Anticytokine autoantibodies are an emerging mechanism of disease in previously healthy adults. Patients with these syndromes demonstrate a unique infectious phenotype associated with neutralizing autoantibodies that target a specific cytokine. Examples include anti-interferon (IFN)-γ autoantibodies and disseminated nontuberculous mycobacteria; anti-granulocyte macrophage colony–stimulating factor autoantibodies and cryptococcal meningitis; anti-interleukin (IL)-6 autoantibodies and staphylococcal skin infection; and anti-IL-17A, anti-IL-17F, or anti-IL-22 autoantibodies and mucocutaneous candidiasis in the setting of either APECED (autoimmune polyendocrinopathy, candidiasis, ectodermal dystrophy syndrome) or thymoma. Other anticytokine autoantibodies may contribute to an infectious phenotype such as anti-granulocyte colony stimulating factor and anti-IFN-α autoantibodies, although the strength of the association is less clear. Their identification not only affects disease management but also may uncover key mechanisms of host defense against specific organisms. Furthermore, it raises the possibility that currently idiopathic diseases will someday be explained by a yet unidentified anticytokine autoantibody. This review focuses on the current understanding, both clinical and mechanistic, of anticytokine autoantibody-associated immunodeficiency.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Browne SK, Burbelo PD, Chetchotisakd P, Suputtamongkol Y, Kiertiburanakul S. 1.  et al. 2012. Adult-onset immunodeficiency in Thailand and Taiwan. N. Engl. J. Med. 367:725–34 [Google Scholar]
  2. Kisand K, Boe Wolff AS, Podkrajsek KT, Tserel L, Link M. 2.  et al. 2010. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med. 207:299–308 [Google Scholar]
  3. Puel A, Doffinger R, Natividad A, Chrabieh M, Barcenas-Morales G. 3.  et al. 2010. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med. 207:291–97 [Google Scholar]
  4. Carey B, Trapnell BC. 4.  2010. The molecular basis of pulmonary alveolar proteinosis. Clin. Immunol. 135:223–35 [Google Scholar]
  5. Rosen LB, Freeman AF, Yang LM, Jutivorakool K, Olivier KN. 5.  et al. 2013. Anti-GM-CSF autoantibodies in patients with cryptococcal meningitis. J. Immunol. 190:3959–66 [Google Scholar]
  6. Watanabe M, Uchida K, Nakagaki K, Kanazawa H, Trapnell BC. 6.  et al. 2007. Anti-cytokine autoantibodies are ubiquitous in healthy individuals. FEBS Lett. 581:2017–21 [Google Scholar]
  7. Uchida K, Nakata K, Suzuki T, Luisetti M, Watanabe M. 7.  et al. 2009. Granulocyte/macrophage-colony-stimulating factor autoantibodies and myeloid cell immune functions in healthy subjects. Blood 113:2547–56 [Google Scholar]
  8. Bost KL, Hahn BH, Saag MS, Shaw GM, Weigent DA. 8.  et al. 1988. Individuals infected with HIV possess antibodies against IL-2. Immunology 65:611–15 [Google Scholar]
  9. Madariaga L, Amurrio C, Martin G, Garcia-Cebrian F, Bicandi J. 9.  et al. 1998. Detection of anti-interferon-γ autoantibodies in subjects infected by Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 2:62–68 [Google Scholar]
  10. Bonfanti C, Caruso A, Bakhiet M, Olsson T, Turano A. 10.  et al. 1995. Increased levels of antibodies to IFN-γ in human and experimental African trypanosomiasis. Scand. J. Immunol. 41:49–52 [Google Scholar]
  11. Prummer O, Bunjes D, Wiesneth M, Arnold R, Porzsolt F. 11.  et al. 1994. High-titre interferon-α antibodies in a patient with chronic graft-versus-host disease after allogeneic bone marrow transplantation. Bone Marrow Transplant. 14:483–86 [Google Scholar]
  12. Prummer O, Frickhofen N, Digel W, Heimpel H, Porzsolt F. 12.  1991. Spontaneous interferon-α antibodies in a patient with pure red cell aplasia and recurrent cutaneous carcinomas. Ann. Hematol. 62:76–80 [Google Scholar]
  13. Fomsgaard A, Svenson M, Bendtzen K. 13.  1989. Auto-antibodies to tumour necrosis factor α in healthy humans and patients with inflammatory diseases and gram-negative bacterial infections. Scand. J. Immunol. 30:219–23 [Google Scholar]
  14. Wildbaum G, Nahir MA, Karin N. 14.  2003. Beneficial autoimmunity to proinflammatory mediators restrains the consequences of self-destructive immunity. Immunity 19:679–88 [Google Scholar]
  15. Peichl P, Pursch E, Broll H, Lindley IJ. 15.  1999. Anti-IL-8 autoantibodies and complexes in rheumatoid arthritis: polyclonal activation in chronic synovial tissue inflammation. Rheumatol. Int. 18:141–45 [Google Scholar]
  16. Lokshin AE, Winans M, Landsittel D, Marrangoni AM, Velikokhatnaya L. 16.  et al. 2006. Circulating IL-8 and anti-IL-8 autoantibody in patients with ovarian cancer. Gynecol. Oncol. 102:244–51 [Google Scholar]
  17. Amiral J, Marfaing-Koka A, Wolf M, Alessi MC, Tardy B. 17.  et al. 1996. Presence of autoantibodies to interleukin-8 or neutrophil-activating peptide-2 in patients with heparin-associated thrombocytopenia. Blood 88:410–16 [Google Scholar]
  18. Kurdowska A, Miller EJ, Noble JM, Baughman RP, Matthay MA. 18.  et al. 1996. Anti-IL-8 autoantibodies in alveolar fluid from patients with the adult respiratory distress syndrome. J. Immunol. 157:2699–706 [Google Scholar]
  19. Antonelli G, Giannelli G, Currenti M, Simeoni E, Del Vecchio S. 19.  et al. 1996. Antibodies to interferon (IFN) in hepatitis C patients relapsing while continuing recombinant IFN-α2 therapy. Clin. Exp. Immunol. 104:384–87 [Google Scholar]
  20. Antonelli G, Bagnato F, Pozzilli C, Simeoni E, Bastianelli S. 20.  et al. 1998. Development of neutralizing antibodies in patients with relapsing-remitting multiple sclerosis treated with IFN-β1a. J. Interferon Cytokine Res. 18:345–50 [Google Scholar]
  21. Casadevall N, Nataf J, Viron B, Kolta A, Kiladjian JJ. 21.  et al. 2002. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N. Engl. J. Med. 346:469–75 [Google Scholar]
  22. Armitage JO. 22.  1998. Emerging applications of recombinant human granulocyte-macrophage colony-stimulating factor. Blood 92:4491–508 [Google Scholar]
  23. Akagawa KS, Kamoshita K, Tokunaga T. 23.  1988. Effects of granulocyte-macrophage colony-stimulating factor and colony-stimulating factor-1 on the proliferation and differentiation of murine alveolar macrophages. J. Immunol. 141:3383–90 [Google Scholar]
  24. Bonfield TL, Raychaudhuri B, Malur A, Abraham S, Trapnell BC. 24.  et al. 2003. PU.1 regulation of human alveolar macrophage differentiation requires granulocyte-macrophage colony-stimulating factor. Am. J. Physiol. Lung Cell. Mol. Physiol. 285:L1132–36 [Google Scholar]
  25. Chen BD, Mueller M, Chou TH. 25.  1988. Role of granulocyte/macrophage colony-stimulating factor in the regulation of murine alveolar macrophage proliferation and differentiation. J. Immunol. 141:139–44 [Google Scholar]
  26. Shibata Y, Berclaz PY, Chroneos ZC, Yoshida M, Whitsett JA. 26.  et al. 2001. GM-CSF regulates alveolar macrophage differentiation and innate immunity in the lung through PU.1. Immunity 15:557–67 [Google Scholar]
  27. Rosen SH, Castleman B, Liebow AA. 27.  1958. Pulmonary alveolar proteinosis. N. Engl. J. Med. 258:1123–42 [Google Scholar]
  28. Dranoff G, Crawford AD, Sadelain M, Ream B, Rashid A. 28.  et al. 1994. Involvement of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis. Science 264:713–16 [Google Scholar]
  29. Robb L, Drinkwater CC, Metcalf D, Li R, Kontgen F. 29.  et al. 1995. Hematopoietic and lung abnormalities in mice with a null mutation of the common beta subunit of the receptors for granulocyte-macrophage colony-stimulating factor and interleukins 3 and 5. Proc. Natl. Acad. Sci. USA 92:9565–69 [Google Scholar]
  30. Dirksen U, Nishinakamura R, Groneck P, Hattenhorst U, Nogee L. 30.  et al. 1997. Human pulmonary alveolar proteinosis associated with a defect in GM-CSF/IL-3/IL-5 receptor common beta chain expression. J. Clin. Investig. 100:2211–17 [Google Scholar]
  31. Suzuki T, Sakagami T, Rubin BK, Nogee LM, Wood RE. 31.  et al. 2008. Familial pulmonary alveolar proteinosis caused by mutations in CSF2RA. J. Exp. Med. 205:2703–10 [Google Scholar]
  32. Suzuki T, Sakagami T, Young LR, Carey BC, Wood RE. 32.  et al. 2010. Hereditary pulmonary alveolar proteinosis: pathogenesis, presentation, diagnosis, and therapy. Am. J. Respir. Crit. Care Med. 182:1292–304 [Google Scholar]
  33. Kitamura T, Tanaka N, Watanabe J, Uchida K, Kanegasaki S. 33.  et al. 1999. Idiopathic pulmonary alveolar proteinosis as an autoimmune disease with neutralizing antibody against granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 190:875–80 [Google Scholar]
  34. Tanaka N, Watanabe J, Kitamura T, Yamada Y, Kanegasaki S. 34.  et al. 1999. Lungs of patients with idiopathic pulmonary alveolar proteinosis express a factor which neutralizes granulocyte-macrophage colony stimulating factor. FEBS Lett. 442:246–50 [Google Scholar]
  35. Seymour JF, Presneill JJ. 35.  2002. Pulmonary alveolar proteinosis: progress in the first 44 years. Am. J. Respir. Crit. Care Med. 166:215–35 [Google Scholar]
  36. Ladeb S, Fleury-Feith J, Escudier E, Tran Van Nhieu J, Bernaudin JF. 36.  et al. 1996. Secondary alveolar proteinosis in cancer patients. Support. Care Cancer 4:420–26 [Google Scholar]
  37. Hsu AP, Sampaio EP, Khan J, Calvo KR, Lemieux JE. 37.  et al. 2011. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood 118:2653–55 [Google Scholar]
  38. Yoshida M, Ikegami M, Reed JA, Chroneos ZC, Whitsett JA. 38.  2001. GM-CSF regulates protein and lipid catabolism by alveolar macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol. 280:L379–86 [Google Scholar]
  39. Uchida K, Beck DC, Yamamoto T, Berclaz PY, Abe S. 39.  et al. 2007. GM-CSF autoantibodies and neutrophil dysfunction in pulmonary alveolar proteinosis. N. Engl. J. Med. 356:567–79 [Google Scholar]
  40. Fried J, Hinthorn D, Ralstin J, Gerjarusak P, Liu C. 40.  1988. Cure of brain abscess caused by Nocardia asteroides resistant to multiple antibiotics. South. Med. J. 81:412–13 [Google Scholar]
  41. Walker DA, McMahon SM. 41.  1986. Pulmonary alveolar proteinosis complicated by cerebral abscess: report of a case. J. Am. Osteopath. Assoc. 86:447–50 [Google Scholar]
  42. Ramirez J. 42.  1967. Pulmonary alveolar proteinosis. Treatment by massive bronchopulmonary lavage. Arch. Intern. Med. 119:147–56 [Google Scholar]
  43. Witty LA, Tapson VF, Piantadosi CA. 43.  1994. Isolation of mycobacteria in patients with pulmonary alveolar proteinosis. Medicine 73:103–9 [Google Scholar]
  44. Hartung M, Salfelder K. 44.  1975. Pulmonary alveolar proteinosis and histoplasmosis: report of three cases. Virchows Arch. A Pathol. Anat. Histol. 368:281–87 [Google Scholar]
  45. Kitamura T, Uchida K, Tanaka N, Tsuchiya T, Watanabe J. 45.  et al. 2000. Serological diagnosis of idiopathic pulmonary alveolar proteinosis. Am. J. Respir. Crit. Care Med. 162:658–62 [Google Scholar]
  46. Carlsen ET, Hill RB Jr, Rowlands Jr DT. 46.  1964. Nocardiosis and pulmonary alveolar proteinosis. Ann. Intern. Med. 60:275–81 [Google Scholar]
  47. Oerlemans WG, Jansen EN, Prevo RL, Eijsvogel MM. 47.  1998. Primary cerebellar nocardiosis and alveolar proteinosis. Acta Neurol. Scand. 97:138–41 [Google Scholar]
  48. Saltzman HA, Chick EW, Conant NF. 48.  1962. Nocardiosis as a complication of other diseases. Lab. Investig. 11:1110–17 [Google Scholar]
  49. Supena R, Karlin D, Strate R, Cramer PG. 49.  1974. Pulmonary alveolar proteinosis and Nocardia brain abscess. Report of a case. Arch. Neurol. 30:266–68 [Google Scholar]
  50. Taleghani-Far M, Barber JB, Sampson C, Harden KA. 50.  1964. Cerebral nocardiosis and alveolar proteinosis. Am. Rev. Respir. Dis. 89:561–65 [Google Scholar]
  51. Clague HW, Harth M, Hellyer D, Morgan WK. 51.  1982. Septic arthritis due to Nocardia asteroides in association with pulmonary alveolar proteinosis. J. Rheumatol. 9:469–72 [Google Scholar]
  52. Andersen BR, Ecklund RE, Kellow WF. 52.  1960. Pulmonary alveolar proteinosis with systemic nocardiosis. A case report. JAMA 174:28–31 [Google Scholar]
  53. Andriole VT, Ballas M, Wilson GL. 53.  1964. The association of nocardiosis and pulmonary alveolar proteinosis. A case study. Ann. Intern. Med. 60:266–75 [Google Scholar]
  54. Bjorkholm B, Elgefors B. 54.  1986. Cerebellar aspergilloma. Scand. J. Infect. Dis. 18:375–8 [Google Scholar]
  55. Jones CC. 55.  1960. Pulmonary alveolar proteinosis with unusual complicating infections; a report of two cases. Am. J. Med. 29:713–22 [Google Scholar]
  56. Wolman L. 56.  1961. The cerebral complications of pulmonary alveolar proteinosis. Lancet 2:733–35 [Google Scholar]
  57. Kavuru MS, Sullivan EJ, Piccin R, Thomassen MJ, Stoller JK. 57.  2000. Exogenous granulocyte-macrophage colony-stimulating factor administration for pulmonary alveolar proteinosis. Am. J. Respir. Crit. Care Med. 161:1143–48 [Google Scholar]
  58. Seymour JF, Presneill JJ, Schoch OD, Downie GH, Moore PE. 58.  et al. 2001. Therapeutic efficacy of granulocyte-macrophage colony-stimulating factor in patients with idiopathic acquired alveolar proteinosis. Am. J. Respir. Crit. Care Med. 163:524–31 [Google Scholar]
  59. Tazawa R, Trapnell BC, Inoue Y, Arai T, Takada T. 59.  et al. 2010. Inhaled granulocyte/macrophage-colony stimulating factor as therapy for pulmonary alveolar proteinosis. Am. J. Respir. Crit. Care Med. 181:1345–54 [Google Scholar]
  60. Borie R, Debray MP, Laine C, Aubier M, Crestani B. 60.  2009. Rituximab therapy in autoimmune pulmonary alveolar proteinosis. Eur. Respir. J. 33:1503–6 [Google Scholar]
  61. Kavuru MS, Malur A, Marshall I, Barna BP, Meziane M. 61.  et al. 2011. An open-label trial of rituximab therapy in pulmonary alveolar proteinosis. Eur. Respir. J. 38:1361–67 [Google Scholar]
  62. Dorman SE, Holland SM. 62.  2000. Interferon-γ and interleukin-12 pathway defects and human disease. Cytokine Growth Factor Rev. 11:321–33 [Google Scholar]
  63. Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S. 63.  et al. 2011. IRF8 mutations and human dendritic-cell immunodeficiency. N. Engl. J. Med. 365:127–38 [Google Scholar]
  64. Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O. 64.  et al. 2012. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science 337:1684–88 [Google Scholar]
  65. Al-Muhsen S, Casanova JL. 65.  2008. The genetic heterogeneity of Mendelian susceptibility to mycobacterial diseases. J. Allergy Clin. Immunol. 122:1043–51 [Google Scholar]
  66. Doffinger R, Helbert MR, Barcenas-Morales G, Yang K, Dupuis S. 66.  et al. 2004. Autoantibodies to interferon-γ in a patient with selective susceptibility to mycobacterial infection and organ-specific autoimmunity. Clin. Infect. Dis. 38:e10–14 [Google Scholar]
  67. Hoflich C, Sabat R, Rosseau S, Temmesfeld B, Slevogt H. 67.  et al. 2004. Naturally occurring anti-IFN-γ autoantibody and severe infections with Mycobacterium cheloneae and Burkholderia cocovenenans. Blood 103:673–75 [Google Scholar]
  68. Baerlecken N, Jacobs R, Stoll M, Schmidt RE, Witte T. 68.  2009. Recurrent, multifocal Mycobacterium avium-intercellulare infection in a patient with interferon-γ autoantibody. Clin. Infect. Dis. 49:e76–78 [Google Scholar]
  69. Browne SK, Zaman R, Sampaio EP, Jutivorakool K, Rosen LB. 69.  et al. 2012. Anti-CD20 (rituximab) therapy for anti-interferon-γ autoantibody-associated nontuberculous mycobacterial infection. Blood 119:3933–39 [Google Scholar]
  70. Chi CY, Chu CC, Liu JP, Lin CH, Ho MW. 70.  et al. 2012. Anti-interferon-γ autoantibodies in adults with disseminated nontuberculous mycobacterial infections are associated with HLA-DRB1*16:02 and DQB1*05:02 and the reactivation of latent varicella-zoster virus infection. Blood 121:1357–66 [Google Scholar]
  71. Kampitak T, Suwanpimolkul G, Browne S, Suankratay C. 71.  2010. Anti-interferon-γ autoantibody and opportunistic infections: case series and review of the literature. Infection 39:65–71 [Google Scholar]
  72. Kampmann B, Hemingway C, Stephens A, Davidson R, Goodsall A. 72.  et al. 2005. Acquired predisposition to mycobacterial disease due to autoantibodies to IFN-γ. J. Clin. Investig. 115:2480–88 [Google Scholar]
  73. Koya T, Tsubata C, Kagamu H, Koyama K, Hayashi M. 73.  et al. 2009. Anti-interferon-γ autoantibody in a patient with disseminated Mycobacterium avium complex. J. Infect. Chemother. 15:118–22 [Google Scholar]
  74. Patel SY, Ding L, Brown MR, Lantz L, Gay T. 74.  et al. 2005. Anti-IFN-γ autoantibodies in disseminated nontuberculous mycobacterial infections. J. Immunol. 175:4769–76 [Google Scholar]
  75. Poulin S, Corbeil C, Nguyen M, St-Denis A, Cote L. 75.  et al. 2013. Fatal Mycobacterium colombiense/cytomegalovirus coinfection associated with acquired immunodeficiency due to autoantibodies against interferon gamma: a case report. BMC Infect. Dis. 13:24 [Google Scholar]
  76. Tanaka Y, Hori T, Ito K, Fujita T, Ishikawa T. 76.  et al. 2007. Disseminated Mycobacterium avium complex infection in a patient with autoantibody to interferon-γ. Intern. Med. 46:1005–9 [Google Scholar]
  77. Tang BS, Chan JF, Chen M, Tsang OT, Mok MY. 77.  et al. 2010. Disseminated penicilliosis, recurrent bacteremic nontyphoidal salmonellosis, and burkholderiosis associated with acquired immunodeficiency due to autoantibody against gamma interferon. Clin. Vaccine Immunol. 17:1132–38 [Google Scholar]
  78. Xu S, Cao X. 78.  2010. Interleukin-17 and its expanding biological functions. Cell Mol. Immunol. 7:164–74 [Google Scholar]
  79. de Beaucoudrey L, Puel A, Filipe-Santos O, Cobat A, Ghandil P. 79.  et al. 2008. Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J. Exp. Med. 205:1543–50 [Google Scholar]
  80. Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ. 80.  et al. 2008. Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452:773–76 [Google Scholar]
  81. Ferwerda B, Ferwerda G, Plantinga TS, Willment JA, van Spriel AB. 81.  et al. 2009. Human dectin-1 deficiency and mucocutaneous fungal infections. N. Engl. J. Med. 361:1760–67 [Google Scholar]
  82. Glocker EO, Hennigs A, Nabavi M, Schaffer AA, Woellner C. 82.  et al. 2009. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N. Engl. J. Med. 361:1727–35 [Google Scholar]
  83. Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L. 83.  et al. 2011. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332:65–68 [Google Scholar]
  84. Aaltonen J, Björses P, Perheentupa J, Horelli-Kuitunen N, Palotie A. 84.  et al. 1997. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat. Genet. 17:399–403 [Google Scholar]
  85. Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP. 85.  et al. 2002. Projection of an immunological self shadow within the thymus by the Aire protein. Science 298:1395–401 [Google Scholar]
  86. Scarpino S, Di Napoli A, Stoppacciaro A, Antonelli M, Pilozzi E. 86.  et al. 2007. Expression of autoimmune regulator gene (AIRE) and T regulatory cells in human thymomas. Clin. Exp. Immunol. 149:504–12 [Google Scholar]
  87. Strobel P, Murumagi A, Klein R, Luster M, Lahti M. 87.  et al. 2007. Deficiency of the autoimmune regulator AIRE in thymomas is insufficient to elicit autoimmune polyendocrinopathy syndrome type 1 (APS-1). J. Pathol. 211:563–71 [Google Scholar]
  88. Tarr PE, Sneller MC, Mechanic LJ, Economides A, Eger CM. 88.  et al. 2001. Infections in patients with immunodeficiency with thymoma (Good syndrome). Report of 5 cases and review of the literature. Medicine 80:123–33 [Google Scholar]
  89. Jones SA. 89.  2005. Directing transition from innate to acquired immunity: defining a role for IL-6. J. Immunol. 175:3463–68 [Google Scholar]
  90. Galle P, Svenson M, Bendtzen K, Hansen MB. 90.  2004. High levels of neutralizing IL-6 autoantibodies in 0.1% of apparently healthy blood donors. Eur. J. Immunol. 34:3267–75 [Google Scholar]
  91. Hansen MB, Svenson M, Diamant M, Bendtzen K. 91.  1991. Anti-interleukin-6 antibodies in normal human serum. Scand. J. Immunol. 33:777–81 [Google Scholar]
  92. Homann C, Hansen MB, Graudal N, Hasselqvist P, Svenson M. 92.  et al. 1996. Anti-interleukin-6 autoantibodies in plasma are associated with an increased frequency of infections and increased mortality of patients with alcoholic cirrhosis. Scand. J. Immunol. 44:623–29 [Google Scholar]
  93. Nanki T, Onoue I, Nagasaka K, Takayasu A, Ebisawa M. 93.  et al. 2013. Suppression of elevations in serum C reactive protein levels by anti-IL-6 autoantibodies in two patients with severe bacterial infections. Ann. Rheum. Dis. 72:1100–2 [Google Scholar]
  94. Puel A, Picard C, Lorrot M, Pons C, Chrabieh M. 94.  et al. 2008. Recurrent staphylococcal cellulitis and subcutaneous abscesses in a child with autoantibodies against IL-6. J. Immunol. 180:647–54 [Google Scholar]
  95. Holland SM, DeLeo FR, Elloumi HZ, Hsu AP, Uzel G. 95.  et al. 2007. STAT3 mutations in the hyper-IgE syndrome. N. Engl. J. Med. 357:1608–19 [Google Scholar]
  96. Watari K, Asano S, Shirafuji N, Kodo H, Ozawa K. 96.  et al. 1989. Serum granulocyte colony-stimulating factor levels in healthy volunteers and patients with various disorders as estimated by enzyme immunoassay. Blood 73:117–22 [Google Scholar]
  97. Roberts AW. 97.  2005. G-CSF: a key regulator of neutrophil production, but that's not all!. Growth Factors 23:33–41 [Google Scholar]
  98. Eyles JL, Roberts AW, Metcalf D, Wicks IP. 98.  2006. Granulocyte colony-stimulating factor and neutrophils: forgotten mediators of inflammatory disease. Nat. Clin. Pract. Rheumatol. 2:500–10 [Google Scholar]
  99. Laricchia-Robbio L, Moscato S, Genua A, Liberati AM, Revoltella RP. 99.  1997. Naturally occurring and therapy-induced antibodies to human granulocyte colony-stimulating factor (G-CSF) in human serum. J. Cell. Physiol. 173:219–26 [Google Scholar]
  100. Hellmich B, Csernok E, Schatz H, Gross WL, Schnabel A. 100.  2002. Autoantibodies against granulocyte colony-stimulating factor in Felty's syndrome and neutropenic systemic lupus erythematosus. Arthritis Rheum. 46:2384–91 [Google Scholar]
  101. Campion G, Maddison PJ, Goulding N, James I, Ahern MJ. 101.  et al. 1990. The Felty syndrome: a case-matched study of clinical manifestations and outcome, serologic features, and immunogenetic associations. Medicine 69:69–80 [Google Scholar]
  102. Ruderman M, Miller LM, Pinals RS. 102.  1968. Clinical and serologic observations on 27 patients with Felty's syndrome. Arthritis Rheum. 11:377–84 [Google Scholar]
  103. Cappellano G, Orilieri E, Woldetsadik AD, Boggio E, Soluri MF. 103.  et al. 2012. Anti-cytokine autoantibodies in autoimmune diseases. Am. J. Clin. Exp. Immunol. 1:136–46 [Google Scholar]
  104. Presky DH, Yang H, Minetti LJ, Chua AO, Nabavi N. 104.  et al. 1996. A functional interleukin 12 receptor complex is composed of two β-type cytokine receptor subunits. Proc. Natl. Acad. Sci. USA 93:14002–7 [Google Scholar]
  105. Prando C, Samarina A, Bustamante J, Boisson-Dupuis S, Cobat A. 105.  et al. 2013. Inherited IL-12p40 deficiency: genetic, immunologic, and clinical features of 49 patients from 30 kindreds. Medicine 92:109–22 [Google Scholar]
  106. van de Vosse E, Haverkamp MH, Ramirez-Alejo N, Martinez-Gallo M, Blancas-Galicia L. 106.  et al. 2013. IL-12Rβ1 deficiency: mutation update and description of the IL12RB1 variation database. Hum. Mutat. 34:1329–39 [Google Scholar]
  107. Sim BT, Browne SK, Vigliani M, Zachary D, Rosen L. 107.  et al. 2013. Recurrent Burkholderia gladioli suppurative lymphadenitis associated with neutralizing anti-IL-12p70 autoantibodies. J. Clin. Immunol. 33:1057–61 [Google Scholar]
  108. Burbelo PD, Browne SK, Sampaio EP, Giaccone G, Zaman R. 108.  et al. 2010. Anti-cytokine autoantibodies are associated with opportunistic infection in patients with thymic neoplasia. Blood 116:4848–58 [Google Scholar]
  109. Szabo G, Dolganiuc A. 109.  2008. The role of plasmacytoid dendritic cell-derived IFNα in antiviral immunity. Crit. Rev. Immunol. 28:61–94 [Google Scholar]
  110. Ross C, Hansen MB, Schyberg T, Berg K. 110.  1990. Autoantibodies to crude human leucocyte interferon (IFN), native human IFN, recombinant human IFN-α 2b and human IFN-γ in healthy blood donors. Clin. Exp. Immunol. 82:57–62 [Google Scholar]
  111. Prummer O, Seyfarth C, Scherbaum WA, Drees N, Porzsolt F. 111.  1989. Interferon-α antibodies in autoimmune diseases. J. Interferon Res. 9:Suppl. 1S67–74 [Google Scholar]
  112. Trown PW, Kramer MJ, Dennin RA Jr, Connell EV, Palleroni AV. 112.  et al. 1983. Antibodies to human leucocyte interferons in cancer patients. Lancet 1:81–84 [Google Scholar]
  113. Bagnato F, Clemenzi A, Scagnolari C, Strizzi L, Di Pasquale A. 113.  et al. 2004. Neutralizing antibodies against endogenous interferon in myasthenia gravis patients. Eur. Cytokine Netw. 15:24–29 [Google Scholar]
  114. Meager A, Wadhwa M, Dilger P, Bird C, Thorpe R. 114.  et al. 2003. Anti-cytokine autoantibodies in autoimmunity: preponderance of neutralizing autoantibodies against interferon-α, interferon-ω and interleukin-12 in patients with thymoma and/or myasthenia gravis. Clin. Exp. Immunol. 132:128–36 [Google Scholar]
  115. Shiono H, Wong YL, Matthews I, Liu JL, Zhang W. 115.  et al. 2003. Spontaneous production of anti-IFN-α and anti-IL-12 autoantibodies by thymoma cells from myasthenia gravis patients suggests autoimmunization in the tumor. Int. Immunol. 15:903–13 [Google Scholar]
  116. Meager A, Visvalingam K, Peterson P, Moll K, Murumagi A. 116.  et al. 2006. Anti-interferon autoantibodies in autoimmune polyendocrinopathy syndrome type 1. PLoS Med. 3:e289 [Google Scholar]
  117. Pozzetto B, Mogensen KE, Tovey MG, Gresser I. 117.  1984. Characteristics of autoantibodies to human interferon in a patient with varicella-zoster disease. J. Infect. Dis. 150:707–13 [Google Scholar]
  118. Kisand K, Link M, Wolff AS, Meager A, Tserel L. 118.  et al. 2008. Interferon autoantibodies associated with AIRE deficiency decrease the expression of IFN-stimulated genes. Blood 112:2657–66 [Google Scholar]
  119. Panem S, Check IJ, Henriksen D, Vilcek J. 119.  1982. Antibodies to α-interferon in a patient with systemic lupus erythematosus. J. Immunol. 129:1–3 [Google Scholar]
  120. Suit BE, Axelrod D, Moutsopoulos HM, Decker JL, Hooks JJ. 120.  1983. Detection of anti-interferon antibodies in systemic lupus erythematosus. Clin. Exp. Rheumatol. 1:133–5 [Google Scholar]
  121. Morimoto AM, Flesher DT, Yang J, Wolslegel K, Wang X. 121.  et al. 2011. Association of endogenous anti-interferon-α autoantibodies with decreased interferon-pathway and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 63:2407–15 [Google Scholar]
  122. Slavikova M, Schmeisser H, Kontsekova E, Mateicka F, Borecky L. 122.  et al. 2003. Incidence of autoantibodies against type I and type II interferons in a cohort of systemic lupus erythematosus patients in Slovakia. J. Interferon Cytokine Res. 23:143–47 [Google Scholar]
  123. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA. 123.  et al. 2003. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. USA 100:2610–15 [Google Scholar]
  124. Bjorses P, Halonen M, Palvimo JJ, Kolmer M, Aaltonen J. 124.  et al. 2000. Mutations in the AIRE gene: effects on subcellular location and transactivation function of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy protein. Am. J. Hum. Genet. 66:378–92 [Google Scholar]
  125. Derbinski J, Schulte A, Kyewski B, Klein L. 125.  2001. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2:1032–39 [Google Scholar]
  126. Kisand K, Peterson P. 126.  2011. Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy: known and novel aspects of the syndrome. Ann. NY Acad. Sci. 1246:77–91 [Google Scholar]
  127. Perheentupa J. 127.  2002. APS-I/APECED: the clinical disease and therapy. Endocrinol. Metab. Clin. North Am. 31:295–320 [Google Scholar]
  128. Nagafuchi S, Umene K, Yamanaka F, Oohashi S, Shindo M. 128.  et al. 2007. Recurrent herpes simplex virus infection in a patient with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy associated with L29P and IVS9-1G>C compound heterozygous autoimmune regulator gene mutations. J. Intern. Med. 261:605–10 [Google Scholar]
  129. Proust-Lemoine E, Saugier-Veber P, Lefranc D, Dubucquoi S, Ryndak A. 129.  et al. 2010. Autoimmune polyendocrine syndrome type 1 in north-western France: AIRE gene mutation specificities and severe forms needing immunosuppressive therapies. Horm. Res. Paediatr. 74:275–84 [Google Scholar]
  130. Khawaja MR, Nelson RP Jr, Miller N, Badve SS, Loehrer E. 130.  et al. 2012. Immune-mediated diseases and immunodeficiencies associated with thymic epithelial neoplasms. J. Clin. Immunol. 32:430–37 [Google Scholar]
  131. Vincent A, Willcox N. 131.  1999. The role of T-cells in the initiation of autoantibody responses in thymoma patients. Pathol. Res. Pract. 195:535–40 [Google Scholar]
  132. Meager A, Vincent A, Newsom-Davis J, Willcox N. 132.  1997. Spontaneous neutralising antibodies to interferon-α and interleukin-12 in thymoma-associated autoimmune disease. Lancet 350:1596–97 [Google Scholar]
  133. Offerhaus GJ, Schipper ME, Lazenby AJ, Montgomery E, Morsink FH. 133.  et al. 2007. Graft-versus-host-like disease complicating thymoma: lack of AIRE expression as a cause of non-hereditary autoimmunity?. Immunol. Lett. 114:31–37 [Google Scholar]
  134. Kelleher P, Misbah SA. 134.  2003. What is Good's syndrome? Immunological abnormalities in patients with thymoma. J. Clin. Pathol. 56:12–16 [Google Scholar]
  135. Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J. 135.  2006. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 311:1924–27 [Google Scholar]
  136. Courtney LP, Phelps JL, Karavodin LM. 136.  1994. An anti-IL-2 antibody increases serum half-life and improves anti-tumor efficacy of human recombinant interleukin-2. Immunopharmacology 28:223–32 [Google Scholar]
  137. Zhang L, Barker JM, Babu S, Su M, Stenerson M. 137.  et al. 2007. A robust immunoassay for anti-interferon autoantibodies that is highly specific for patients with autoimmune polyglandular syndrome type 1. Clin. Immunol. 125:131–37 [Google Scholar]
  138. Ding L, Mo A, Jutivorakool K, Pancholi M, Holland SM. 138.  et al. 2011. Determination of human anticytokine autoantibody profiles using a particle-based approach. J. Clin. Immunol. 32:238–45 [Google Scholar]
  139. Uchida K, Carey B, Suzuki T, Nakata K, Trapnell B. 139.  2010. Response: Granulocyte/macrophage colony-stimulating factor autoantibodies and myeloid cell immune functions in healthy persons. Blood 115:431–33 [Google Scholar]
  140. Schoch OD, Schanz U, Koller M, Nakata K, Seymour JF. 140.  et al. 2002. BAL findings in a patient with pulmonary alveolar proteinosis successfully treated with GM-CSF. Thorax 57:277–80 [Google Scholar]
  141. Illa I, Diaz-Manera J, Rojas-Garcia R, Pradas J, Rey A. 141.  et al. 2008. Sustained response to rituximab in anti-AChR and anti-MuSK positive Myasthenia Gravis patients. J. Neuroimmunol. 201–2:90–94 [Google Scholar]
  142. Ahmed AR, Spigelman Z, Cavacini LA, Posner MR. 142.  2006. Treatment of pemphigus vulgaris with rituximab and intravenous immune globulin. N. Engl. J. Med. 355:1772–79 [Google Scholar]
  143. Macdougall IC, Rossert J, Casadevall N, Stead RB, Duliege AM. 143.  et al. 2009. A peptide-based erythropoietin-receptor agonist for pure red-cell aplasia. N. Engl. J. Med. 361:1848–55 [Google Scholar]
  144. Casadevall N, Dupuy E, Molho-Sabatier P, Tobelem G, Varet B. 144.  et al. 1996. Autoantibodies against erythropoietin in a patient with pure red-cell aplasia. N. Engl. J. Med. 334:630–33 [Google Scholar]
  145. Riches PL, McRorie E, Fraser WD, Determann C, van't Hof R. 145.  et al. 2009. Osteoporosis associated with neutralizing autoantibodies against osteoprotegerin. N. Engl. J. Med. 361:1459–65 [Google Scholar]
  146. Browne SK, Holland SM. 146.  2010. Anti-cytokine autoantibodies explain some chronic mucocutaneous candidiasis. Immunol. Cell Biol. 88:614–15 [Google Scholar]
  147. Kirkness EF, Venter JC. 147.  1989. Anti-receptor antibodies. Curr. Opin. Immunol. 1:679–83 [Google Scholar]
  148. Martinez-Moczygemba M, Doan ML, Elidemir O, Fan LL, Cheung SW. 148.  et al. 2008. Pulmonary alveolar proteinosis caused by deletion of the GM-CSFRα gene in the X chromosome pseudoautosomal region 1. J. Exp. Med. 205:2711–16 [Google Scholar]
  149. Chen GH, Curtis JL, Mody CH, Christensen PJ, Armstrong LR. 149.  et al. 1994. Effect of granulocyte-macrophage colony-stimulating factor on rat alveolar macrophage anticryptococcal activity in vitro. J. Immunol. 152:724–34 [Google Scholar]
  150. Sakagami T, Beck D, Uchida K, Suzuki T, Carey BC. 150.  et al. 2010. Patient-derived granulocyte/macrophage colony-stimulating factor autoantibodies reproduce pulmonary alveolar proteinosis in nonhuman primates. Am. J. Respir. Crit. Care Med. 182:49–61 [Google Scholar]
  151. Aujla SJ, Kolls JK. 151.  2009. IL-22: a critical mediator in mucosal host defense. J. Mol. Med. 87:451–54 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error