–36 [Google Scholar]
  63. Liu Y, Merlin D, Burst SL, Pochet M, Madara JL, Parkos CA. 63.  2001. The role of CD47 in neutrophil transmigration. Increased rate of migration correlates with increased cell surface expression of CD47. J. Biol. Chem. 276:40156–66 [Google Scholar]
  64. Liu Y, O'Connor MB, Mandell KJ, Zen K, Ullrich A. 64.  et al. 2004. Peptide-mediated inhibition of neutrophil transmigration by blocking CD47 interactions with signal regulatory protein α. J. Immunol. 172:2578–85 [Google Scholar]
  65. Lindberg FP, Bullard DC, Caver TE, Gresham HD, Beaudet AL, Brown EJ. 65.  1996. Decreased resistance to bacterial infection and granulocyte defects in IAP-deficient mice. Science 274:795–98 [Google Scholar]
  66. Bian Z, Guo Y, Luo Y, Tremblay A, Zhang X. 66.  et al. 2013. CD47 deficiency does not impede polymorphonuclear neutrophil transmigration but attenuates granulopoiesis at the postacute stage of colitis. J. Immunol. 190:411–17 [Google Scholar]
  67. Motegi S, Okazawa H, Ohnishi H, Sato R, Kaneko Y. 67.  et al. 2003. Role of the CD47-SHPS-1 system in regulation of cell migration. EMBO J. 22:2634–44 [Google Scholar]
  68. Tsuda M, Matozaki T, Fukunaga K, Fujioka Y, Imamoto A. 68.  et al. 1998. Integrin-mediated tyrosine phosphorylation of SHPS-1 and its association with SHP-2. Roles of Fak and Src family kinases. J. Biol. Chem. 273:13223–29 [Google Scholar]
  69. 69.  Deleted in proof
  70. Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP. 70.  2000. Role of CD47 as a marker of self on red blood cells. Science 288:2051–54 [Google Scholar]
  71. Okazawa H, Motegi S, Ohyama N, Ohnishi H, Tomizawa T. 71.  et al. 2005. Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. J. Immunol. 174:2004–11 [Google Scholar]
  72. Oldenborg PA, Gresham HD, Lindberg FP. 72.  2001. CD47-signal regulatory protein α (SIRPα) regulates Fcγ and complement receptor-mediated phagocytosis. J. Exp. Med. 193:855–62 [Google Scholar]
  73. Matozaki T, Murata Y, Okazawa H, Ohnishi H. 73.  2009. Functions and molecular mechanisms of the CD47-SIRPα signalling pathway. Trends Cell Biol. 19:72–80 [Google Scholar]
  74. Burger P, Hilarius-Stokman P, de Korte D, Van den Berg TK, Van Bruggen R. 74.  2012. CD47 functions as a molecular switch for erythrocyte phagocytosis. Blood 119:5512–21 [Google Scholar]
  75. Yamao T, Noguchi T, Takeuchi O, Nishiyama U, Morita H. 75.  et al. 2002. Negative regulation of platelet clearance and of the macrophage phagocytic response by the transmembrane glycoprotein SHPS-1. J. Biol. Chem. 277:39833–39 [Google Scholar]
  76. Wang H, Madariaga ML, Wang S, Van Rooijen N, Oldenborg PA, Yang YG. 76.  2007. Lack of CD47 on nonhematopoietic cells induces split macrophage tolerance to CD47null cells. Proc. Natl. Acad. Sci. USA 104:13744–49Bone marrow chimera study shows that education of macrophages requires CD47 nonhematopoietic cells or all cells, depending on the CD47-deficient hematopoietic target cell. [Google Scholar]
  77. Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song YJ. 77.  et al. 2005. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436:709–13 [Google Scholar]
  78. Subramanian S, Boder ET, Discher DE. 78.  2007. Phylogenetic divergence of CD47 interactions with human signal regulatory protein α reveals locus of species specificity. Implications for the binding site. J. Biol. Chem. 282:1805–18 [Google Scholar]
  79. Tsai RK, Rodriguez PL, Discher DE. 79.  2010. Self inhibition of phagocytosis: the affinity of ‘marker of self’ CD47 for SIRPα dictates potency of inhibition but only at low expression levels. Blood Cells Mol. Dis. 45:67–74 [Google Scholar]
  80. Theocharides AP, Jin L, Cheng PY, Prasolava TK, Malko AV. 80.  et al. 2012. Disruption of SIRPα signaling in macrophages eliminates human acute myeloid leukemia stem cells in xenografts. J. Exp. Med. 209:1883–99 [Google Scholar]
  81. Legrand N, Huntington ND, Nagasawa M, Bakker AQ, Schotte R. 81.  et al. 2011. Functional CD47/signal regulatory protein alpha (SIRPα) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo. Proc. Natl. Acad. Sci. USA 108:13224–29 [Google Scholar]
  82. Yamauchi T, Takenaka K, Urata S, Shima T, Kikushige Y. 82.  et al. 2013. Polymorphic Sirpa is the genetic determinant for NOD-based mouse lines to achieve efficient human cell engraftment. Blood 121:1316–25 [Google Scholar]
  83. Strowig T, Rongvaux A, Rathinam C, Takizawa H, Borsotti C. 83.  et al. 2011. Transgenic expression of human signal regulatory protein alpha in Rag2−/−γc−/− mice improves engraftment of human hematopoietic cells in humanized mice. Proc. Natl. Acad. Sci. USA 108:13218–23 [Google Scholar]
  84. Latour S, Tanaka H, Demeure C, Mateo V, Rubio M. 84.  et al. 2001. Bidirectional negative regulation of human T and dendritic cells by CD47 and its cognate receptor signal-regulator protein-α: down-regulation of IL-12 responsiveness and inhibition of dendritic cell activation. J. Immunol. 167:2547–54 [Google Scholar]
  85. Raymond M, Rubio M, Fortin G, Shalaby KH, Hammad H. 85.  et al. 2009. Selective control of SIRP-α-positive airway dendritic cell trafficking through CD47 is critical for the development of TH2-mediated allergic inflammation. J. Allergy Clin. Immunol. 124:1333–42 e1 [Google Scholar]
  86. Raymond M, Van VQ, Rubio M, Welzenbach K, Sarfati M. 86.  2010. Targeting SIRP-α protects from type 2-driven allergic airway inflammation. Eur. J. Immunol. 40:3510–18 [Google Scholar]
  87. Van VQ, Lesage S, Bouguermouh S, Gautier P, Rubio M. 87.  et al. 2006. Expression of the self-marker CD47 on dendritic cells governs their trafficking to secondary lymphoid organs. EMBO J. 25:5560–68 [Google Scholar]
  88. Yu X, Fukunaga A, Nagai H, Oniki S, Honma N. 88.  et al. 2006. Engagement of CD47 inhibits the contact hypersensitivity response via the suppression of motility and B7 expression by Langerhans cells. J. Invest. Dermatol. 126:797–807 [Google Scholar]
  89. Braun D, Galibert L, Nakajima T, Saito H, Quang VV. 89.  et al. 2006. Semimature stage: a checkpoint in a dendritic cell maturation program that allows for functional reversion after signal-regulatory protein-α ligation and maturation signals. J. Immunol. 177:8550–59 [Google Scholar]
  90. Fukunaga A, Nagai H, Noguchi T, Okazawa H, Matozaki T. 90.  et al. 2004. Src homology 2 domain-containing protein tyrosine phosphatase substrate 1 regulates the migration of Langerhans cells from the epidermis to draining lymph nodes. J. Immunol. 172:4091–99 [Google Scholar]
  91. Motegi S, Okazawa H, Murata Y, Kanazawa Y, Saito Y. 91.  et al. 2008. Essential roles of SHPS-1 in induction of contact hypersensitivity of skin. Immunol. Lett. 121:52–60 [Google Scholar]
  92. Okajo J, Kaneko Y, Murata Y, Tomizawa T, Okuzawa C. 92.  et al. 2007. Regulation by Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 of alpha-galactosylceramide-induced antimetastatic activity and Th1 and Th2 responses of NKT cells. J. Immunol. 178:6164–72 [Google Scholar]
  93. Beattie L, Svensson M, Bune A, Brown N, Maroof A. 93.  et al. 2010. Leishmania donovani–induced expression of signal regulatory protein α on Kupffer cells enhances hepatic invariant NKT-cell activation. Eur. J. Immunol. 40:117–23 [Google Scholar]
  94. Morimoto N, Murata Y, Motegi S, Suzue K, Saito Y. 94.  et al. 2010. Requirement of SIRPα for protective immunity against Leishmania major. Biochem. Biophys. Res. Commun. 401:385–89 [Google Scholar]
  95. Bian Z, Guo Y, Ha B, Zen K, Liu Y. 95.  2012. Regulation of the inflammatory response: enhancing neutrophil infiltration under chronic inflammatory conditions. J. Immunol. 188:844–53 [Google Scholar]
  96. Fortin G, Raymond M, Van VQ, Rubio M, Gautier P. 96.  et al. 2009. A role for CD47 in the development of experimental colitis mediated by SIRPα+CD103 dendritic cells. J. Exp. Med. 206:1995–2011 [Google Scholar]
  97. Tomizawa T, Kaneko Y, Kaneko Y, Saito Y, Ohnishi H. 97.  et al. 2007. Resistance to experimental autoimmune encephalomyelitis and impaired T cell priming by dendritic cells in Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 mutant mice. J. Immunol. 179:869–77 [Google Scholar]
  98. Li LX, Atif SM, Schmiel SE, Lee SJ, McSorley SJ. 98.  2012. Increased susceptibility to Salmonella infection in signal regulatory protein α-deficient mice. J. Immunol. 189:2537–44 [Google Scholar]
  99. Tseng D, Volkmer J-P, Willingham SB, Contreras-Trujillo H, Fathman JW. 99.  et al. 2013. Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc. Natl. Acad. Sci. USA 110:11103–8 [Google Scholar]
  100. Sato-Hashimoto M, Saito Y, Ohnishi H, Iwamura H, Kanazawa Y. 100.  et al. 2011. Signal regulatory protein α regulates the homeostasis of T lymphocytes in the spleen. J. Immunol. 187:291–97 [Google Scholar]
  101. Weiskopf K, Ring AM, Ho CC, Volkmer J-P, Levin AM. 101.  et al. 2013. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science 341:88–91High-affinity variants of soluble recombinant SIRPα proteins were generated that potently synergized with various cancer therapeutic antibodies in vitro and in vivo. [Google Scholar]
  102. Han MH, Lundgren DH, Jaiswal S, Chao M, Graham KL. 102.  et al. 2012. Janus-like opposing roles of CD47 in autoimmune brain inflammation in humans and mice. J. Exp. Med. 209:1325–34 [Google Scholar]
  103. Okuzawa C, Kaneko Y, Murata Y, Miyake A, Saito Y. 103.  et al. 2008. Resistance to collagen-induced arthritis in SHPS-1 mutant mice. Biochem. Biophys. Res. Commun. 371:561–66 [Google Scholar]
  104. Tanaka K, Horikawa T, Suzuki S, Kitaura K, Watanabe J. 104.  et al. 2008. Inhibition of Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 reduces the severity of collagen-induced arthritis. J. Rheumatol. 35:2316–24 [Google Scholar]
  105. Verdrengh M, Lindberg FP, Ryden C, Tarkowski A. 105.  1999. Integrin-associated protein (IAP)-deficient mice are less susceptible to developing Staphylococcus aureus-induced arthritis. Microbes Infect. 1:745–51 [Google Scholar]
  106. Baba N, Van VQ, Wakahara K, Rubio M, Fortin G. 106.  et al. 2013. CD47 fusion protein targets CD172a+ cells in Crohn's disease and dampens the production of IL-1β and TNF. J. Exp. Med. 210:1251–63Demonstrates the efficacy of targeting the CD47-SIRPα interaction in inflammation. [Google Scholar]
  107. Gitik M, Liraz-Zaltsman S, Oldenborg P-A, Reichert F, Rotshenker S. 107.  2011. Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-α) on phagocytes. J. Neuroinflamm. 8:24 [Google Scholar]
  108. Kobayashi M, Ohnishi H, Okazawa H, Murata Y, Hayashi Y. 108.  et al. 2008. Expression of Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 in pancreatic β-cells and its role in promotion of insulin secretion and protection against diabetes. Endocrinology 149:5662–69 [Google Scholar]
  109. Maile LA, DeMambro VE, Wai C, Lotinun S, Aday AW. 109.  et al. 2011. An essential role for the association of CD47 to SHPS-1 in skeletal remodeling. J. Bone Miner. Res. 26:2068–81 [Google Scholar]
  110. Oldenborg P-A, Gresham HD, Chen Y, Izui S, Lindberg FP. 110.  2002. Lethal autoimmune hemolytic anemia in CD47-deficient nonobese diabetic (NOD) mice. Blood 99:3500–4 [Google Scholar]
  111. Olsson M, Bruhns P, Frazier WA, Ravetch JV, Oldenborg P-A. 111.  2005. Platelet homeostasis is regulated by platelet expression of CD47 under normal conditions and in passive immune thrombocytopenia. Blood 105:3577–82 [Google Scholar]
  112. Ahrens N, Pagenkopf C, Kiesewetter H, Salama A. 112.  2006. CD47 is expressed at normal levels in patients with autoimmune haemolytic anaemia and/or immune thrombocytopenia. Transfus. Med. 16:397–402 [Google Scholar]
  113. Barros MM, Yamamoto M, Figueiredo MS, Cancado R, Kimura EY. 113.  et al. 2009. Expression levels of CD47, CD35, CD55, and CD59 on red blood cells and signal-regulatory protein-α,β on monocytes from patients with warm autoimmune hemolytic anemia. Transfusion 49:154–60 [Google Scholar]
  114. Catani L, Sollazzo D, Ricci F, Polverelli N, Palandri F. 114.  et al. 2011. The CD47 pathway is deregulated in human immune thrombocytopenia. Exp. Hematol. 39:486–94 [Google Scholar]
  115. Jackson A, Nanton MR, O'Donnell H, Akue AD, McSorley SJ. 115.  2010. Innate immune activation during Salmonella infection initiates extramedullary erythropoiesis and splenomegaly. J. Immunol. 185:6198–204 [Google Scholar]
  116. Nairz M, Schroll A, Moschen AR, Sonnweber T, Theurl M. 116.  et al. 2011. Erythropoietin contrastingly affects bacterial infection and experimental colitis by inhibiting nuclear factor-κB-inducible immune pathways. Immunity 34:61–74 [Google Scholar]
  117. Baral P, Utaisincharoen P. 117.  2012. Involvement of signal regulatory protein alpha, a negative regulator of Toll-like receptor signaling, in impairing the MyD88-independent pathway and intracellular killing of Burkholderia pseudomallei–infected mouse macrophages. Infect. Immun. 80:4223–31 [Google Scholar]
  118. Dong LW, Kong XN, Yan HX, Yu LX, Chen L. 118.  et al. 2008. Signal regulatory protein alpha negatively regulates both TLR3 and cytoplasmic pathways in type I interferon induction. Mol. Immunol. 45:3025–35 [Google Scholar]
  119. Kong XN, Yan HX, Chen L, Dong LW, Yang W. 119.  et al. 2007. LPS-induced down-regulation of signal regulatory protein α contributes to innate immune activation in macrophages. J. Exp. Med. 204:2719–31 [Google Scholar]
  120. Stacey KJ, Sester DP, Sweet MJ, Hume DA. 120.  2000. Macrophage activation by immunostimulatory DNA. Curr. Top. Microbiol. Immunol. 247:41–58 [Google Scholar]
  121. Su X, Johansen M, Looney MR, Brown EJ, Matthay MA. 121.  2008. CD47 deficiency protects mice from lipopolysaccharide-induced acute lung injury and Escherichia coli pneumonia. J. Immunol. 180:6947–53 [Google Scholar]
  122. Ide K, Wang H, Tahara H, Liu J, Wang X. 122.  et al. 2007. Role for CD47-SIRPα signaling in xenograft rejection by macrophages. Proc. Natl. Acad. Sci. USA 104:5062–66 [Google Scholar]
  123. Wang H, VerHalen J, Madariaga ML, Xiang S, Wang S. 123.  et al. 2007. Attenuation of phagocytosis of xenogeneic cells by manipulating CD47. Blood 109:836–42 [Google Scholar]
  124. Wang C, Wang H, Ide K, Wang Y, Van Rooijen N. 124.  et al. 2011. Human CD47 expression permits survival of porcine cells in immunodeficient mice that express SIRPα capable of binding to human CD47. Cell Transplant. 20:1915–20 [Google Scholar]
  125. Galili U, Rachmilewitz EA, Peleg A, Flechner I. 125.  1984. A unique natural human IgG antibody with anti-α-galactosyl specificity. J. Exp. Med. 160:1519–31 [Google Scholar]
  126. Navarro-Alvarez N, Yang YG. 126.  2013. Lack of CD47 on donor hepatocytes promotes innate immune cell activation and graft loss: a potential barrier to hepatocyte xenotransplantation. Cell Transplant. In press. doi: 10.3727/096368913X663604 [Google Scholar]
  127. Waern JM, Yuan Q, Rudrich U, Becker PD, Schulze K. 127.  et al. 2012. Ectopic expression of murine CD47 minimizes macrophage rejection of human hepatocyte xenografts in immunodeficient mice. Hepatology 56:1479–88 [Google Scholar]
  128. Wang Y, Wang H, Wang S, Fu Y, Yang YG. 128.  2010. Survival and function of CD47-deficient thymic grafts in mice. Xenotransplantation 17:160–65 [Google Scholar]
  129. Wang H, Wu X, Wang Y, Oldenborg P-A, Yang YG. 129.  2010. CD47 is required for suppression of allograft rejection by donor-specific transfusion. J. Immunol. 184:3401–7 [Google Scholar]
  130. Chao MP, Alizadeh AA, Tang C, Jan M, Weissman-Tsukamoto R. 130.  et al. 2011. Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res. 71:1374–84 [Google Scholar]
  131. Chao MP, Jaiswal S, Weissman-Tsukamoto R, Alizadeh AA, Gentles AJ. 131.  et al. 2010. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci. Transl. Med. 2:63ra94 [Google Scholar]
  132. Chao MP, Tang C, Pachynski RK, Chin R, Majeti R, Weissman IL. 132.  2011. Extranodal dissemination of non-Hodgkin lymphoma requires CD47 and is inhibited by anti-CD47 antibody therapy. Blood 118:4890–901 [Google Scholar]
  133. Spaargaren M. 133.  2011. Lymphoma spread? Target CD47-SIRPα!. Blood 118:4762–64 [Google Scholar]
  134. Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P. 134.  et al. 2012. The CD47-signal regulatory protein alpha (SIRPα) interaction is a therapeutic target for human solid tumors. Proc. Natl. Acad. Sci. USA 109:6662–67 [Google Scholar]
  135. Soto-Pantoja DR, Miller TW, Frazier WA, Roberts DD. 135.  2012. Inhibitory signaling through signal regulatory protein-α is not sufficient to explain the antitumor activities of CD47 antibodies. Proc. Natl. Acad. Sci. USA 109:E2842 [Google Scholar]
  136. Zhao XW, Matlung HL, Kuijpers TW, Van den Berg TK. 136.  2012. On the mechanism of CD47 targeting in cancer. Proc. Natl. Acad. Sci. USA 109:E2843 [Google Scholar]
  137. Chao MP, Weissman IL, Majeti R. 137.  2012. The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr. Opin. Immunol. 24:225–32 [Google Scholar]
  138. Zhao XW, Kuijpers TW, Van den Berg TK. 138.  2012. Is targeting of CD47-SIRPα enough for treating hematopoietic malignancy?. Blood 119:4333–34 [Google Scholar]
  139. Kim MJ, Lee JC, Lee JJ, Kim S, Lee SG. 139.  et al. 2008. Association of CD47 with natural killer cell-mediated cytotoxicity of head-and-neck squamous cell carcinoma lines. Tumour Biol. 29:28–34 [Google Scholar]
  140. Sagawa M, Shimizu T, Fukushima N, Kinoshita Y, Ohizumi I. 140.  et al. 2011. A new disulfide-linked dimer of a single-chain antibody fragment against human CD47 induces apoptosis in lymphoid malignant cells via the hypoxia inducible factor-1α pathway. Cancer Sci. 102:1208–15 [Google Scholar]
  141. Uno S, Kinoshita Y, Azuma Y, Tsunenari T, Yoshimura Y. 141.  et al. 2007. Antitumor activity of a monoclonal antibody against CD47 in xenograft models of human leukemia. Oncol. Rep. 17:1189–94 [Google Scholar]
  142. Irandoust M, Alvarez Zarate J, Hubeek I, Van Beek EM, Schornagel K. 142.  et al. 2013. Engagement of SIRPα inhibits growth and induces programmed cell death in acute myeloid leukemia cells. PLoS ONE 8:e52143 [Google Scholar]
  143. Wang Y, Xu Z, Guo S, Zhang L, Sharma A. 143.  et al. 2013. Intravenous delivery of siRNA targeting CD47 effectively inhibits melanoma tumor growth and lung metastasis. Mol. Ther. 211919–29 [Google Scholar]
  144. Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE. 144.  2013. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339:971–75 [Google Scholar]
  145. Hu C-MJ, Fang RH, Luk BT, Chen KN, Carpenter C. 145.  et al. 2013. ‘Marker-of-self’ functionalization of nanoscale particles through a top-down cellular membrane coating approach. Nanoscale 5:2664–68 [Google Scholar]
  146. Rebres RA, Kajihara K, Brown EJ. 146.  2005. Novel CD47-dependent intercellular adhesion modulates cell migration. J. Cell. Physiol. 205:182–93 [Google Scholar]
  147. Eck MJ, Pluskey S, Trub T, Harrison SC, Shoelson SE. 147.  1996. Spatial constraints on the recognition of phosphoproteins by the tandem SH2 domains of the phosphatase SH-PTP2. Nature 379:277–80 [Google Scholar]
  148. Lanier LL. 148.  2001. Face off—the interplay between activating and inhibitory immune receptors. Curr. Opin. Immunol. 13:326–31 [Google Scholar]
  149. Yamada E, McVicar DW. 149.  2008. Paired receptor systems of the innate immune system. Curr. Protoc. Immunol. A.1X.1–25 [Google Scholar]
  150. Kuroki K, Furukawa A, Maenaka K. 150.  2012. Molecular recognition of paired receptors in the immune system. Front. Microbiol. 3:429 [Google Scholar]
  151. Coles SJ, Hills RK, Wang EC, Burnett AK, Man S. 151.  et al. 2012. Expression of CD200 on AML blasts directly suppresses memory T-cell function. Leukemia 26:2148–51 [Google Scholar]
  152. Kretz-Rommel A, Qin F, Dakappagari N, Ravey EP, McWhirter J. 152.  et al. 2007. CD200 expression on tumor cells suppresses antitumor immunity: new approaches to cancer immunotherapy. J. Immunol. 178:5595–605 [Google Scholar]
  153. Rygiel TP, Meyaard L. 153.  2012. CD200R signaling in tumor tolerance and inflammation: a tricky balance. Curr. Opin. Immunol. 24:233–38 [Google Scholar]
  154. Zhang L, Stanford M, Liu J, Barrett C, Jiang L. 154.  et al. 2009. Inhibition of macrophage activation by the myxoma virus M141 protein (vCD200). J. Virol. 83:9602–7 [Google Scholar]
  155. Spriggs MK. 155.  1996. One step ahead of the game: viral immunomodulatory molecules. Annu. Rev. Immunol. 14:101–30 [Google Scholar]
  156. Inagaki K, Yamao T, Noguchi T, Matozaki T, Fukunaga K. 156.  et al. 2000. SHPS-1 regulates integrin-mediated cytoskeletal reorganization and cell motility. EMBO J. 19:6721–31 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error