The skin is the front line of defense against insult and injury and contains many epidermal and immune elements that comprise the skin-associated lymphoid tissue (SALT). The reaction of these components to injury allows an effective cutaneous response to restore homeostasis. Psoriasis vulgaris is the best-understood and most accessible human disease that is mediated by T cells and dendritic cells. Inflammatory myeloid dendritic cells release IL-23 and IL-12 to activate IL-17-producing T cells, Th1 cells, and Th22 cells to produce abundant psoriatic cytokines IL-17, IFN-γ, TNF, and IL-22. These cytokines mediate effects on keratinocytes to amplify psoriatic inflammation. Therapeutic studies with anticytokine antibodies have shown the importance of the key cytokines IL-23, TNF, and IL-17 in this process. We discuss the genetic background of psoriasis and its relationship to immune function, specifically genetic mutations, key PSORS loci, single nucleotide polymorphisms, and the skin transcriptome. The association between comorbidities and psoriasis is reviewed by correlating the skin transcriptome and serum proteins. Psoriasis-related cytokine-response pathways are considered in the context of the transcriptome of different mouse models. This approach offers a model for other inflammatory skin and autoimmune diseases.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Morizane S, Gallo RL. 1.  2012. Antimicrobial peptides in the pathogenesis of psoriasis. J. Dermatol. 39:225–30 [Google Scholar]
  2. Sorensen OE, Cowland JB, Theilgaard-Monch K, Liu L, Ganz T, Borregaard N. 2.  2003. Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J. Immunol. 170:5583–89 [Google Scholar]
  3. Streilein JW. 3.  1983. Skin-associated lymphoid tissues (SALT): origins and functions. J. Investig. Dermatol. 80:Suppl.12s–16s [Google Scholar]
  4. Egawa G, Kabashima K. 4.  2011. Skin as a peripheral lymphoid organ: revisiting the concept of skin-associated lymphoid tissues. J. Investig. Dermatol. 131:2178–85 [Google Scholar]
  5. Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ. 5.  2009. Skin immune sentinels in health and disease. Nat. Rev. Immunol. 9:679–91 [Google Scholar]
  6. Di Meglio P, Perera GK, Nestle FO. 6.  2011. The multitasking organ: recent insights into skin immune function. Immunity 35:857–69 [Google Scholar]
  7. Clark RA. 7.  2010. Skin-resident T cells: the ups and downs of on site immunity. J. Investig. Dermatol. 130:362–70 [Google Scholar]
  8. Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka K, Dowgiert RK, Kupper TS. 8.  2006. The vast majority of CLA+ T cells are resident in normal skin. J. Immunol. 176:4431–39 [Google Scholar]
  9. Homey B, Alenius H, Muller A, Soto H, Bowman EP. 9.  et al. 2002. CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat. Med. 8:157–65 [Google Scholar]
  10. Morales J, Homey B, Vicari AP, Hudak S, Oldham E. 10.  et al. 1999. CTACK, a skin-associated chemokine that preferentially attracts skin-homing memory T cells. Proc. Natl. Acad. Sci. USA 96:14470–75 [Google Scholar]
  11. Kennedy-Crispin M, Billick E, Mitsui H, Gulati N, Fujita H. 11.  et al. 2012. Human keratinocytes' response to injury upregulates CCL20 and other genes linking innate and adaptive immunity. J. Investig. Dermatol. 132:105–13 [Google Scholar]
  12. Nograles KE, Zaba LC, Guttman-Yassky E, Fuentes-Duculan J, Suarez-Farinas M. 12.  et al. 2008. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br. J. Dermatol. 159:1086–91 [Google Scholar]
  13. Takai T. 13.  2012. TSLP expression: cellular sources, triggers, and regulatory mechanisms. Allergol. Int. 61:3–17 [Google Scholar]
  14. Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F. 14.  et al. 2009. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J. Clin. Investig. 119:3573–85 [Google Scholar]
  15. Romani N, Brunner PM, Stingl G. 15.  2012. Changing views of the role of Langerhans cells. J. Investig. Dermatol. 132:872–81 [Google Scholar]
  16. Fujita H, Nograles KE, Kikuchi T, Gonzalez J, Carucci JA, Krueger JG. 16.  2009. Human Langerhans cells induce distinct IL-22-producing CD4+ T cells lacking IL-17 production. Proc. Natl. Acad. Sci. USA 106:21795–800 [Google Scholar]
  17. Seneschal J, Clark RA, Gehad A, Baecher-Allan CM, Kupper TS. 17.  2012. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity 36:873–84 [Google Scholar]
  18. Cerio R, Griffiths CE, Cooper KD, Nickoloff BJ, Headington JT. 18.  1989. Characterization of factor XIIIa positive dermal dendritic cells in normal and inflamed skin. Br. J. Dermatol. 121:421–31 [Google Scholar]
  19. Nestle FO, Zheng XG, Thompson CB, Turka LA, Nickoloff BJ. 19.  1993. Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets. J. Immunol. 151:6535–45 [Google Scholar]
  20. Liu YJ. 20.  2001. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106:259–62 [Google Scholar]
  21. Zaba LC, Fuentes-Duculan J, Steinman RM, Krueger JG, Lowes MA. 21.  2007. Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+FXIIIA+ macrophages. J. Clin. Investig. 117:2517–25 [Google Scholar]
  22. Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M. 22.  et al. 2000. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J. Immunol. 165:6037–46 [Google Scholar]
  23. Kennedy Crispin M, Fuentes-Duculan J, Gulati N, Johnson-Huang LM, Lentini T. 23.  et al. 2013. Gene profiling of narrowband UVB-induced skin injury defines cellular and molecular innate immune responses. J. Investig. Dermatol. 133:692–701 [Google Scholar]
  24. Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X. 24.  et al. 2010. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med. 207:1247–60 [Google Scholar]
  25. Joffre OP, Segura E, Savina A, Amigorena S. 25.  2012. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 12:557–69 [Google Scholar]
  26. Segura E, Durand M, Amigorena S. 26.  2013. Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells. J. Exp. Med. 210:1035–47 [Google Scholar]
  27. Angel CE, George E, Brooks AE, Ostrovsky LL, Brown TL, Dunbar PR. 27.  2006. Cutting edge: CD1a+ antigen-presenting cells in human dermis respond rapidly to CCR7 ligands. J. Immunol. 176:5730–34 [Google Scholar]
  28. Klechevsky E, Morita R, Liu M, Cao Y, Coquery S. 28.  et al. 2008. Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity 29:497–510 [Google Scholar]
  29. Haniffa M, Ginhoux F, Wang XN, Bigley V, Abel M. 29.  et al. 2009. Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation. J. Exp. Med. 206:371–85 [Google Scholar]
  30. Segura E, Valladeau-Guilemond J, Donnadieu MH, Sastre-Garau X, Soumelis V, Amigorena S. 30.  2012. Characterization of resident and migratory dendritic cells in human lymph nodes. J. Exp. Med. 209:653–60 [Google Scholar]
  31. Fabriek BO, Dijkstra CD, Van den Berg TK. 31.  2005. The macrophage scavenger receptor CD163. Immunobiology 210:153–60 [Google Scholar]
  32. Fuentes-Duculan J, Suárez-Fariñas M, Zaba LC, Nograles KE, Pierson KC. 32.  et al. 2010. A subpopulation of CD163-positive macrophages is classically activated in psoriasis. J. Investig. Dermatol. 130:2412–22 [Google Scholar]
  33. Nestle FO, Kaplan DH, Barker J. 33.  2009. Psoriasis. N. Engl. J. Med. 361:496–509 [Google Scholar]
  34. Lebwohl M. 34.  2003. Psoriasis. Lancet 361:1197–204 [Google Scholar]
  35. Perera GK, Di Meglio P, Nestle FO. 35.  2012. Psoriasis. Annu. Rev. Pathol. Mech. Dis. 7:385–422 [Google Scholar]
  36. Lowes MA, Bowcock AM, Krueger JG. 36.  2007. Pathogenesis and therapy of psoriasis. Nature 445:866–73 [Google Scholar]
  37. Van der Fits L, Mourits S, Voerman JS, Kant M, Boon L. 37.  et al. 2009. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol. 182:5836–45 [Google Scholar]
  38. Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH. 38.  et al. 2007. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449:564–69 [Google Scholar]
  39. Gilliet M, Lande R. 39.  2008. Antimicrobial peptides and self-DNA in autoimmune skin inflammation. Curr. Opin. Immunol. 20:401–7 [Google Scholar]
  40. Ganguly D, Chamilos G, Lande R, Gregorio J, Meller S. 40.  et al. 2009. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J. Exp. Med. 206:1983–94 [Google Scholar]
  41. Kumar V, Sharma A. 41.  2010. Neutrophils: Cinderella of innate immune system. Int. Immunopharmacol. 10:1325–34 [Google Scholar]
  42. Gottlieb SL, Gilleaudeau P, Johnson R, Estes L, Woodworth TG. 42.  et al. 1995. Response of psoriasis to a lymphocyte-selective toxin (DAB389IL-2) suggests a primary immune, but not keratinocyte, pathogenic basis. Nat. Med. 1:442–47 [Google Scholar]
  43. Abrams JR, Lebwohl MG, Guzzo CA, Jegasothy BV, Goldfarb MT. 43.  et al. 1999. CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J. Clin. Investig. 103:1243–52 [Google Scholar]
  44. Chamian F, Lowes MA, Lin SL, Lee E, Kikuchi T. 44.  et al. 2005. Alefacept reduces infiltrating T cells, activated dendritic cells, and inflammatory genes in psoriasis vulgaris. Proc. Natl. Acad. Sci. USA 102:2075–80 [Google Scholar]
  45. Chamian F, Lin SL, Lee E, Kikuchi T, Gilleaudeau P. 45.  et al. 2007. Alefacept (anti-CD2) causes a selective reduction in circulating effector memory T cells (Tem) and relative preservation of central memory T cells (Tcm) in psoriasis. J. Transl. Med. 5:27 [Google Scholar]
  46. Lowes MA, Chamian F, Abello MV, Fuentes-Duculan J, Lin SL. 46.  et al. 2005. Increase in TNF-α and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). Proc. Natl. Acad. Sci. USA 102:19057–62 [Google Scholar]
  47. Nograles KE, Krueger JG. 47.  2011. Anti-cytokine therapies for psoriasis. Exp. Cell Res. 317:1293–300 [Google Scholar]
  48. Lew W, Bowcock AM, Krueger JG. 48.  2004. Psoriasis vulgaris: cutaneous lymphoid tissue supports T-cell activation and ‘Type 1’ inflammatory gene expression. Trends Immunol. 25:295–305 [Google Scholar]
  49. Johnson-Huang LM, Suarez-Farinas M, Pierson KC, Fuentes-Duculan J, Cueto I. 49.  et al. 2012. A single intradermal injection of IFN-γ induces an inflammatory state in both non-lesional psoriatic and healthy skin. J. Investig. Dermatol. 132:1177–87 [Google Scholar]
  50. Mitsui H, Suarez-Farinas M, Belkin DA, Levenkova N, Fuentes-Duculan J. 50.  et al. 2012. Combined use of laser capture microdissection and cDNA microarray analysis identifies locally expressed disease-related genes in focal regions of psoriasis vulgaris skin lesions. J. Investig. Dermatol. 132:1615–26 [Google Scholar]
  51. Krueger JG, Fretzin S, Suarez-Farinas M, Haslett PA, Phipps KM. 51.  et al. 2012. IL-17A is essential for cell activation and inflammatory gene circuits in subjects with psoriasis. J. Allergy Clin. Immunol. 130:145–54 [Google Scholar]
  52. Papp KA, Reid C, Foley P, Sinclair R, Salinger DH. 52.  et al. 2012. Anti-IL-17 receptor antibody AMG 827 leads to rapid clinical response in subjects with moderate to severe psoriasis: results from a phase I, randomized, placebo-controlled trial. J. Investig. Dermatol. 132:2466–69 [Google Scholar]
  53. Papp KA, Leonardi C, Menter A, Ortonne JP, Krueger JG. 53.  et al. 2012. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N. Engl. J. Med. 366:1181–89 [Google Scholar]
  54. Leonardi C, Matheson R, Zachariae C, Cameron G, Li L. 54.  et al. 2012. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N. Engl. J. Med. 366:1190–99 [Google Scholar]
  55. Nestle FO, Turka LA, Nickoloff BJ. 55.  1994. Characterization of dermal dendritic cells in psoriasis. Autostimulation of T lymphocytes and induction of Th1 type cytokines. J. Clin. Investig. 94:202–9 [Google Scholar]
  56. Zaba LC, Fuentes-Duculan J, Eungdamrong NJ, Abello MV, Novitskaya I. 56.  et al. 2009. Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. J. Investig. Dermatol. 129:79–88 [Google Scholar]
  57. Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG. 57.  2003. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19:59–70 [Google Scholar]
  58. Zaba LC, Fuentes-Duculan J, Eungdamrong NJ, Johnson-Huang LM, Nograles KE. 62.  et al. 2010. Identification of TNF-related apoptosis-inducing ligand and other molecules that distinguish inflammatory from resident dendritic cells in patients with psoriasis. J. Allergy Clin. Immunol. 125:1261–68.e9 [Google Scholar]
  59. Wang F, Lee E, Lowes MA, Haider AS, Fuentes-Duculan J. 58.  et al. 2006. Prominent production of IL-20 by CD68+/CD11c+ myeloid-derived cells in psoriasis: gene regulation and cellular effects. J. Investig. Dermatol. 126:1590–99 [Google Scholar]
  60. Hansel A, Gunther C, Ingwersen J, Starke J, Schmitz M. 59.  et al. 2011. Human slan (6-sulfo LacNAc) dendritic cells are inflammatory dermal dendritic cells in psoriasis and drive strong TH17/TH1 T-cell responses. J. Allergy Clin. Immunol. 127:787–94.e9 [Google Scholar]
  61. Segura E, Touzot M, Bohineust A, Cappuccio A, Chiocchia G. 60.  et al. 2013. Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity 38:336–48 [Google Scholar]
  62. Bos JD, Hulsebosch HJ, Krieg SR, Bakker PM, Cormane RH. 61.  1983. Immunocompetent cells in psoriasis. In situ immunophenotyping by monoclonal antibodies. Arch. Dermatol. Res. 275:181–89 [Google Scholar]
  63. Bos JD, De Rie MA. 63.  1999. The pathogenesis of psoriasis: immunological facts and speculations. Immunol. Today 20:40–46 [Google Scholar]
  64. Ferenczi K, Burack L, Pope M, Krueger JG, Austin LM. 64.  2000. CD69, HLA-DR and the IL-2R identify persistently activated T cells in psoriasis vulgaris lesional skin: blood and skin comparisons by flow cytometry. J. Autoimmun. 14:63–78 [Google Scholar]
  65. Austin LM, Ozawa M, Kikuchi T, Walters IB, Krueger JG. 65.  1999. The majority of epidermal T cells in psoriasis vulgaris lesions can produce type 1 cytokines, interferon-γ, interleukin-2, and tumor necrosis factor-α, defining TC1 (cytotoxic T lymphocyte) and TH1 effector populations: a type 1 differentiation bias is also measured in circulating blood T cells in psoriatic patients. J. Investig. Dermatol. 113:752–59 [Google Scholar]
  66. Lowes MA, Kikuchi T, Fuentes-Duculan J, Cardinale I, Zaba LC. 66.  et al. 2008. Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J. Investig. Dermatol. 128:1207–11 [Google Scholar]
  67. Chang JC, Smith LR, Froning KJ, Kurland HH, Schwabe BJ. 67.  et al. 1997. Persistence of T-cell clones in psoriatic lesions. Arch. Dermatol. 133:703–8 [Google Scholar]
  68. Prinz JC, Grob B, Vollmer S, Trommler P, Strobel I. 68.  et al. 1994. T cell clones from psoriasis skin lesions can promote keratinocyte proliferation in vitro via secreted products. Eur. J. Immunol. 24:593–98 [Google Scholar]
  69. Kim SM, Bhonsle L, Besgen P, Nickel J, Backes A. 69.  et al. 2012. Analysis of the paired TCR α- and β-chains of single human T cells. PLoS ONE 7:e37338 [Google Scholar]
  70. Diluvio L, Vollmer S, Besgen P, Ellwart JW, Chimenti S, Prinz JC. 70.  2006. Identical TCR β-chain rearrangements in streptococcal angina and skin lesions of patients with psoriasis vulgaris. J. Immunol. 176:7104–11 [Google Scholar]
  71. Valdimarsson H, Thorleifsdottir RH, Sigurdardottir SL, Gudjonsson JE, Johnston A. 71.  2009. Psoriasis—as an autoimmune disease caused by molecular mimicry. Trends Immunol. 30:494–501 [Google Scholar]
  72. Palmer MT, Weaver CT. 72.  2010. Autoimmunity: increasing suspects in the CD4+ T cell lineup. Nat. Immunol. 11:36–40 [Google Scholar]
  73. Kryczek I, Bruce AT, Gudjonsson JE, Johnston A, Aphale A. 73.  et al. 2008. Induction of IL-17+ T cell trafficking and development by IFN-γ: mechanism and pathological relevance in psoriasis. J. Immunol. 181:4733–41 [Google Scholar]
  74. Ortega C, Fernandez AS, Carrillo JM, Romero P, Molina IJ. 74.  et al. 2009. IL-17-producing CD8+ T lymphocytes from psoriasis skin plaques are cytotoxic effector cells that secrete Th17-related cytokines. J. Leukoc. Biol. 86:435–43 [Google Scholar]
  75. Cai Y, Fleming C, Yan J. 75.  2012. New insights of T cells in the pathogenesis of psoriasis. Cell. Mol. Immunol. 9:302–9 [Google Scholar]
  76. Cai Y, Shen X, Ding C, Qi C, Li K. 76.  et al. 2011. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity 35:596–610 [Google Scholar]
  77. Laggner U, Di Meglio P, Perera GK, Hundhausen C, Lacy KE. 77.  et al. 2011. Identification of a novel proinflammatory human skin-homing Vγ9Vδ2 T cell subset with a potential role in psoriasis. J. Immunol. 187:2783–93 [Google Scholar]
  78. Lowes MA, Russell CB, Martin DA, Towne JE, Krueger JG. 78.  2013. The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses. Trends Immunol. 34:174–81 [Google Scholar]
  79. Goodman WA, Cooper KD, McCormick TS. 79.  2012. Regulation generation: the suppressive functions of human regulatory T cells. Crit. Rev. Immunol. 32:65–79 [Google Scholar]
  80. Buckner JH. 80.  2010. Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T cells in human autoimmune diseases. Nat. Rev. Immunol. 10:849–59 [Google Scholar]
  81. Sugiyama H, Gyulai R, Toichi E, Garaczi E, Shimada S. 81.  et al. 2005. Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J. Immunol. 174:164–73 [Google Scholar]
  82. Dunphy S, Gardiner CM. 82.  2011. NK cells and psoriasis. J. Biomed. Biotechnol. 2011:248317 [Google Scholar]
  83. Simoni Y, Diana J, Ghazarian L, Beaudoin L, Lehuen A. 83.  2013. Therapeutic manipulation of natural killer (NK) T cells in autoimmunity: Are we close to reality?. Clin. Exp. Immunol. 171:8–19 [Google Scholar]
  84. Bonish B, Jullien D, Dutronc Y, Huang BB, Modlin R. 84.  et al. 2000. Overexpression of CD1d by keratinocytes in psoriasis and CD1d-dependent IFN-γ production by NK-T cells. J. Immunol. 165:4076–85 [Google Scholar]
  85. Banno T, Gazel A, Blumenberg M. 85.  2004. Effects of tumor necrosis factor-α (TNFα) in epidermal keratinocytes revealed using global transcriptional profiling. J. Biol. Chem. 279:32633–42 [Google Scholar]
  86. Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R. 86.  2004. IL-22 increases the innate immunity of tissues. Immunity 21:241–54 [Google Scholar]
  87. Harper EG, Guo C, Rizzo H, Lillis JV, Kurtz SE. 87.  et al. 2009. Th17 cytokines stimulate CCL20 expression in keratinocytes in vitro and in vivo: implications for psoriasis pathogenesis. J. Investig. Dermatol. 129:2175–83 [Google Scholar]
  88. Blumenberg M. 88.  2012. SKINOMICS: transcriptional profiling in dermatology and skin biology. Curr. Genomics 13:363–68 [Google Scholar]
  89. Chiricozzi A, Guttman-Yassky E, Suárez-Fariñas M, Nograles KE, Tian S. 89.  et al. 2011. Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J. Investig. Dermatol. 131:677–87 [Google Scholar]
  90. Suárez-Fariñas M, Lowes MA, Zaba LC, Krueger JG. 90.  2010. Evaluation of the psoriasis transcriptome across different studies by gene set enrichment analysis (GSEA). PLoS ONE 5:e10247 [Google Scholar]
  91. Datta S, Novotny M, Pavicic PG Jr, Zhao C, Herjan T. 91.  et al. 2010. IL-17 regulates CXCL1 mRNA stability via an AUUUA/tristetraprolin-independent sequence. J. Immunol. 184:1484–91 [Google Scholar]
  92. Ruddy MJ, Wong GC, Liu XK, Yamamoto H, Kasayama S. 92.  et al. 2004. Functional cooperation between interleukin-17 and tumor necrosis factor-α is mediated by CCAAT/enhancer-binding protein family members. J. Biol. Chem. 279:2559–67 [Google Scholar]
  93. Shen F, Hu Z, Goswami J, Gaffen SL. 93.  2006. Identification of common transcriptional regulatory elements in interleukin-17 target genes. J. Biol. Chem. 281:24138–48 [Google Scholar]
  94. Sa SM, Valdez PA, Wu J, Jung K, Zhong F. 94.  et al. 2007. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J. Immunol. 178:2229–40 [Google Scholar]
  95. Lowes MA, Russell CB, Martin DA, Towne JE, Krueger JG. 95.  2013. The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses. Trends Immunol. 34:174–81 [Google Scholar]
  96. Lin AM, Rubin CJ, Khandpur R, Wang JY, Riblett M. 96.  et al. 2011. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J. Immunol. 187:490–500 [Google Scholar]
  97. Aubert P, Suarez-Farinas M, Mitsui H, Johnson-Huang LM, Harden JL. 97.  et al. 2012. Homeostatic tissue responses in skin biopsies from NOMID patients with constitutive overproduction of IL-1β. PLoS ONE 7:e49408 [Google Scholar]
  98. Knight JS, Carmona-Rivera C, Kaplan MJ. 98.  2012. Proteins derived from neutrophil extracellular traps may serve as self-antigens and mediate organ damage in autoimmune diseases. Front. Immunol. 3:380 [Google Scholar]
  99. Bowcock AM. 99.  2005. The genetics of psoriasis and autoimmunity. Annu. Rev. Genomics Hum. Genet. 6:93–122 [Google Scholar]
  100. Jordan CT, Cao L, Roberson ED, Duan S, Helms CA. 100.  et al. 2012. Rare and common variants in CARD14, encoding an epidermal regulator of NF-κB, in psoriasis. Am. J. Hum. Genet. 90:796–808 [Google Scholar]
  101. Jordan CT, Cao L, Roberson ED, Pierson KC, Yang CF. 101.  et al. 2012. PSORS2 is due to mutations in CARD14. Am. J. Hum. Genet. 90:784–95 [Google Scholar]
  102. Tsoi LC, Spain SL, Knight J, Ellinghaus E, Stuart PE. 102.  et al. 2012. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat. Genet. 44:1341–48 [Google Scholar]
  103. Marrakchi S, Guigue P, Renshaw BR, Puel A, Pei XY. 103.  et al. 2011. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N. Engl. J. Med. 365:620–28 [Google Scholar]
  104. Onoufriadis A, Simpson MA, Pink AE, DiMeglio P, Smith CH. 104.  et al. 2011. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am. J. Hum. Genet. 89:432–37 [Google Scholar]
  105. Elder JT. 105.  2006. PSORS1: linking genetics and immunology. J. Investig. Dermatol. 126:1205–6 [Google Scholar]
  106. Chen H, Poon A, Yeung C, Helms C, Pons J. 106.  et al. 2011. A genetic risk score combining ten psoriasis risk loci improves disease prediction. PLoS ONE 6:e19454 [Google Scholar]
  107. Hundhausen C, Bertoni A, Mak RK, Botti E, Di Meglio P. 107.  et al. 2012. Allele-specific cytokine responses at the HLA-C locus: implications for psoriasis. J. Investig. Dermatol. 132:635–41 [Google Scholar]
  108. Duffin KC, Krueger GG. 108.  2009. Genetic variations in cytokines and cytokine receptors associated with psoriasis found by genome-wide association. J. Investig. Dermatol. 129:827–33 [Google Scholar]
  109. Di Meglio P, Di Cesare A, Laggner U, Chu CC, Napolitano L. 109.  et al. 2011. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans. PLoS ONE 6:e17160 [Google Scholar]
  110. Tian S, Krueger JG, Li K, Jabbari A, Brodmerkel C. 110.  et al. 2012. Meta-analysis derived (MAD) transcriptome of psoriasis defines the “core” pathogenesis of disease. PLoS ONE 7:e44274 [Google Scholar]
  111. Tonel G, Conrad C, Laggner U, Di Meglio P, Grys K. 111.  et al. 2010. Cutting edge: A critical functional role for IL-23 in psoriasis. J. Immunol. 185:5688–91 [Google Scholar]
  112. Lizzul PF, Aphale A, Malaviya R, Sun Y, Masud S. 112.  et al. 2005. Differential expression of phosphorylated NF-κB/RelA in normal and psoriatic epidermis and downregulation of NF-κB in response to treatment with etanercept. J. Investig. Dermatol. 124:1275–83 [Google Scholar]
  113. Camporeale A, Poli V. 113.  2012. IL-6, IL-17 and STAT3: a holy trinity in auto-immunity?. Front. Biosci. 17:2306–26 [Google Scholar]
  114. Azfar RS, Gelfand JM. 114.  2008. Psoriasis and metabolic disease: epidemiology and pathophysiology. Curr. Opin. Rheumatol. 20:416–22 [Google Scholar]
  115. Kimball AB, Gladman D, Gelfand JM, Gordon K, Horn EJ. 115.  et al. 2008. National Psoriasis Foundation clinical consensus on psoriasis comorbidities and recommendations for screening. J. Am. Acad. Dermatol. 58:1031–42 [Google Scholar]
  116. Mehta NN, Azfar RS, Shin DB, Neimann AL, Troxel AB, Gelfand JM. 116.  2010. Patients with severe psoriasis are at increased risk of cardiovascular mortality: cohort study using the General Practice Research Database. Eur. Heart J. 31:1000–6 [Google Scholar]
  117. Davidovici BB, Sattar N, Prinz JC, Puig L, Emery P. 117.  et al. 2010. Psoriasis and systemic inflammatory diseases: potential mechanistic links between skin disease and co-morbid conditions. J. Investig. Dermatol. 130:1785–96 [Google Scholar]
  118. Boehncke WH, Boehncke S, Tobin AM, Kirby B. 118.  2011. The ‘psoriatic march’: a concept of how severe psoriasis may drive cardiovascular comorbidity. Exp. Dermatol. 20:303–7 [Google Scholar]
  119. Suarez-Farinas M, Li K, Fuentes-Duculan J, Hayden K, Brodmerkel C, Krueger JG. 119.  2012. Expanding the psoriasis disease profile: interrogation of the skin and serum of patients with moderate-to-severe psoriasis. J. Investig. Dermatol. 132:2552–64 [Google Scholar]
  120. Chrobak I, Lenna S, Stawski L, Trojanowska M. 120.  2013. Interferon-γ promotes vascular remodeling in human microvascular endothelial cells by upregulating endothelin (ET)-1 and transforming growth factor (TGF) β2. J. Cell. Physiol. 228:1774–83 [Google Scholar]
  121. Gudjonsson JE, Johnston A, Dyson M, Valdimarsson H, Elder JT. 121.  2007. Mouse models of psoriasis. J. Investig. Dermatol. 127:1292–308 [Google Scholar]
  122. Wagner EF, Schonthaler HB, Guinea-Viniegra J, Tschachler E. 122.  2010. Psoriasis: what we have learned from mouse models. Nat. Rev. Rheumatol. 6:704–14 [Google Scholar]
  123. Swindell WR, Johnston A, Carbajal S, Han G, Wohn C. 123.  et al. 2011. Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis. PLoS ONE 6:e18266 [Google Scholar]
  124. Hedrick MN, Lonsdorf AS, Shirakawa AK, Richard Lee CC, Liao F. 124.  et al. 2009. CCR6 is required for IL-23-induced psoriasis-like inflammation in mice. J. Clin. Investig. 119:2317–29 [Google Scholar]
  125. Jiang W, Zhu FG, Bhagat L, Yu D, Tang JX. 125.  et al. 2013. A Toll-like receptor 7, 8, and 9 antagonist inhibits Th1 and Th17 responses and inflammasome activation in a model of IL-23-induced psoriasis. J. Investig. Dermatol. 133:1777–84 [Google Scholar]
  126. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL. 126.  et al. 2005. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102:15545–50 [Google Scholar]
  127. Mee JB, Johnson CM, Morar N, Burslem F, Groves RW. 127.  2007. The psoriatic transcriptome closely resembles that induced by interleukin-1 in cultured keratinocytes: dominance of innate immune responses in psoriasis. Am. J. Pathol. 171:32–42 [Google Scholar]
  128. Zaba LC, Suarez-Farinas M, Fuentes-Duculan J, Nograles KE, Guttman-Yassky E. 128.  et al. 2009. Effective treatment of psoriasis with etanercept is linked to suppression of IL-17 signaling, not immediate response TNF genes. J. Allergy Clin. Immunol. 124:1022–30.e395 [Google Scholar]
  129. Swindell WR, Xing X, Stuart PE, Chen CS, Aphale A. 129.  et al. 2012. Heterogeneity of inflammatory and cytokine networks in chronic plaque psoriasis. PLoS ONE 7:e34594 [Google Scholar]
  130. Gudjonsson JE, Aphale A, Grachtchouk M, Ding J, Nair RP. 130.  et al. 2009. Lack of evidence for activation of the hedgehog pathway in psoriasis. J. Investig. Dermatol. 129:635–40 [Google Scholar]
  131. Suarez-Farinas M, Dhingra N, Gittler J, Shemer A, Cardinale I. 131.  et al. 2013. Intrinsic atopic dermatitis shows similar T2 and higher T17 immune activation compared with extrinsic atopic dermatitis. J. Allergy Clin. Immunol. 132:361–70 [Google Scholar]
  132. Cook PW, Piepkorn M, Clegg CH, Plowman GD, DeMay JM. 132.  et al. 1997. Transgenic expression of the human amphiregulin gene induces a psoriasis-like phenotype. J. Clin. Investig. 100:2286–94 [Google Scholar]
  133. Boyman O, Hefti HP, Conrad C, Nickoloff BJ, Suter M, Nestle FO. 133.  2004. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-α. J. Exp. Med. 199:731–36 [Google Scholar]
  134. Nestle FO, Nickoloff BJ. 134.  2005. From classical mouse models of psoriasis to a spontaneous xenograft model featuring use of AGR mice. Ernst Schering Res. Found. Workshop 50:203–12 [Google Scholar]
  135. Conrad C, Boyman O, Tonel G, Tun-Kyi A, Laggner U. 135.  et al. 2007. α1β1 integrin is crucial for accumulation of epidermal T cells and the development of psoriasis. Nat. Med. 13:836–42 [Google Scholar]
  136. Suárez-Fariñas M, Arbeit R, Jiang W, Ortenzio FS, Sullivan T, Krueger JG. 136.  2013. Suppression of molecular inflammatory pathways by Toll-like receptor 7, 8, and 9 antagonists in a model of IL-23-induced skin inflammation. PLoS ONE 8:e84634 [Google Scholar]

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error