Interferon-stimulated gene (ISG) products take on a number of diverse roles. Collectively, they are highly effective at resisting and controlling pathogens. In this review, we begin by introducing interferon (IFN) and the JAK-STAT signaling pathway to highlight features that impact ISG production. Next, we describe ways in which ISGs both enhance innate pathogen-sensing capabilities and negatively regulate signaling through the JAK-STAT pathway. Several ISGs that directly inhibit virus infection are described with an emphasis on those that impact early and late stages of the virus life cycle. Finally, we describe ongoing efforts to identify and characterize antiviral ISGs, and we provide a forward-looking perspective on the ISG landscape.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Stark GR, Darnell JE Jr. 1.  2012. The JAK-STAT pathway at twenty. Immunity 36:503–14 [Google Scholar]
  2. Gonzalez-Navajas JM, Lee J, David M, Raz E. 2.  2012. Immunomodulatory functions of type I interferons. Nat. Rev. Immunol. 12:125–35 [Google Scholar]
  3. Schoenborn JR, Wilson CB. 3.  2007. Regulation of interferon-gamma during innate and adaptive immune responses. Adv. Immunol. 96:41–101 [Google Scholar]
  4. Rönnblom L. 4.  2011. The type I interferon system in etiopathogenesis of autoimmune diseases. Upsala J. Med. Sci. 116:227–37 [Google Scholar]
  5. Henle W. 5.  1950. Interference phenomena between animal viruses; a review. J. Immunol. 64:203–36 [Google Scholar]
  6. Isaacs A, Lindenmann J. 6.  1957. Virus interference. I. The interferon. Proc. R. Soc. B 147:258–67 [Google Scholar]
  7. Isaacs A, Lindenmann J, Valentine RC. 7.  1957. Virus interference. II. Some properties of interferon. Proc. R. Soc. B 147:268–73 [Google Scholar]
  8. Lengyel P. 8.  1982. Biochemistry of interferons and their actions. Annu. Rev. Biochem. 51:251–82 [Google Scholar]
  9. Wu J, Chen ZJ. 9.  2014. Innate immune sensing and signaling of cytosolic nucleic acids. Annu. Rev. Immunol. 32461–88 [Google Scholar]
  10. Cantell K, Hirvonen S, Kauppinen HL, Myllyla G. 10.  1981. Production of interferon in human leukocytes from normal donors with the use of Sendai virus. Methods Enzymol. 78:29–38 [Google Scholar]
  11. Cantell K, Hirvonen S, Koistinen V. 11.  1981. Partial purification of human leukocyte interferon on a large scale. Methods Enzymol. 78:499–505 [Google Scholar]
  12. Pestka S. 12.  2007. The interferons: 50 years after their discovery, there is much more to learn. J. Biol. Chem. 282:20047–51 [Google Scholar]
  13. Knight E Jr. 13.  1975. Heterogeneity of purified mouse interferons. J. Biol. Chem. 250:4139–44 [Google Scholar]
  14. Rubinstein M, Levy WP, Moschera JA, Lai CY, Hershberg RD. 14.  et al. 1981. Human leukocyte interferon: isolation and characterization of several molecular forms. Arch. Biochem. Biophys. 210:307–18 [Google Scholar]
  15. Maeda S, McCandliss R, Gross M, Sloma A, Familletti PC. 15.  et al. 1980. Construction and identification of bacterial plasmids containing nucleotide sequence for human leukocyte interferon. Proc. Natl. Acad. Sci. USA 77:7010–13 [Google Scholar]
  16. de Weerd NA, Samarajiwa SA, Hertzog PJ. 16.  2007. Type I interferon receptors: biochemistry and biological functions. J. Biol. Chem. 282:20053–57 [Google Scholar]
  17. Pestka S, Krause CD, Walter MR. 17.  2004. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev. 202:8–32 [Google Scholar]
  18. Uze G, Schreiber G, Piehler J, Pellegrini S. 18.  2007. The receptor of the type I interferon family. Curr. Top. Microbiol. Immunol. 316:71–95 [Google Scholar]
  19. Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K. 19.  et al. 1999. The nature of the principal type 1 interferon-producing cells in human blood. Science 284:1835–37 [Google Scholar]
  20. Liu Y-J. 20.  2005. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 23:275–306 [Google Scholar]
  21. Moraga I, Harari D, Schreiber G, Uze G, Pellegrini S. 21.  2009. Receptor density is key to the alpha2/beta interferon differential activities. Mol. Cell. Biol. 29:4778–87 [Google Scholar]
  22. Jaitin DA, Roisman LC, Jaks E, Gavutis M, Piehler J. 22.  et al. 2006. Inquiring into the differential action of interferons (IFNs): an IFN-α2 mutant with enhanced affinity to IFNAR1 is functionally similar to IFN-β. Mol. Cell. Biol. 26:1888–97 [Google Scholar]
  23. Kalie E, Jaitin DA, Podoplelova Y, Piehler J, Schreiber G. 23.  2008. The stability of the ternary interferon-receptor complex rather than the affinity to the individual subunits dictates differential biological activities. J. Biol. Chem. 283:32925–36 [Google Scholar]
  24. Walter MR, Windsor WT, Nagabhushan TL, Lundell DJ, Lunn CA. 24.  et al. 1995. Crystal structure of a complex between interferon-γ and its soluble high-affinity receptor. Nature 376:230–35 [Google Scholar]
  25. Valente G, Ozmen L, Novelli F, Geuna M, Palestro G. 25.  et al. 1992. Distribution of interferon-γ receptor in human tissues. Eur. J. Immunol. 22:2403–12 [Google Scholar]
  26. Decker T, Lew DJ, Cheng YS, Levy DE, Darnell JE Jr. 26.  1989. Interactions of α- and γ-interferon in the transcriptional regulation of the gene encoding a guanylate-binding protein. EMBO J. 8:2009–14 [Google Scholar]
  27. Lew DJ, Decker T, Darnell JE Jr. 27.  1989. Alpha interferon and gamma interferon stimulate transcription of a single gene through different signal transduction pathways. Mol. Cell. Biol. 9:5404–11 [Google Scholar]
  28. Levy DE, Lew DJ, Decker T, Kessler DS, Darnell JE Jr. 28.  1990. Synergistic interaction between interferon-α and interferon-γ through induced synthesis of one subunit of the transcription factor ISGF3. EMBO J. 9:1105–11 [Google Scholar]
  29. Fujimoto M, Naka T. 29.  2010. SOCS1, a negative regulator of cytokine signals and TLR responses, in human liver diseases. Gastroenterol. Res. Pract. http://dx.doi.org/10.1155/2010/470468 [Google Scholar]
  30. Fenner JE, Starr R, Cornish AL, Zhang JG, Metcalf D. 30.  et al. 2006. Suppressor of cytokine signaling 1 regulates the immune response to infection by a unique inhibition of type I interferon activity. Nat. Immunol. 7:33–39 [Google Scholar]
  31. Schroder K, Hertzog PJ, Ravasi T, Hume DA. 31.  2004. Interferon-gamma: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75:163–89 [Google Scholar]
  32. McLaren JE, Ramji DP. 32.  2009. Interferon gamma: a master regulator of atherosclerosis. Cytokine Growth Factor Rev. 20:125–35 [Google Scholar]
  33. Zaidi MR, Merlino G. 33.  2011. The two faces of interferon-gamma in cancer. Clin. Cancer Res. 17:6118–24 [Google Scholar]
  34. Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M. 34.  et al. 2003. IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex. Nat. Immunol. 4:69–77 [Google Scholar]
  35. Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S. 35.  et al. 2003. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat. Immunol. 4:63–68 [Google Scholar]
  36. Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H. 36.  et al. 2013. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat. Genet. 45:164–71 [Google Scholar]
  37. Fox BA, Sheppard PO, O'Hara PJ. 37.  2009. The role of genomic data in the discovery, annotation and evolutionary interpretation of the interferon-λ family. PLoS ONE 4:e4933 [Google Scholar]
  38. Sommereyns C, Paul S, Staeheli P, Michiels T. 38.  2008. IFN-lambda (IFN-λ) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog. 4:e1000017 [Google Scholar]
  39. Marcello T, Grakoui A, Barba-Spaeth G, Machlin ES, Kotenko SV. 39.  et al. 2006. Interferons α and λ inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology 131:1887–98 [Google Scholar]
  40. Bolen CR, Ding S, Robek MD, Kleinstein SH. 40.  2014. Dynamic expression profiling of type I and type III interferon-stimulated hepatocytes reveals a stable hierarchy of gene expression. Hepatology In press. doi:10.1002/hep.26657 [Google Scholar]
  41. Larner AC, Chaudhuri A, Darnell JE Jr. 41.  1986. Transcriptional induction by interferon. New protein(s) determine the extent and length of the induction. J. Biol. Chem. 261:453–59 [Google Scholar]
  42. Larner AC, Jonak G, Cheng YS, Korant B, Knight E, Darnell JE Jr. 42.  1984. Transcriptional induction of two genes in human cells by β interferon. Proc. Natl. Acad. Sci. USA 81:6733–37 [Google Scholar]
  43. Kawamura M, McVicar DW, Johnston JA, Blake TB, Chen YQ. 43.  et al. 1994. Molecular cloning of L-JAK, a Janus family protein-tyrosine kinase expressed in natural killer cells and activated leukocytes. Proc. Natl. Acad. Sci. USA 91:6374–78 [Google Scholar]
  44. Pellegrini S, John J, Shearer M, Kerr IM, Stark GR. 44.  1989. Use of a selectable marker regulated by α interferon to obtain mutations in the signaling pathway. Mol. Cell. Biol. 9:4605–12 [Google Scholar]
  45. Ragimbeau J, Dondi E, Alcover A, Eid P, Uze G, Pellegrini S. 45.  2003. The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression. EMBO J. 22:537–47 [Google Scholar]
  46. Gauzzi MC, Barbieri G, Richter MF, Uze G, Ling L. 46.  et al. 1997. The amino-terminal region of Tyk2 sustains the level of interferon α receptor 1, a component of the interferon α/β receptor. Proc. Natl. Acad. Sci. USA 94:11839–44 [Google Scholar]
  47. Haan C, Kreis S, Margue C, Behrmann I. 47.  2006. Jaks and cytokine receptors—an intimate relationship. Biochem. Pharmacol. 72:1538–46 [Google Scholar]
  48. van Boxel-Dezaire AH, Rani MR, Stark GR. 48.  2006. Complex modulation of cell type–specific signaling in response to type I interferons. Immunity 25:361–72 [Google Scholar]
  49. Heim MH, Kerr IM, Stark GR, Darnell JE Jr. 49.  1995. Contribution of STAT SH2 groups to specific interferon signaling by the Jak-STAT pathway. Science 267:1347–49 [Google Scholar]
  50. Shuai K, Schindler C, Prezioso VR, Darnell JE Jr. 50.  1992. Activation of transcription by IFN-gamma: tyrosine phosphorylation of a 91-kD DNA binding protein. Science 258:1808–12 [Google Scholar]
  51. Schindler C, Shuai K, Prezioso VR, Darnell JE Jr. 51.  1992. Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science 257:809–13 [Google Scholar]
  52. Greenlund AC, Morales MO, Viviano BL, Yan H, Krolewski J, Schreiber RD. 52.  1995. Stat recruitment by tyrosine-phosphorylated cytokine receptors: an ordered reversible affinity-driven process. Immunity 2:677–87 [Google Scholar]
  53. Sekimoto T, Imamoto N, Nakajima K, Hirano T, Yoneda Y. 53.  1997. Extracellular signal-dependent nuclear import of Stat1 is mediated by nuclear pore-targeting complex formation with NPI-1, but not Rch1. EMBO J. 16:7067–77 [Google Scholar]
  54. McBride KM, Banninger G, McDonald C, Reich NC. 54.  2002. Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-α. EMBO J. 21:1754–63 [Google Scholar]
  55. Fagerlund R, Melen K, Kinnunen L, Julkunen I. 55.  2002. Arginine/lysine-rich nuclear localization signals mediate interactions between dimeric STATs and importin α5. J. Biol. Chem. 277:30072–78 [Google Scholar]
  56. Melen K, Kinnunen L, Julkunen I. 56.  2001. Arginine/lysine-rich structural element is involved in interferon-induced nuclear import of STATs. J. Biol. Chem. 276:16447–55 [Google Scholar]
  57. Levy DE, Darnell JE Jr. 57.  2002. Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 3:651–62 [Google Scholar]
  58. Shuai K, Stark GR, Kerr IM, Darnell JE Jr. 58.  1993. A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science 261:1744–46 [Google Scholar]
  59. Decker T, Lew DJ, Mirkovitch J, Darnell JE Jr. 59.  1991. Cytoplasmic activation of GAF, an IFN-gamma-regulated DNA-binding factor. EMBO J. 10:927–32 [Google Scholar]
  60. Decker T, Kovarik P, Meinke A. 60.  1997. GAS elements: a few nucleotides with a major impact on cytokine-induced gene expression. J. Interferon Cytokine Res. 17:121–34 [Google Scholar]
  61. Fu XY, Kessler DS, Veals SA, Levy DE, Darnell JE Jr. 61.  1990. ISGF3, the transcriptional activator induced by interferon α, consists of multiple interacting polypeptide chains. Proc. Natl. Acad. Sci. USA 87:8555–59 [Google Scholar]
  62. Levy DE, Kessler DS, Pine R, Darnell JE Jr. 62.  1989. Cytoplasmic activation of ISGF3, the positive regulator of interferon-α-stimulated transcription, reconstituted in vitro. Genes Dev. 3:1362–71 [Google Scholar]
  63. Schindler C, Fu XY, Improta T, Aebersold R, Darnell JE Jr. 63.  1992. Proteins of transcription factor ISGF-3: one gene encodes the 91-and 84-kDa ISGF-3 proteins that are activated by interferon α. Proc. Natl. Acad. Sci. USA 89:7836–39 [Google Scholar]
  64. Levy DE, Kessler DS, Pine R, Reich N, Darnell JE Jr. 64.  1988. Interferon-induced nuclear factors that bind a shared promoter element correlate with positive and negative transcriptional control. Genes Dev. 2:383–93 [Google Scholar]
  65. Levy D, Larner A, Chaudhuri A, Babiss LE, Darnell JE Jr. 65.  1986. Interferon-stimulated transcription: isolation of an inducible gene and identification of its regulatory region. Proc. Natl. Acad. Sci. USA 83:8929–33 [Google Scholar]
  66. Reich N, Evans B, Levy D, Fahey D, Knight E Jr, Darnell JE Jr. 66.  1987. Interferon-induced transcription of a gene encoding a 15-kDa protein depends on an upstream enhancer element. Proc. Natl. Acad. Sci. USA 84:6394–98 [Google Scholar]
  67. Cheon H, Stark GR. 67.  2009. Unphosphorylated STAT1 prolongs the expression of interferon-induced immune regulatory genes. Proc. Natl. Acad. Sci. USA 106:9373–78 [Google Scholar]
  68. Cheon H, Yang J, Stark GR. 68.  2011. The functions of signal transducers and activators of transcriptions 1 and 3 as cytokine-inducible proteins. J. Interferon Cytokine Res. 31:33–40 [Google Scholar]
  69. Iwasaki A. 69.  2012. A virological view of innate immune recognition. Annu. Rev. Microbiol. 66:177–96 [Google Scholar]
  70. Barber GN. 70.  2011. Cytoplasmic DNA innate immune pathways. Immunol. Rev. 243:99–108 [Google Scholar]
  71. Hornung V, Ellegast J, Kim S, Brzozka K, Jung A. 71.  et al. 2006. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–97 [Google Scholar]
  72. Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P. 72.  et al. 2006. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314:997–1001 [Google Scholar]
  73. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G. 73.  et al. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–18 [Google Scholar]
  74. Paludan SR, Bowie AG. 74.  2013. Immune sensing of DNA. Immunity 38:870–80 [Google Scholar]
  75. Di Virgilio F. 75.  2013. The therapeutic potential of modifying inflammasomes and NOD-like receptors. Pharmacol. Rev. 65:872–905 [Google Scholar]
  76. Kawai T, Akira S. 76.  2011. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–50 [Google Scholar]
  77. Chakrabarti A, Jha BK, Silverman RH. 77.  2011. New insights into the role of RNase L in innate immunity. J. Interferon Cytokine Res. 31:49–57 [Google Scholar]
  78. Munir M, Berg M. 78.  2013. The multiple faces of proteinkinase R in antiviral defense. Virulence 4:85–89 [Google Scholar]
  79. Sun L, Wu J, Du F, Chen X, Chen ZJ. 79.  2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–91 [Google Scholar]
  80. Gao D, Wu J, Wu YT, Du F, Aroh C. 80.  et al. 2013. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341:903–6 [Google Scholar]
  81. Wu J, Sun L, Chen X, Du F, Shi H. 81.  et al. 2013. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339:826–30 [Google Scholar]
  82. Zhang X, Shi H, Wu J, Sun L, Chen C, Chen ZJ. 82.  2013. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell 51:226–35 [Google Scholar]
  83. Ishikawa H, Barber GN. 83.  2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674–78 [Google Scholar]
  84. Wallach D, Kovalenko A. 84.  2013. How do cells sense foreign DNA? A new outlook on the function of STING. Mol. Cell 50:1–2 [Google Scholar]
  85. Zemirli N, Arnoult D. 85.  2012. Mitochondrial anti-viral immunity. Int. J. Biochem. Cell Biol. 44:1473–76 [Google Scholar]
  86. Seth RB, Sun L, Ea CK, Chen ZJ. 86.  2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3. Cell 122:669–82 [Google Scholar]
  87. Kawai T, Takahashi K, Sato S, Coban C, Kumar H. 87.  et al. 2005. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6:981–88 [Google Scholar]
  88. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M. 88.  et al. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:1167–72 [Google Scholar]
  89. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT. 89.  et al. 2011. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472:481–85 [Google Scholar]
  90. Coccia EM, Uze G, Pellegrini S. 90.  2006. Negative regulation of type I interferon signaling: facts and mechanisms. Cell Mol. Biol. 52:77–87 [Google Scholar]
  91. ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M. 91.  et al. 2002. Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol. Cell. Biol. 22:5662–68 [Google Scholar]
  92. David M, Chen HE, Goelz S, Larner AC, Neel BG. 92.  1995. Differential regulation of the α/β interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol. Cell. Biol. 15:7050–58 [Google Scholar]
  93. You M, Yu DH, Feng GS. 93.  1999. Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. Mol. Cell. Biol. 19:2416–24 [Google Scholar]
  94. Myers MP, Andersen JN, Cheng A, Tremblay ML, Horvath CM. 94.  et al. 2001. TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J. Biol. Chem. 276:47771–74 [Google Scholar]
  95. Irie-Sasaki J, Sasaki T, Matsumoto W, Opavsky A, Cheng M. 95.  et al. 2001. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 409:349–54 [Google Scholar]
  96. Simoncic PD, Lee-Loy A, Barber DL, Tremblay ML, McGlade CJ. 96.  2002. The T cell protein tyrosine phosphatase is a negative regulator of Janus family kinases 1 and 3. Curr. Biol. 12:446–53 [Google Scholar]
  97. Shuai K, Liu B. 97.  2005. Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat. Rev. Immunol. 5:593–605 [Google Scholar]
  98. Palvimo JJ. 98.  2007. PIAS proteins as regulators of small ubiquitin-related modifier (SUMO) modifications and transcription. Biochem. Soc. Trans. 35:1405–8 [Google Scholar]
  99. Rogers RS, Horvath CM, Matunis MJ. 99.  2003. SUMO modification of STAT1 and its role in PIAS-mediated inhibition of gene activation. J. Biol. Chem. 278:30091–97 [Google Scholar]
  100. Ungureanu D, Vanhatupa S, Kotaja N, Yang J, Aittomaki S. 100.  et al. 2003. PIAS proteins promote SUMO-1 conjugation to STAT1. Blood 102:3311–13 [Google Scholar]
  101. Ungureanu D, Vanhatupa S, Gronholm J, Palvimo JJ, Silvennoinen O. 101.  2005. SUMO-1 conjugation selectively modulates STAT1-mediated gene responses. Blood 106:224–26 [Google Scholar]
  102. Hong XX, Carmichael GG. 102.  2013. Innate immunity in pluripotent human cells: attenuated response to interferon-β. J. Biol. Chem. 288:16196–205 [Google Scholar]
  103. Malakhov MP, Malakhova OA, Kim KI, Ritchie KJ, Zhang DE. 103.  2002. UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J. Biol. Chem. 277:9976–81 [Google Scholar]
  104. Ritchie KJ, Malakhov MP, Hetherington CJ, Zhou L, Little MT. 104.  et al. 2002. Dysregulation of protein modification by ISG15 results in brain cell injury. Genes Dev. 16:2207–12 [Google Scholar]
  105. Malakhova OA, Yan M, Malakhov MP, Yuan Y, Ritchie KJ. 105.  et al. 2003. Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev. 17:455–60 [Google Scholar]
  106. Ritchie KJ, Hahn CS, Kim KI, Yan M, Rosario D. 106.  et al. 2004. Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection. Nat. Med. 10:1374–78 [Google Scholar]
  107. Malakhova OA, Kim KI, Luo JK, Zou W, Kumar KG. 107.  et al. 2006. UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity. EMBO J. 25:2358–67 [Google Scholar]
  108. Knobeloch KP, Utermohlen O, Kisser A, Prinz M, Horak I. 108.  2005. Reexamination of the role of ubiquitin-like modifier ISG15 in the phenotype of UBP43-deficient mice. Mol. Cell. Biol. 25:11030–34 [Google Scholar]
  109. Osiak A, Utermöhlen O, Niendorf S, Horak I, Knobeloch K-P. 109.  2005. ISG15, an interferon-stimulated ubiquitin-like protein, is not essential for STAT1 signaling and responses against vesicular stomatitis and lymphocytic choriomeningitis virus. Mol. Cell. Biol. 25:6338–45 [Google Scholar]
  110. Kim KI, Yan M, Malakhova O, Luo JK, Shen MF. 110.  et al. 2006. Ube1L and protein ISGylation are not essential for α/β interferon signaling. Mol. Cell. Biol. 26:472–79 [Google Scholar]
  111. Francois-Newton V, Magno de Freitas Almeida G, Payelle-Brogard B, Monneron D, Pichard-Garcia L. 111.  et al. 2011. USP18-based negative feedback control is induced by type I and type III interferons and specifically inactivates interferon α response. PLoS ONE 6:e22200 [Google Scholar]
  112. Makowska Z, Duong FH, Trincucci G, Tough DF, Heim MH. 112.  2011. Interferon-β and interferon-λ signaling is not affected by interferon-induced refractoriness to interferon-α in vivo. Hepatology 53:1154–63 [Google Scholar]
  113. Coelho LF, Magno de Freitas Almeida G, Mennechet FJ, Blangy A, Uze G. 113.  2005. Interferon-α and -β differentially regulate osteoclastogenesis: role of differential induction of chemokine CXCL11 expression. Proc. Natl. Acad. Sci. USA 102:11917–22 [Google Scholar]
  114. Chen L, Borozan I, Feld J, Sun J, Tannis LL. 114.  et al. 2005. Hepatic gene expression discriminates responders and nonresponders in treatment of chronic hepatitis C viral infection. Gastroenterology 128:1437–44 [Google Scholar]
  115. Sarasin-Filipowicz M, Oakeley EJ, Duong FHT, Christen V, Terracciano L. 115.  et al. 2008. Interferon signaling and treatment outcome in chronic hepatitis C. Proc. Natl. Acad. Sci. USA 105:7034–39 [Google Scholar]
  116. Gao S, von der Malsburg A, Paeschke S, Behlke J, Haller O. 116.  et al. 2010. Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature 465:502–6 [Google Scholar]
  117. Klockow B, Tichelaar W, Madden DR, Niemann HH, Akiba T. 117.  et al. 2002. The dynamin A ring complex: molecular organization and nucleotide-dependent conformational changes. EMBO J. 21:240–50 [Google Scholar]
  118. Haller O, Kochs G. 118.  2011. Human MxA protein: an interferon-induced dynamin-like GTPase with broad antiviral activity. J. Interferon Cytokine Res. 31:79–87 [Google Scholar]
  119. Sadler AJ, Williams BRG. 119.  2008. Interferon-inducible antiviral effectors. Nat. Rev. Immunol. 8:559–68 [Google Scholar]
  120. Kane M, Yadav SS, Bitzegeio J, Kutluay SB, Zang T. 120.  et al. 2013. MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature 502:563–66 [Google Scholar]
  121. Goujon C, Moncorgé O, Bauby H, Doyle T, Ward CC. 121.  et al. 2013. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 502:559–62 [Google Scholar]
  122. Liu Z, Pan Q, Ding S, Qian J, Xu F. 122.  et al. 2013. The interferon-inducible MxB protein inhibits HIV-1 infection. Cell Host Microbe 14:398–410 [Google Scholar]
  123. Bauman DR, Bitmansour AD, McDonald JG, Thompson BM, Liang G, Russell DW. 123.  2009. 25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production. Proc. Natl. Acad. Sci. USA 106:16764–69 [Google Scholar]
  124. Diczfalusy U, Olofsson KE, Carlsson AM, Gong M, Golenbock DT. 124.  et al. 2009. Marked upregulation of cholesterol 25-hydroxylase expression by lipopolysaccharide. J. Lipid Res. 50:2258–64 [Google Scholar]
  125. Park K, Scott AL. 125.  2010. Cholesterol 25-hydroxylase production by dendritic cells and macrophages is regulated by type I interferons. J. Leukoc. Biol. 88:1081–87 [Google Scholar]
  126. Liu SY, Aliyari R, Chikere K, Li G, Marsden MD. 126.  et al. 2013. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity 38:92–105 [Google Scholar]
  127. Blanc M, Hsieh WY, Robertson KA, Kropp KA, Forster T. 127.  et al. 2013. The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response. Immunity 38:106–18 [Google Scholar]
  128. Blanc M, Hsieh WY, Robertson KA, Watterson S, Shui G. 128.  et al. 2011. Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis. PLoS Biol. 9:e1000598 [Google Scholar]
  129. Moog C, Aubertin AM, Kirn A, Luu B. 129.  1998. Oxysterols, but not cholesterol, inhibit human immunodeficiency virus replication in vitro. Antivir. Chem. Chemother. 9:491–96 [Google Scholar]
  130. Pezacki JP, Sagan SM, Tonary AM, Rouleau Y, Belanger S. 130.  et al. 2009. Transcriptional profiling of the effects of 25-hydroxycholesterol on human hepatocyte metabolism and the antiviral state it conveys against the hepatitis C virus. BMC Chem. Biol. 9:2 [Google Scholar]
  131. Su AI, Pezacki JP, Wodicka L, Brideau AD, Supekova L. 131.  et al. 2002. Genomic analysis of the host response to hepatitis C virus infection. Proc. Natl. Acad. Sci. USA 99:15669–74 [Google Scholar]
  132. Espenshade PJ, Hughes AL. 132.  2007. Regulation of sterol synthesis in eukaryotes. Annu. Rev. Genet. 41:401–27 [Google Scholar]
  133. Zhang FL, Casey PJ. 133.  1996. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65:241–69 [Google Scholar]
  134. Einav S, Glenn JS. 134.  2003. Prenylation inhibitors: a novel class of antiviral agents. J. Antimicrob. Chemother. 52:883–86 [Google Scholar]
  135. Wilson SJ, Schoggins JW, Zang T, Kutluay SB, Jouvenet N. 135.  et al. 2012. Inhibition of HIV-1 particle assembly by 2′,3′-cyclic-nucleotide 3′-phosphodiesterase. Cell Host Microbe 12:585–97 [Google Scholar]
  136. Bordier BB, Ohkanda J, Liu P, Lee SY, Salazar FH. 136.  et al. 2003. In vivo antiviral efficacy of prenylation inhibitors against hepatitis delta virus. J. Clin. Investig. 112:407–14 [Google Scholar]
  137. Bordier BB, Marion PL, Ohashi K, Kay MA, Greenberg HB. 137.  et al. 2002. A prenylation inhibitor prevents production of infectious hepatitis delta virus particles. J. Virol. 76:10465–72 [Google Scholar]
  138. Glenn JS, Watson JA, Havel CM, White JM. 138.  1992. Identification of a prenylation site in delta virus large antigen. Science 256:1331–33 [Google Scholar]
  139. Wang C, Gale M Jr, Keller BC, Huang H, Brown MS. 139.  et al. 2005. Identification of FBL2 as a geranylgeranylated cellular protein required for hepatitis C virus RNA replication. Mol. Cell 18:425–34 [Google Scholar]
  140. Gower TL, Graham BS. 140.  2001. Antiviral activity of lovastatin against respiratory syncytial virus in vivo and in vitro. Antimicrob. Agents Chemother. 45:1231–37 [Google Scholar]
  141. Ye J, Wang C, Sumpter R Jr, Brown MS, Goldstein JL, Gale M Jr. 141.  2003. Disruption of hepatitis C virus RNA replication through inhibition of host protein geranylgeranylation. Proc. Natl. Acad. Sci. USA 100:15865–70 [Google Scholar]
  142. Kapadia SB, Chisari FV. 142.  2005. Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc. Natl. Acad. Sci. USA 102:2561–66 [Google Scholar]
  143. Brass AL, Huang IC, Benita Y, John SP, Krishnan MN. 143.  et al. 2009. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139:1243–54 [Google Scholar]
  144. Huang IC, Bailey CC, Weyer JL, Radoshitzky SR, Becker MM. 144.  et al. 2011. Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus. PLoS Pathog. 7:e1001258 [Google Scholar]
  145. Wilkins C, Woodward J, Lau DT, Barnes A, Joyce M. 145.  et al. 2013. IFITM1 is a tight junction protein that inhibits hepatitis C virus entry. Hepatology 57:461–69 [Google Scholar]
  146. Anafu AA, Bowen CH, Chin CR, Brass AL, Holm GH. 146.  2013. Interferon-inducible transmembrane protein 3 (IFITM3) restricts reovirus cell entry. J. Biol. Chem. 288:17261–71 [Google Scholar]
  147. Lu J, Pan Q, Rong L, He W, Liu SL, Liang C. 147.  2011. The IFITM proteins inhibit HIV-1 infection. J. Virol. 85:2126–37 [Google Scholar]
  148. Chan YK, Huang IC, Farzan M. 148.  2012. IFITM proteins restrict antibody-dependent enhancement of dengue virus infection. PLoS ONE 7:e34508 [Google Scholar]
  149. Feeley EM, Sims JS, John SP, Chin CR, Pertel T. 149.  et al. 2011. IFITM3 inhibits influenza A virus infection by preventing cytosolic entry. PLoS Pathog. 7:e1002337 [Google Scholar]
  150. Yount JS, Karssemeijer RA, Hang HC. 150.  2012. S-palmitoylation and ubiquitination differentially regulate interferon-induced transmembrane protein 3 (IFITM3)-mediated resistance to influenza virus. J. Biol. Chem. 287:19631–41 [Google Scholar]
  151. Yount JS, Moltedo B, Yang YY, Charron G, Moran TM. 151.  et al. 2010. Palmitoylome profiling reveals S-palmitoylation-dependent antiviral activity of IFITM3. Nat. Chem. Biol. 6:610–14 [Google Scholar]
  152. Jia R, Pan Q, Ding S, Rong L, Liu SL. 152.  et al. 2012. The N-terminal region of IFITM3 modulates its antiviral activity by regulating IFITM3 cellular localization. J. Virol. 86:13697–707 [Google Scholar]
  153. Everitt AR, Clare S, Pertel T, John SP, Wash RS. 153.  et al. 2012. IFITM3 restricts the morbidity and mortality associated with influenza. Nature 484:519–23 [Google Scholar]
  154. Li K, Markosyan RM, Zheng YM, Golfetto O, Bungart B. 154.  et al. 2013. IFITM proteins restrict viral membrane hemifusion. PLoS Pathog. 9:e1003124 [Google Scholar]
  155. Diamond MS, Farzan M. 155.  2013. The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat. Rev. Immunol. 13:46–57 [Google Scholar]
  156. Ozato K, Shin DM, Chang TH, Morse HC 3rd. 156.  2008. TRIM family proteins and their emerging roles in innate immunity. Nat. Rev. Immunol. 8:849–60 [Google Scholar]
  157. Chu Y, Yang X. 157.  2011. SUMO E3 ligase activity of TRIM proteins. Oncogene 30:1108–16 [Google Scholar]
  158. Zou W, Zhang DE. 158.  2006. The interferon-inducible ubiquitin-protein isopeptide ligase (E3) EFP also functions as an ISG15 E3 ligase. J. Biol. Chem. 281:3989–94 [Google Scholar]
  159. Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S. 159.  et al. 2001. The tripartite motif family identifies cell compartments. EMBO J. 20:2140–51 [Google Scholar]
  160. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J. 160.  2004. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature 427:848–53 [Google Scholar]
  161. Campbell EM, Perez O, Anderson JL, Hope TJ. 161.  2008. Visualization of a proteasome-independent intermediate during restriction of HIV-1 by rhesus TRIM5α. J. Cell Biol. 180:549–61 [Google Scholar]
  162. Sawyer SL, Emerman M, Malik HS. 162.  2007. Discordant evolution of the adjacent antiretroviral genes TRIM22 and TRIM5 in mammals. PLoS Pathog. 3:e197 [Google Scholar]
  163. Duggal NK, Emerman M. 163.  2012. Evolutionary conflicts between viruses and restriction factors shape immunity. Nat. Rev. Immunol. 12:687–95 [Google Scholar]
  164. Versteeg GA, Rajsbaum R, Sanchez-Aparicio MT, Maestre AM, Valdiviezo J. 164.  et al. 2013. The E3-ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors. Immunity 38:384–98 [Google Scholar]
  165. Tissot C, Mechti N. 165.  1995. Molecular cloning of a new interferon-induced factor that represses human immunodeficiency virus type 1 long terminal repeat expression. J. Biol. Chem. 270:14891–98 [Google Scholar]
  166. Barr SD, Smiley JR, Bushman FD. 166.  2008. The interferon response inhibits HIV particle production by induction of TRIM22. PLoS Pathog. 4:e1000007 [Google Scholar]
  167. Singh R, Gaiha G, Werner L, McKim K, Mlisana K. 167.  et al. Team CAIS 2011. Association of TRIM22 with the type 1 interferon response and viral control during primary HIV-1 infection. J. Virol. 85:208–16 [Google Scholar]
  168. Hattlmann CJ, Kelly JN, Barr SD. 168.  2012. TRIM22: a diverse and dynamic antiviral protein. Mol. Biol. Int. 2012:153415 [Google Scholar]
  169. Gao B, Duan Z, Xu W, Xiong S. 169.  2009. Tripartite motif-containing 22 inhibits the activity of hepatitis B virus core promoter, which is dependent on nuclear-located RING domain. Hepatology 50:424–33 [Google Scholar]
  170. Eldin P, Papon L, Oteiza A, Brocchi E, Lawson TG, Mechti N. 170.  2009. TRIM22 E3 ubiquitin ligase activity is required to mediate antiviral activity against encephalomyocarditis virus. J. Gen. Virol. 90:536–45 [Google Scholar]
  171. Di Pietro A, Kajaste-Rudnitski A, Oteiza A, Nicora L, Towers GJ. 171.  et al. 2013. TRIM22 inhibits influenza A virus infection by targeting the viral nucleoprotein for degradation. J. Virol. 87:4523–33 [Google Scholar]
  172. Geoffroy MC, Chelbi-Alix MK. 172.  2011. Role of promyelocytic leukemia protein in host antiviral defense. J. Interferon Cytokine Res. 31:145–58 [Google Scholar]
  173. Gack MU, Albrecht RA, Urano T, Inn KS, Huang IC. 173.  et al. 2009. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5:439–49 [Google Scholar]
  174. Tsuchida T, Zou J, Saitoh T, Kumar H, Abe T. 174.  et al. 2010. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 33:765–76 [Google Scholar]
  175. Munir M. 175.  2010. TRIM proteins: another class of viral victims. Sci. Signal. 3jc2 [Google Scholar]
  176. Nisole S, Stoye JP, Saib A. 176.  2005. TRIM family proteins: retroviral restriction and antiviral defence. Nat. Rev. Microbiol. 3:799–808 [Google Scholar]
  177. Goff SP. 177.  2004. Retrovirus restriction factors. Mol. Cell 16:849–59 [Google Scholar]
  178. Kok K-H, Jin D-Y. 178.  2013. Balance of power in host-virus arms races. Cell Host Microbe 14:5–6 [Google Scholar]
  179. Farrell PJ, Broeze RJ, Lengyel P. 179.  1979. Accumulation of an mRNA and protein in interferon-treated Ehrlich ascites tumour cells. Nature 279:523–25 [Google Scholar]
  180. Zhao C, Collins MN, Hsiang T-Y, Krug RM. 180.  2013. Interferon-induced ISG15 pathway: an ongoing virus-host battle. Trends Microbiol. 21:181–86 [Google Scholar]
  181. Sgorbissa A, Brancolini C. 181.  2012. IFNs, ISGylation and cancer: Cui prodest?. Cytokine Growth Factor Rev. 23:307–14 [Google Scholar]
  182. Shi H-X, Yang K, Liu X, Liu X-Y, Wei B. 182.  et al. 2010. Positive regulation of interferon regulatory factor 3 activation by Herc5 via ISG15 modification. Mol. Cell. Biol. 30:2424–36 [Google Scholar]
  183. Okumura F, Zou W, Zhang DE. 183.  2007. ISG15 modification of the eIF4E cognate 4EHP enhances cap structure-binding activity of 4EHP. Genes Dev. 21:255–60 [Google Scholar]
  184. Feng Q, Sekula D, Guo Y, Liu X, Black CC. 184.  et al. 2008. UBE1L causes lung cancer growth suppression by targeting cyclin D1. Mol. Cancer Ther. 7:3780–88 [Google Scholar]
  185. Durfee LA, Lyon N, Seo K, Huibregtse JM. 185.  2010. The ISG15 conjugation system broadly targets newly synthesized proteins: implications for the antiviral function of ISG15. Mol. Cell 38:722–32 [Google Scholar]
  186. Lenschow DJ, Lai C, Frias-Staheli N, Giannakopoulos NV, Lutz A. 186.  et al. 2007. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc. Natl. Acad. Sci. USA 104:1371–76 [Google Scholar]
  187. Guerra S, Cáceres A, Knobeloch K-P, Horak I, Esteban M. 187.  2008. Vaccinia virus E3 protein prevents the antiviral action of ISG15. PLoS Pathog. 4:e1000096 [Google Scholar]
  188. Bogunovic D, Boisson-Dupuis S, Casanova J-L. 188.  2013. ISG15: leading a double life as a secreted molecule. Exp. Mol. Med. 45:e18 [Google Scholar]
  189. Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O. 189.  et al. 2012. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science 337:1684–88 [Google Scholar]
  190. Indraccolo S, Pfeffer U, Minuzzo S, Esposito G, Roni V. 190.  et al. 2007. Identification of genes selectively regulated by IFNs in endothelial cells. J. Immunol. 178:1122–35 [Google Scholar]
  191. Zhou Z, Hamming OJ, Ank N, Paludan SR, Nielsen AL, Hartmann R. 191.  2007. Type III interferon (IFN) induces a type I IFN-like response in a restricted subset of cells through signaling pathways involving both the Jak-STAT pathway and the mitogen-activated protein kinases. J. Virol. 81:7749–58 [Google Scholar]
  192. Severa M, Coccia EM, Fitzgerald KA. 192.  2006. Toll-like receptor-dependent and -independent viperin gene expression and counter-regulation by PRDI-binding factor-1/BLIMP1. J. Biol. Chem. 281:26188–95 [Google Scholar]
  193. Chin KC, Cresswell P. 193.  2001. Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus. Proc. Natl. Acad. Sci. USA 98:15125–30 [Google Scholar]
  194. Stirnweiss A, Ksienzyk A, Klages K, Rand U, Grashoff M. 194.  et al. 2010. IFN regulatory factor-1 bypasses IFN-mediated antiviral effects through viperin gene induction. J. Immunol. 184:5179–85 [Google Scholar]
  195. DeFilippis VR, Robinson B, Keck TM, Hansen SG, Nelson JA, Früh KJ. 195.  2006. Interferon regulatory factor 3 is necessary for induction of antiviral genes during human cytomegalovirus infection. J. Virol. 80:1032–37 [Google Scholar]
  196. Seo JY, Yaneva R, Hinson ER, Cresswell P. 196.  2011. Human cytomegalovirus directly induces the antiviral protein viperin to enhance infectivity. Science 332:1093–97 [Google Scholar]
  197. Szretter KJ, Brien JD, Thackray LB, Virgin HW, Cresswell P, Diamond MS. 197.  2011. The interferon-inducible gene viperin restricts West Nile virus pathogenesis. J. Virol. 85:11557–66 [Google Scholar]
  198. Wang X, Hinson ER, Cresswell P. 198.  2007. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe 2:96–105 [Google Scholar]
  199. Nasr N, Maddocks S, Turville SG, Harman AN, Woolger N. 199.  et al. 2012. HIV-1 infection of human macrophages directly induces viperin which inhibits viral production. Blood 120:778–88 [Google Scholar]
  200. Helbig KJ, Eyre NS, Yip E, Narayana S, Li K. 200.  et al. 2011. The antiviral protein viperin inhibits hepatitis C virus replication via interaction with nonstructural protein 5A. Hepatology 54:1506–17 [Google Scholar]
  201. Bartenschlager R, Penin F, Lohmann V, Andre P. 201.  2011. Assembly of infectious hepatitis C virus particles. Trends Microbiol. 19:95–103 [Google Scholar]
  202. Moradpour D, Penin F, Rice CM. 202.  2007. Replication of hepatitis C virus. Nat. Rev. Microbiol. 5:453–63 [Google Scholar]
  203. Wang S, Wu X, Pan T, Song W, Wang Y. 203.  et al. 2012. Viperin inhibits hepatitis C virus replication by interfering with binding of NS5A to host protein hVAP-33. J. Gen. Virol. 93:83–92 [Google Scholar]
  204. Helbig KJ, Carr JM, Calvert JK, Wati S, Clarke JN. 204.  et al. 2013. Viperin is induced following dengue virus type-2 (DENV-2) infection and has anti-viral actions requiring the C-terminal end of viperin. PLoS Neglected Trop. Dis. 7:e2178 [Google Scholar]
  205. Perez-Caballero D, Zang T, Ebrahimi A, McNatt MW, Gregory DA. 205.  et al. 2009. Tetherin inhibits HIV-1 release by directly tethering virions to cells. Cell 139:499–511 [Google Scholar]
  206. Swiecki M, Omattage NS, Brett TJ. 206.  2013. BST-2/tetherin: structural biology, viral antagonism, and immunobiology of a potent host antiviral factor. Mol. Immunol. 54:132–39 [Google Scholar]
  207. Le Tortorec A, Neil SJD. 207.  2009. Antagonism to and intracellular sequestration of human tetherin by the human immunodeficiency virus type 2 envelope glycoprotein. J. Virol. 83:11966–78 [Google Scholar]
  208. Jia B, Serra-Moreno R, Neidermyer W, Rahmberg A, Mackey J. 208.  et al. 2009. Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2. PLoS Pathog. 5:e1000429 [Google Scholar]
  209. Zhang F, Wilson SJ, Landford WC, Virgen B, Gregory D. 209.  et al. 2009. Nef proteins from simian immunodeficiency viruses are tetherin antagonists. Cell Host Microbe 6:54–67 [Google Scholar]
  210. Kaletsky RL, Francica JR, Agrawal-Gamse C, Bates P. 210.  2009. Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein. Proc. Natl. Acad. Sci. USA 106:2886–91 [Google Scholar]
  211. Mangeat B, Cavagliotti L, Lehmann M, Gers-Huber G, Kaur I. 211.  et al. 2012. Influenza virus partially counteracts restriction imposed by tetherin/BST-2. J. Biol. Chem. 287:22015–29 [Google Scholar]
  212. Blanco-Melo D, Venkatesh S, Bieniasz PD. 212.  2012. Intrinsic cellular defenses against human immunodeficiency viruses. Immunity 37:399–411 [Google Scholar]
  213. Zhao H, Lin W, Kumthip K, Cheng D, Fusco DN. 213.  et al. 2012. A functional genomic screen reveals novel host genes that mediate interferon-α's effects against hepatitis C virus. J. Hepatol. 56:326–33 [Google Scholar]
  214. Metz P, Dazert E, Ruggieri A, Mazur J, Kaderali L. 214.  et al. 2012. Identification of type I and type II interferon-induced effectors controlling hepatitis C virus replication. Hepatology 56:2082–93 [Google Scholar]
  215. Li J, Ding SC, Cho H, Chung BC, Gale M Jr. 215.  et al. 2013. A short hairpin RNA screen of interferon-stimulated genes identifies a novel negative regulator of the cellular antiviral response. MBio 4:e00385–13 [Google Scholar]
  216. Zhang Y, Burke CW, Ryman KD, Klimstra WB. 216.  2007. Identification and characterization of interferon-induced proteins that inhibit alphavirus replication. J. Virol. 81:11246–55 [Google Scholar]
  217. Itsui Y, Sakamoto N, Kurosaki M, Kanazawa N, Tanabe Y. 217.  et al. 2006. Expressional screening of interferon-stimulated genes for antiviral activity against hepatitis C virus replication. J. Viral. Hepat. 13:690–700 [Google Scholar]
  218. Jiang D, Guo H, Xu C, Chang J, Gu B. 218.  et al. 2008. Identification of three interferon-inducible cellular enzymes that inhibit the replication of hepatitis C virus. J. Virol. 82:1665–78 [Google Scholar]
  219. Jiang D, Weidner JM, Qing M, Pan XB, Guo H. 219.  et al. 2010. Identification of five interferon-induced cellular proteins that inhibit West Nile virus and dengue virus infections. J. Virol. 84:8332–41 [Google Scholar]
  220. Cho H, Proll SC, Szretter KJ, Katze MG, Gale M Jr, Diamond MS. 220.  2013. Differential innate immune response programs in neuronal subtypes determine susceptibility to infection in the brain by positive-stranded RNA viruses. Nat. Med. 19:458–64 [Google Scholar]
  221. Schoggins JW, Macduff DA, Imanaka N, Gainey MD, Shrestha B. 221.  et al. 2014. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505691–95 [Google Scholar]
  222. Karki S, Li MM, Schoggins JW, Tian S, Rice CM, MacDonald MR. 222.  2012. Multiple interferon stimulated genes synergize with the zinc finger antiviral protein to mediate anti-alphavirus activity. PLoS ONE 7:e37398 [Google Scholar]
  223. de Veer MJ, Holko M, Frevel M, Walker E, Der S. 223.  et al. 2001. Functional classification of interferon-stimulated genes identified using microarrays. J. Leukoc. Biol. 69:912–20 [Google Scholar]
  224. Hilkens CM, Schlaak JF, Kerr IM. 224.  2003. Differential responses to IFN-α subtypes in human T cells and dendritic cells. J. Immunol. 171:5255–63 [Google Scholar]
  225. Hultcrantz M, Huhn MH, Wolf M, Olsson A, Jacobson S. 225.  et al. 2007. Interferons induce an antiviral state in human pancreatic islet cells. Virology 367:92–101 [Google Scholar]
  226. Lanford RE, Guerra B, Lee H, Chavez D, Brasky KM, Bigger CB. 226.  2006. Genomic response to interferon-α in chimpanzees: implications of rapid downregulation for hepatitis C kinetics. Hepatology 43:961–72 [Google Scholar]
  227. Leaman DW, Chawla-Sarkar M, Jacobs B, Vyas K, Sun Y. 227.  et al. 2003. Novel growth and death related interferon-stimulated genes (ISGs) in melanoma: greater potency of IFN-β compared with IFN-α2. J. Interferon Cytokine Res. 23:745–56 [Google Scholar]
  228. Rani MR, Shrock J, Appachi S, Rudick RA, Williams BR, Ransohoff RM. 228.  2007. Novel interferon-β-induced gene expression in peripheral blood cells. J. Leukoc. Biol. 82:1353–60 [Google Scholar]
  229. Kincaid RP, Sullivan CS. 229.  2012. Virus-encoded microRNAs: an overview and a look to the future. PLoS Pathog. 8:e1003018 [Google Scholar]
  230. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. 230.  2005. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309:1577–81 [Google Scholar]
  231. Yang CH, Yue J, Fan M, Pfeffer LM. 231.  2010. IFN induces miR-21 through a signal transducer and activator of transcription 3-dependent pathway as a suppressive negative feedback on IFN-induced apoptosis. Cancer Res. 70:8108–16 [Google Scholar]
  232. Schmitt MJ, Philippidou D, Reinsbach SE, Margue C, Wienecke-Baldacchino A. 232.  et al. 2012. Interferon-gamma-induced activation of signal transducer and activator of transcription 1 (STAT1) up-regulates the tumor suppressing microRNA-29 family in melanoma cells. Cell Commun. Signal. 10:41 [Google Scholar]
  233. O'Connell RM, Rao DS, Chaudhuri AA, Baltimore D. 233.  2010. Physiological and pathological roles for microRNAs in the immune system. Nat. Rev. Immunol. 10:111–22 [Google Scholar]
  234. Peng X, Gralinski L, Armour CD, Ferris MT, Thomas MJ. 234.  et al. 2010. Unique signatures of long noncoding RNA expression in response to virus infection and altered innate immune signaling. MBio 1:e00206–10 [Google Scholar]
  235. Rinn JL, Chang HY. 235.  2012. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81:145–66 [Google Scholar]
  236. Gomez JA, Wapinski OL, Yang YW, Bureau JF, Gopinath S. 236.  et al. 2013. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-gamma locus. Cell 152:743–54 [Google Scholar]
  237. Vigneau S, Rohrlich PS, Brahic M, Bureau JF. 237.  2003. Tmevpg1, a candidate gene for the control of Theiler's virus persistence, could be implicated in the regulation of gamma interferon. J. Virol. 77:5632–38 [Google Scholar]
  238. Nilsen TW, Graveley BR. 238.  2010. Expansion of the eukaryotic proteome by alternative splicing. Nature 463:457–63 [Google Scholar]
  239. Liu J, Shue E, Ewalt KL, Schimmel P. 239.  2004. A new gamma-interferon-inducible promoter and splice variants of an anti-angiogenic human tRNA synthetase. Nucleic Acids Res. 32:719–27 [Google Scholar]
  240. Keegan LP, Leroy A, Sproul D, O'Connell MA. 240.  2004. Adenosine deaminases acting on RNA (ADARs): RNA-editing enzymes. Genome Biol. 5:209 [Google Scholar]
  241. Araujo PR, Yoon K, Ko D, Smith AD, Qiao M. 241.  et al. 2012. Before it gets started: regulating translation at the 5′ UTR. Comp. Funct. Genomics 2012:475731 [Google Scholar]
  242. Zhao W, Blagev D, Pollack JL, Erle DJ. 242.  2011. Toward a systematic understanding of mRNA 3′ untranslated regions. Proc. Am. Thorac. Soc. 8:163–66 [Google Scholar]
  243. Platanias LC. 243.  2005. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 5:375–86 [Google Scholar]
  244. Schulz O, Pichlmair A, Rehwinkel J, Rogers NC, Scheuner D. 244.  et al. 2010. Protein kinase R contributes to immunity against specific viruses by regulating interferon mRNA integrity. Cell Host Microbe 7:354–61 [Google Scholar]
  245. Anderson P. 245.  2008. Post-transcriptional control of cytokine production. Nat. Immunol. 9:353–59 [Google Scholar]
  246. Tang X, Gao JS, Guan YJ, McLane KE, Yuan ZL. 246.  et al. 2007. Acetylation-dependent signal transduction for type I interferon receptor. Cell 131:93–105 [Google Scholar]
  247. Gack MU, Shin YC, Joo CH, Urano T, Liang C. 247.  et al. 2007. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446:916–20 [Google Scholar]
  248. Meissner F, Scheltema RA, Mollenkopf HJ, Mann M. 248.  2013. Direct proteomic quantification of the secretome of activated immune cells. Science 340:475–78 [Google Scholar]
  249. Li J, Liu K, Liu Y, Xu Y, Zhang F. 249.  et al. 2013. Exosomes mediate the cell-to-cell transmission of IFN-α-induced antiviral activity. Nat. Immunol. 14:793–803 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error