1932

Abstract

The aryl hydrocarbon receptor (AhR), for many years almost exclusively studied by the pharmacology/toxicology field for its role in mediating the toxicity of xenobiotics such as 2,3,7,8-tetrachlorodibenzodioxin (TCDD), has more recently attracted the attention of immunologists. The evolutionary conservation of this transcription factor and its widespread expression in the immune system point to important physiological functions that are slowly being unraveled. In particular, the emphasis is now shifting from the role of AhR in the xenobiotic pathway toward its mode of action in response to physiological ligands. In this article, we review the current understanding of the molecular interactions and functions of AhR in the immune system in steady state and in the presence of infection and inflammation, with a focus on barrier organs such as the skin, the gut, and the lung.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-032713-120245
2014-03-21
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/immunol/32/1/annurev-immunol-032713-120245.html?itemId=/content/journals/10.1146/annurev-immunol-032713-120245&mimeType=html&fmt=ahah

Literature Cited

  1. Mandal PK. 1.  2005. Dioxin: a review of its environmental effects and its aryl hydrocarbon receptor biology. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 175:221–30 [Google Scholar]
  2. Okey AB. 2.  2007. An aryl hydrocarbon receptor odyssey to the shores of toxicology: the Deichmann Lecture, International Congress of Toxicology-XI. Toxicol. Sci. 98:5–38 [Google Scholar]
  3. Holsapple MP, Morris DL, Wood SC, Snyder NK. 3.  1991. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced changes in immunocompetence: possible mechanisms. Annu. Rev. Pharmacol. Toxicol. 31:73–100 [Google Scholar]
  4. Gu YZ, Hogenesch JB, Bradfield CA. 4.  2000. The PAS superfamily: sensors of environmental and developmental signals. Annu. Rev. Pharmacol. Toxicol. 40:519–61 [Google Scholar]
  5. Frericks M, Meissner M, Esser C. 5.  2007. Microarray analysis of the AHR system: tissue-specific flexibility in signal and target genes. Toxicol. Appl. Pharmacol. 220:320–32 [Google Scholar]
  6. Hahn ME, Karchner SI, Shapiro MA, Perera SA. 6.  1997. Molecular evolution of two vertebrate aryl hydrocarbon (dioxin) receptors (AHR1 and AHR2) and the PAS family. Proc. Natl. Acad. Sci. USA 94:13743–48 [Google Scholar]
  7. Perdew GH. 7.  1988. Association of the Ah receptor with the 90-kDa heat shock protein. J. Biol. Chem. 263:13802–5 [Google Scholar]
  8. Denis M, Cuthill S, Wikstrom AC, Poellinger L, Gustafsson JA. 8.  1988. Association of the dioxin receptor with the Mr 90,000 heat shock protein: a structural kinship with the glucocorticoid receptor. Biochem. Biophys. Res. Commun. 155:801–7 [Google Scholar]
  9. Antonsson C, Whitelaw ML, McGuire J, Gustafsson JA, Poellinger L. 9.  1995. Distinct roles of the molecular chaperone hsp90 in modulating dioxin receptor function via the basic helix-loop-helix and PAS domains. Mol. Cell. Biol. 15:756–65 [Google Scholar]
  10. Perdew GH, Bradfield CA. 10.  1996. Mapping the 90 kDa heat shock protein binding region of the Ah receptor. Biochem. Mol. Biol. Int. 39:589–93 [Google Scholar]
  11. Carver LA, Bradfield CA. 11.  1997. Ligand-dependent interaction of the aryl hydrocarbon receptor with a novel immunophilin homolog in vivo. J. Biol. Chem. 272:11452–56 [Google Scholar]
  12. Meyer BK, Pray-Grant MG, Vanden Heuvel JP, Perdew GH. 12.  1998. Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity. Mol. Cell. Biol. 18:978–88 [Google Scholar]
  13. Meyer BK, Perdew GH. 13.  1999. Characterization of the AhR-hsp90-XAP2 core complex and the role of the immunophilin-related protein XAP2 in AhR stabilization. Biochemistry 38:8907–17 [Google Scholar]
  14. Grenert JP, Sullivan WP, Fadden P, Haystead TA, Clark J. 14.  et al. 1997. The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J. Biol. Chem. 272:23843–50 [Google Scholar]
  15. Nair SC, Toran EJ, Rimerman RA, Hjermstad S, Smithgall TE, Smith DF. 15.  1996. A pathway of multi-chaperone interactions common to diverse regulatory proteins: estrogen receptor, Fes tyrosine kinase, heat shock transcription factor Hsf1, and the aryl hydrocarbon receptor. Cell Stress Chaperones 1:237–50 [Google Scholar]
  16. Pongratz I, Mason GG, Poellinger L. 16.  1992. Dual roles of the 90-kDa heat shock protein hsp90 in modulating functional activities of the dioxin receptor. Evidence that the dioxin receptor functionally belongs to a subclass of nuclear receptors which require hsp90 both for ligand binding activity and repression of intrinsic DNA binding activity. J. Biol. Chem. 267:13728–34 [Google Scholar]
  17. McGuire J, Whitelaw ML, Pongratz I, Gustafsson JA, Poellinger L. 17.  1994. A cellular factor stimulates ligand-dependent release of hsp90 from the basic helix-loop-helix dioxin receptor. Mol. Cell. Biol. 14:2438–46 [Google Scholar]
  18. Kazlauskas A, Poellinger L, Pongratz I. 18.  1999. Evidence that the co-chaperone p23 regulates ligand responsiveness of the dioxin (aryl hydrocarbon) receptor. J. Biol. Chem. 274:13519–24 [Google Scholar]
  19. Kazlauskas A, Sundstrom S, Poellinger L, Pongratz I. 19.  2001. The hsp90 chaperone complex regulates intracellular localization of the dioxin receptor. Mol. Cell. Biol. 21:2594–607 [Google Scholar]
  20. Kazlauskas A, Poellinger L, Pongratz I. 20.  2000. The immunophilin-like protein XAP2 regulates ubiquitination and subcellular localization of the dioxin receptor. J. Biol. Chem. 275:41317–24 [Google Scholar]
  21. Lees MJ, Peet DJ, Whitelaw ML. 21.  2003. Defining the role for XAP2 in stabilization of the dioxin receptor. J. Biol. Chem. 278:35878–88 [Google Scholar]
  22. Morales JL, Perdew GH. 22.  2007. Carboxyl terminus of hsc70-interacting protein (CHIP) can remodel mature aryl hydrocarbon receptor (AhR) complexes and mediate ubiquitination of both the AhR and the 90 kDa heat-shock protein (hsp90) in vitro. Biochemistry 46:610–21 [Google Scholar]
  23. Fukunaga BN, Probst MR, Reisz-Porszasz S, Hankinson O. 23.  1995. Identification of functional domains of the aryl hydrocarbon receptor. J. Biol. Chem. 270:29270–78 [Google Scholar]
  24. Swanson HI, Yang JH. 24.  1998. The aryl hydrocarbon receptor interacts with transcription factor IIB. Mol. Pharmacol. 54:671–77 [Google Scholar]
  25. Tian Y, Ke S, Chen M, Sheng T. 25.  2003. Interactions between the aryl hydrocarbon receptor and P-TEFb. Sequential recruitment of transcription factors and differential phosphorylation of C-terminal domain of RNA polymerase II at cyp1a1 promoter. J. Biol. Chem. 278:44041–48 [Google Scholar]
  26. Wang S, Ge K, Roeder RG, Hankinson O. 26.  2004. Role of mediator in transcriptional activation by the aryl hydrocarbon receptor. J. Biol. Chem. 279:13593–600 [Google Scholar]
  27. Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA. 27.  et al. 2010. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467:430–35 [Google Scholar]
  28. Okino ST, Whitlock JP Jr. 28.  1995. Dioxin induces localized, graded changes in chromatin structure: implications for Cyp1A1 gene transcription. Mol. Cell. Biol. 15:3714–21 [Google Scholar]
  29. Wang S, Hankinson O. 29.  2002. Functional involvement of the Brahma/SWI2-related gene 1 protein in cytochrome P4501A1 transcription mediated by the aryl hydrocarbon receptor complex. J. Biol. Chem. 277:11821–27 [Google Scholar]
  30. Schnekenburger M, Peng L, Puga A. 30.  2007. HDAC1 bound to the Cyp1a1 promoter blocks histone acetylation associated with Ah receptor-mediated trans-activation. Biochim. Biophys. Acta 1769:569–78 [Google Scholar]
  31. Beischlag TV, Wang S, Rose DW, Torchia J, Reisz-Porszasz S. 31.  et al. 2002. Recruitment of the NCoA/SRC-1/p160 family of transcriptional coactivators by the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator complex. Mol. Cell. Biol. 22:4319–33 [Google Scholar]
  32. DiNatale BC, Schroeder JC, Francey LJ, Kusnadi A, Perdew GH. 32.  2010. Mechanistic insights into the events that lead to synergistic induction of interleukin 6 transcription upon activation of the aryl hydrocarbon receptor and inflammatory signaling. J. Biol. Chem. 285:24388–97 [Google Scholar]
  33. Wang Z, Zang C, Cui K, Schones DE, Barski A. 33.  et al. 2009. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138:1019–31 [Google Scholar]
  34. Garber M, Yosef N, Goren A, Raychowdhury R, Thielke A. 34.  et al. 2012. A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals. Mol. Cell 47:810–22 [Google Scholar]
  35. John S, Sabo PJ, Thurman RE, Sung MH, Biddie SC. 35.  et al. 2011. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat. Genet. 43:264–68 [Google Scholar]
  36. Biddie SC, John S, Sabo PJ, Thurman RE, Johnson TA. 36.  et al. 2011. Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol. Cell 43:145–55 [Google Scholar]
  37. Kolluri SK, Weiss C, Koff A, Gottlicher M. 37.  1999. p27Kip1 induction and inhibition of proliferation by the intracellular Ah receptor in developing thymus and hepatoma cells. Genes Dev. 13:1742–53 [Google Scholar]
  38. Marlowe JL, Knudsen ES, Schwemberger S, Puga A. 38.  2004. The aryl hydrocarbon receptor displaces p300 from E2F-dependent promoters and represses S phase-specific gene expression. J. Biol. Chem. 279:29013–22 [Google Scholar]
  39. Barhoover MA, Hall JM, Greenlee WF, Thomas RS. 39.  2010. Aryl hydrocarbon receptor regulates cell cycle progression in human breast cancer cells via a functional interaction with cyclin-dependent kinase 4. Mol. Pharmacol. 77:195–201 [Google Scholar]
  40. Ohtake F, Takeyama K, Matsumoto T, Kitagawa H, Yamamoto Y. 40.  et al. 2003. Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature 423:545–50 [Google Scholar]
  41. Ohtake F, Baba A, Takada I, Okada M, Iwasaki K. 41.  et al. 2007. Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature 446:562–66 [Google Scholar]
  42. Lahvis GP, Lindell SL, Thomas RS, McCuskey RS, Murphy C. 42.  et al. 2000. Portosystemic shunting and persistent fetal vascular structures in aryl hydrocarbon receptor-deficient mice. Proc. Natl. Acad. Sci. USA 97:10442–47 [Google Scholar]
  43. Denison MS, Nagy SR. 43.  2003. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu. Rev. Pharmacol. Toxicol. 43:309–34 [Google Scholar]
  44. Nguyen LP, Bradfield CA. 44.  2008. The search for endogenous activators of the aryl hydrocarbon receptor. Chem. Res. Toxicol. 21:102–16 [Google Scholar]
  45. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA. 45.  2010. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 185:3190–98 [Google Scholar]
  46. Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I. 46.  et al. 2011. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478:197–203 [Google Scholar]
  47. Shertzer HG, Senft AP. 47.  2000. The micronutrient indole-3-carbinol: implications for disease and chemoprevention. Drug Metab. Drug Interact. 17:159–88 [Google Scholar]
  48. Rannug A, Rannug U, Rosenkranz HS, Winqvist L, Westerholm R. 48.  et al. 1987. Certain photooxidized derivatives of tryptophan bind with very high affinity to the Ah receptor and are likely to be endogenous signal substances. J. Biol. Chem. 262:15422–27 [Google Scholar]
  49. Wincent E, Amini N, Luecke S, Glatt H, Bergman J. 49.  et al. 2009. The suggested physiologic aryl hydrocarbon receptor activator and cytochrome P4501 substrate 6-formylindolo[3,2-b]carbazole is present in humans. J. Biol. Chem. 284:2690–96 [Google Scholar]
  50. Sadek CM, Allen-Hoffmann BL. 50.  1994. Cytochrome P450IA1 is rapidly induced in normal human keratinocytes in the absence of xenobiotics. J. Biol. Chem. 269:16067–74 [Google Scholar]
  51. Mitchell KA, Elferink CJ. 51.  2009. Timing is everything: consequences of transient and sustained AhR activity. Biochem. Pharmacol. 77:947–56 [Google Scholar]
  52. Bock KW, Kohle C. 52.  2006. Ah receptor: dioxin-mediated toxic responses as hints to deregulated physiologic functions. Biochem. Pharmacol. 72:393–404 [Google Scholar]
  53. Bergander L, Wincent E, Rannug A, Foroozesh M, Alworth W, Rannug U. 53.  2004. Metabolic fate of the Ah receptor ligand 6-formylindolo[3,2-b]carbazole. Chem. Biol. Interact. 149:151–64 [Google Scholar]
  54. Ito S, Chen C, Satoh J, Yim S, Gonzalez FJ. 54.  2007. Dietary phytochemicals regulate whole-body CYP1A1 expression through an arylhydrocarbon receptor nuclear translocator-dependent system in gut. J. Clin. Investig. 117:1940–50 [Google Scholar]
  55. Miniero R, De Felip E, Ferri F, di Domenico A. 55.  2001. An overview of TCDD half-life in mammals and its correlation to body weight. Chemosphere 43:839–44 [Google Scholar]
  56. Shimada T, Fujii-Kuriyama Y. 56.  2004. Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Sci. 95:1–6 [Google Scholar]
  57. Wincent E, Bengtsson J, Mohammadi Bardbori A, Alsberg T, Luecke S. 57.  et al. 2012. Inhibition of cytochrome P4501-dependent clearance of the endogenous agonist FICZ as a mechanism for activation of the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. USA 109:4479–84 [Google Scholar]
  58. Poland A, Palen D, Glover E. 58.  1994. Analysis of the four alleles of the murine aryl hydrocarbon receptor. Mol. Pharmacol. 46:915–21 [Google Scholar]
  59. Moriguchi T, Motohashi H, Hosoya T, Nakajima O, Takahashi S. 59.  et al. 2003. Distinct response to dioxin in an arylhydrocarbon receptor (AHR)-humanized mouse. Proc. Natl. Acad. Sci. USA 100:5652–57 [Google Scholar]
  60. Duarte JH, Di Meglio P, Hirota K, Ahlfors H, Stockinger B. 60.  2013. Differential influences of the aryl hydrocarbon receptor on Th17 mediated responses in vitro and in vivo. PLoS ONE 8:e79819 [Google Scholar]
  61. Ramadoss P, Marcus C, Perdew GH. 61.  2005. Role of the aryl hydrocarbon receptor in drug metabolism. Expert Opin. Drug Metab. Toxicol. 1:9–21 [Google Scholar]
  62. Cunningham M, Gilkeson G. 62.  2011. Estrogen receptors in immunity and autoimmunity. Clin. Rev. Allergy Immunol. 40:66–73 [Google Scholar]
  63. Mimura J, Ema M, Sogawa K, Fujii-Kuriyama Y. 63.  1999. Identification of a novel mechanism of regulation of Ah (dioxin) receptor function. Genes Dev. 13:20–25 [Google Scholar]
  64. Davarinos NA, Pollenz RS. 64.  1999. Aryl hydrocarbon receptor imported into the nucleus following ligand binding is rapidly degraded via the cytosplasmic proteasome following nuclear export. J. Biol. Chem. 274:28708–15 [Google Scholar]
  65. Tijet N, Boutros PC, Moffat ID, Okey AB, Tuomisto J, Pohjanvirta R. 65.  2006. Aryl hydrocarbon receptor regulates distinct dioxin-dependent and dioxin-independent gene batteries. Mol. Pharmacol. 69:140–53 [Google Scholar]
  66. Ahmed S, Valen E, Sandelin A, Matthews J. 66.  2009. Dioxin increases the interaction between aryl hydrocarbon receptor and estrogen receptor alpha at human promoters. Toxicol. Sci. 111:254–66 [Google Scholar]
  67. Pansoy A, Ahmed S, Valen E, Sandelin A, Matthews J. 67.  2010. 3-methylcholanthrene induces differential recruitment of aryl hydrocarbon receptor to human promoters. Toxicol. Sci. 117:90–100 [Google Scholar]
  68. Dere E, Lo R, Celius T, Matthews J, Zacharewski TR. 68.  2011. Integration of genome-wide computation DRE search, AhR ChIP-chip and gene expression analyses of TCDD-elicited responses in the mouse liver. BMC Genomics 12:365 [Google Scholar]
  69. De Abrew KN, Kaminski NE, Thomas RS. 69.  2010. An integrated genomic analysis of aryl hydrocarbon receptor-mediated inhibition of B-cell differentiation. Toxicol. Sci. 118:454–69 [Google Scholar]
  70. Marlowe J, Puga A. 70.  2010. Novel AHR interactions. Comprehensive Toxicology CA McQueen 93–115 Oxford, UK: Elsevier [Google Scholar]
  71. Barker CW, Fagan JB, Pasco DS. 71.  1992. Interleukin-1β suppresses the induction of P4501A1 and P4501A2 mRNAs in isolated hepatocytes. J. Biol. Chem. 267:8050–55 [Google Scholar]
  72. Tian Y, Ke S, Denison MS, Rabson AB, Gallo MA. 72.  1999. Ah receptor and NF-κB interactions, a potential mechanism for dioxin toxicity. J. Biol. Chem. 274:510–15 [Google Scholar]
  73. Baba T, Mimura J, Gradin K, Kuroiwa A, Watanabe T. 73.  et al. 2001. Structure and expression of the Ah receptor repressor gene. J. Biol. Chem. 276:33101–10 [Google Scholar]
  74. Kimura A, Naka T, Nakahama T, Chinen I, Masuda K. 74.  et al. 2009. Aryl hydrocarbon receptor in combination with Stat1 regulates LPS-induced inflammatory responses. J. Exp. Med. 206:2027–35 [Google Scholar]
  75. Kimura A, Naka T, Nohara K, Fujii-Kuriyama Y, Kishimoto T. 75.  2008. Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc. Natl. Acad. Sci. USA 105:9721–26 [Google Scholar]
  76. Vogel CF, Sciullo E, Li W, Wong P, Lazennec G, Matsumura F. 76.  2007. RelB, a new partner of aryl hydrocarbon receptor-mediated transcription. Mol. Endocrinol. 21:2941–55 [Google Scholar]
  77. Thatcher TH, Maggirwar SB, Baglole CJ, Lakatos HF, Gasiewicz TA. 77.  et al. 2007. Aryl hydrocarbon receptor-deficient mice develop heightened inflammatory responses to cigarette smoke and endotoxin associated with rapid loss of the nuclear factor-κB component RelB. Am. J. Pathol. 170:855–64 [Google Scholar]
  78. Baglole CJ, Maggirwar SB, Gasiewicz TA, Thatcher TH, Phipps RP, Sime PJ. 78.  2008. The aryl hydrocarbon receptor attenuates tobacco smoke-induced cyclooxygenase-2 and prostaglandin production in lung fibroblasts through regulation of the NF-κB family member RelB. J. Biol. Chem. 283:28944–57 [Google Scholar]
  79. Hindinger C, Hinton DR, Kirwin SJ, Atkinson RD, Burnett ME. 79.  et al. 2006. Liver X receptor activation decreases the severity of experimental autoimmune encephalomyelitis. J. Neurosci. Res. 84:1225–34 [Google Scholar]
  80. Cui G, Qin X, Wu L, Zhang Y, Sheng X. 80.  et al. 2011. Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation. J. Clin. Investig. 121:658–70 [Google Scholar]
  81. Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L. 81.  et al. 2008. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106–9 [Google Scholar]
  82. Qiu J, Heller JJ, Guo X, Chen ZM, Fish K. 82.  et al. 2012. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36:92–104 [Google Scholar]
  83. Yeager RL, Reisman SA, Aleksunes LM, Klaassen CD. 83.  2009. Introducing the “TCDD-inducible AhR-Nrf2 gene battery.”. Toxicol. Sci. 111:238–46 [Google Scholar]
  84. Miao W, Hu L, Scrivens PJ, Batist G. 84.  2005. Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: direct cross-talk between phase I and II drug-metabolizing enzymes. J. Biol. Chem. 280:20340–48 [Google Scholar]
  85. Shin S, Wakabayashi N, Misra V, Biswal S, Lee GH. 85.  et al. 2007. NRF2 modulates aryl hydrocarbon receptor signaling: influence on adipogenesis. Mol. Cell. Biol. 27:7188–97 [Google Scholar]
  86. Wang L, He X, Szklarz GD, Bi Y, Rojanasakul Y, Ma Q. 86.  2013. The aryl hydrocarbon receptor interacts with nuclear factor erythroid 2-related factor 2 to mediate induction of NAD(P)H:quinoneoxidoreductase 1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Arch. Biochem. Biophys 537:31–38 [Google Scholar]
  87. Bunger MK, Glover E, Moran SM, Walisser JA, Lahvis GP. 87.  et al. 2008. Abnormal liver development and resistance to 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity in mice carrying a mutation in the DNA-binding domain of the aryl hydrocarbon receptor. Toxicol. Sci. 106:83–92 [Google Scholar]
  88. Veldhoen M, Hirota K, Christensen J, O'Garra A, Stockinger B. 88.  2009. Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J. Exp. Med. 206:43–49 [Google Scholar]
  89. Gandhi R, Kumar D, Burns EJ, Nadeau M, Dake B. 89.  et al. 2010. Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3+ regulatory T cells. Nat. Immunol. 11:846–53 [Google Scholar]
  90. Funatake CJ, Ao K, Suzuki T, Murai H, Yamamoto M. 90.  et al. 2009. Expression of constitutively-active aryl hydrocarbon receptor in T-cells enhances the down-regulation of CD62L, but does not alter expression of CD25 or suppress the allogeneic CTL response. J. Immunotoxicol. 6:194–203 [Google Scholar]
  91. Saraiva M, O'Garra A. 91.  2010. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 10:170–81 [Google Scholar]
  92. Apetoh L, Quintana FJ, Pot C, Joller N, Xiao S. 92.  et al. 2010. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat. Immunol. 11:854–61 [Google Scholar]
  93. Veldhoen M. 93.  2010. A toxin-sensitive receptor able to reduce immunopathology. Nat. Immunol. 11:779–81 [Google Scholar]
  94. Heilig JS, Tonegawa S. 94.  1986. Diversity of murine gamma genes and expression in fetal and adult T lymphocytes. Nature 322:836–40 [Google Scholar]
  95. Garman RD, Doherty PJ, Raulet DH. 95.  1986. Diversity, rearrangement, and expression of murine T cell gamma genes. Cell 45:733–42 [Google Scholar]
  96. Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M. 96.  2009. Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals. Immunity 31:321–30 [Google Scholar]
  97. Li Y, Innocentin S, Withers DR, Roberts NA, Gallagher AR. 97.  et al. 2011. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147:629–40 [Google Scholar]
  98. Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD. 98.  et al. 2012. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol. 13:144–51 [Google Scholar]
  99. Kiss EA, Vonarbourg C, Kopfmann S, Hobeika E, Finke D. 99.  et al. 2011. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334:1561–65 [Google Scholar]
  100. Kerkvliet NI. 100.  2002. Recent advances in understanding the mechanisms of TCDD immunotoxicity. Int. Immunopharmacol. 2:277–91 [Google Scholar]
  101. Sibilano R, Frossi B, Calvaruso M, Danelli L, Betto E. 101.  et al. 2012. The aryl hydrocarbon receptor modulates acute and late mast cell responses. J. Immunol. 189:120–27 [Google Scholar]
  102. Zhou Y, Tung HY, Tsai YM, Hsu SC, Chang HW. 102.  et al. 2013. Aryl hydrocarbon receptor controls murine mast cell homeostasis. Blood 121:3195–204 [Google Scholar]
  103. Sun YV, Boverhof DR, Burgoon LD, Fielden MR, Zacharewski TR. 103.  2004. Comparative analysis of dioxin response elements in human, mouse and rat genomic sequences. Nucleic Acids Res. 32:4512–23 [Google Scholar]
  104. Neri T, Merico V, Garagna S, Redi CA, Zuccotti M. 104.  2008. Expression of phase I and phase II genes in mouse embryonic stem cells cultured in the presence of 2,3,7,8-tetrachlorodibenzo-para-dioxin. Biochim. Biophys. Acta 1780:826–36 [Google Scholar]
  105. Boitano AE, Wang J, Romeo R, Bouchez LC, Parker AE. 105.  et al. 2010. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329:1345–48 [Google Scholar]
  106. Stockinger B, Hirota K, Duarte J, Veldhoen M. 106.  2011. External influences on the immune system via activation of the aryl hydrocarbon receptor. Semin. Immunol. 23:99–105 [Google Scholar]
  107. Mimura J, Yamashita K, Nakamura K, Morita M, Takagi TN. 107.  et al. 1997. Loss of teratogenic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice lacking the Ah (dioxin) receptor. Genes Cells 2:645–54 [Google Scholar]
  108. Schmidt JV, Su GH, Reddy JK, Simon MC, Bradfield CA. 108.  1996. Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proc. Natl. Acad. Sci. USA 93:6731–36 [Google Scholar]
  109. Fernandez-Salguero P, Pineau T, Hilbert DM, McPhail T, Lee SS. 109.  et al. 1995. Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science 268:722–26 [Google Scholar]
  110. Fernandez-Salguero PM, Ward JM, Sundberg JP, Gonzalez FJ. 110.  1997. Lesions of aryl-hydrocarbon receptor-deficient mice. Vet. Pathol. 34:605–14 [Google Scholar]
  111. McMillan BJ, Bradfield CA. 111.  2007. The aryl hydrocarbon receptor sans xenobiotics: endogenous function in genetic model systems. Mol. Pharmacol. 72:487–98 [Google Scholar]
  112. Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H. 112.  2009. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH-17, TH1 and TH2 cells. Nat. Immunol. 10:864–71 [Google Scholar]
  113. Zenewicz LA, Flavell RA. 113.  2011. Recent advances in IL-22 biology. Int. Immunol. 23:159–63 [Google Scholar]
  114. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF. 114.  et al. 2008. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71 [Google Scholar]
  115. Di Meglio P, Perera GK, Nestle FO. 115.  2011. The multitasking organ: recent insights into skin immune function. Immunity 35:857–69 [Google Scholar]
  116. Jux B, Kadow S, Esser C. 116.  2009. Langerhans cell maturation and contact hypersensitivity are impaired in aryl hydrocarbon receptor-null mice. J. Immunol. 182:6709–17 [Google Scholar]
  117. Platzer B, Richter S, Kneidinger D, Waltenberger D, Woisetschlager M, Strobl H. 117.  2009. Aryl hydrocarbon receptor activation inhibits in vitro differentiation of human monocytes and Langerhans dendritic cells. J. Immunol. 183:66–74 [Google Scholar]
  118. Kadow S, Jux B, Zahner SP, Wingerath B, Chmill S. 118.  et al. 2011. Aryl hydrocarbon receptor is critical for homeostasis of invariant γδ T cells in the murine epidermis. J. Immunol. 187:3104–10 [Google Scholar]
  119. Panteleyev AA, Bickers DR. 119.  2006. Dioxin-induced chloracne—reconstructing the cellular and molecular mechanisms of a classic environmental disease. Exp. Dermatol. 15:705–30 [Google Scholar]
  120. Wanner R, Panteleyev A, Henz BM, Rosenbach T. 120.  1996. Retinoic acid affects the expression rate of the differentiation-related genes aryl hydrocarbon receptor, ARNT and keratin 4 in proliferative keratinocytes only. Biochim. Biophys. Acta1317105–11 [Google Scholar]
  121. Osborne R, Greenlee WF. 121.  1985. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) enhances terminal differentiation of cultured human epidermal cells. Toxicol. Appl. Pharmacol. 77:434–43 [Google Scholar]
  122. Sutter CH, Yin H, Li Y, Mammen JS, Bodreddigari S. 122.  et al. 2009. EGF receptor signaling blocks aryl hydrocarbon receptor-mediated transcription and cell differentiation in human epidermal keratinocytes. Proc. Natl. Acad. Sci. USA 106:4266–71 [Google Scholar]
  123. Loertscher JA, Sattler CA, Allen-Hoffmann BL. 123.  2001. 2,3,7,8-Tetrachlorodibenzo-p-dioxin alters the differentiation pattern of human keratinocytes in organotypic culture. Toxicol. Appl. Pharmacol. 175:121–29 [Google Scholar]
  124. Sutter CH, Bodreddigari S, Campion C, Wible RS, Sutter TR. 124.  2011. 2,3,7,8-Tetrachlorodibenzo-p-dioxin increases the expression of genes in the human epidermal differentiation complex and accelerates epidermal barrier formation. Toxicol. Sci. 124:128–37 [Google Scholar]
  125. Kennedy LH, Sutter CH, Leon Carrion S, Tran QT, Bodreddigari S. 125.  et al. 2013. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-mediated production of reactive oxygen species is an essential step in the mechanism of action to accelerate human keratinocyte differentiation. Toxicol. Sci. 132:235–49 [Google Scholar]
  126. van den Bogaard EH, Bergboer JG, Vonk-Bergers M, van Vlijmen-Willems IM, Hato SV. 126.  et al. 2013. Coal tar induces AHR-dependent skin barrier repair in atopic dermatitis. J. Clin. Investig. 123:917–27 [Google Scholar]
  127. Tsuji G, Takahara M, Uchi H, Matsuda T, Chiba T. 127.  et al. 2012. Identification of ketoconazole as an AhR-Nrf2 activator in cultured human keratinocytes: the basis of its anti-inflammatory effect. J. Investig. Dermatol. 132:59–68 [Google Scholar]
  128. Tauchi M, Hida A, Negishi T, Katsuoka F, Noda S. 128.  et al. 2005. Constitutive expression of aryl hydrocarbon receptor in keratinocytes causes inflammatory skin lesions. Mol. Cell. Biol. 25:9360–68 [Google Scholar]
  129. Puga A, Xia Y, Elferink C. 129.  2002. Role of the aryl hydrocarbon receptor in cell cycle regulation. Chem.-Biol. Interact. 141:117–30 [Google Scholar]
  130. Abdelrahim M, Smith R 3rd, Safe S. 130.  2003. Aryl hydrocarbon receptor gene silencing with small inhibitory RNA differentially modulates Ah-responsiveness in MCF-7 and HepG2 cancer cells. Mol. Pharmacol. 63:1373–81 [Google Scholar]
  131. Kalmes M, Hennen J, Clemens J, Blomeke B. 131.  2011. Impact of aryl hydrocarbon receptor (AhR) knockdown on cell cycle progression in human HaCaT keratinocytes. Biol. Chem. 392:643–51 [Google Scholar]
  132. Rannug A, Fritsche E. 132.  2006. The aryl hydrocarbon receptor and light. Biol. Chem. 387:1149–57 [Google Scholar]
  133. Ma Q, Whitlock JP Jr. 133.  1996. The aromatic hydrocarbon receptor modulates the Hepa 1c1c7 cell cycle and differentiated state independently of dioxin. Mol. Cell. Biol. 16:2144–50 [Google Scholar]
  134. Chang CY, Puga A. 134.  1998. Constitutive activation of the aromatic hydrocarbon receptor. Mol. Cell. Biol. 18:525–35 [Google Scholar]
  135. Chang X, Fan Y, Karyala S, Schwemberger S, Tomlinson CR. 135.  et al. 2007. Ligand-independent regulation of transforming growth factor β1 expression and cell cycle progression by the aryl hydrocarbon receptor. Mol. Cell. Biol. 27:6127–39 [Google Scholar]
  136. Shimba S, Komiyama K, Moro I, Tezuka M. 136.  2002. Overexpression of the aryl hydrocarbon receptor (AhR) accelerates the cell proliferation of A549 cells. J. Biochem. 132:795–802 [Google Scholar]
  137. Kalmes M, Neumeyer A, Rio P, Hanenberg H, Fritsche E, Blomeke B. 137.  2006. Impact of the arylhydrocarbon receptor on eugenol- and isoeugenol-induced cell cycle arrest in human immortalized keratinocytes (HaCaT). Biol. Chem. 387:1201–7 [Google Scholar]
  138. Elferink CJ, Ge NL, Levine A. 138.  2001. Maximal aryl hydrocarbon receptor activity depends on an interaction with the retinoblastoma protein. Mol. Pharmacol. 59:664–73 [Google Scholar]
  139. Carvajal-Gonzalez JM, Roman AC, Cerezo-Guisado MI, Rico-Leo EM, Martin-Partido G, Fernandez-Salguero PM. 139.  2009. Loss of dioxin-receptor expression accelerates wound healing in vivo by a mechanism involving TGFβ. J. Cell Sci. 122:1823–33 [Google Scholar]
  140. Rey-Barroso J, Colo GP, Alvarez-Barrientos A, Redondo-Munoz J, Carvajal-Gonzalez JM. 140.  et al. 2013. The dioxin receptor controls β1 integrin activation in fibroblasts through a Cbp-Csk-Src pathway. Cell Signal. 25:848–59 [Google Scholar]
  141. Havran WL, Jameson JM. 141.  2010. Epidermal T cells and wound healing. J. Immunol. 184:5423–28 [Google Scholar]
  142. Kim SH, Henry EC, Kim DK, Kim YH, Shin KJ. 142.  et al. 2006. Novel compound 2-methyl-2H-pyrazole-3-carboxylic acid (2-methyl-4-o-tolylazo-phenyl)-amide (CH-223191) prevents 2,3,7,8-TCDD-induced toxicity by antagonizing the aryl hydrocarbon receptor. Mol. Pharmacol. 69:1871–78 [Google Scholar]
  143. Nakahama T, Hanieh H, Nguyen NT, Chinen I, Ripley B. 143.  et al. 2013. Aryl hydrocarbon receptor-mediated induction of the microRNA-132/212 cluster promotes interleukin-17-producing T-helper cell differentiation. Proc. Natl. Acad. Sci. USA 110:11964–69 [Google Scholar]
  144. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP. 144.  et al. 2013. Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol. 13:145–49 [Google Scholar]
  145. Cua DJ, Tato CM. 145.  2010. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 10:479–89 [Google Scholar]
  146. Qiu J, Guo X, Chen ZE, He L, Sonnenberg GF. 146.  et al. 2013. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity 39:386–99 [Google Scholar]
  147. Hayashi S, Watanabe J, Nakachi K, Eguchi H, Gotoh O, Kawajiri K. 147.  1994. Interindividual difference in expression of human Ah receptor and related P450 genes. Carcinogenesis 15:801–6 [Google Scholar]
  148. Sun JL, Zeng H, Ni HG. 148.  2013. Halogenated polycyclic aromatic hydrocarbons in the environment. Chemosphere 90:1751–59 [Google Scholar]
  149. Ohura T, Sawada K, Amagai T, Shinomiya M. 149.  2009. Discovery of novel halogenated polycyclic aromatic hydrocarbons in urban particulate matters: occurrence, photostability, and AhR activity. Environ. Sci. Technol. 43:2269–75 [Google Scholar]
  150. Choudhary D, Jansson I, Schenkman JB, Sarfarazi M, Stoilov I. 150.  2003. Comparative expression profiling of 40 mouse cytochrome P450 genes in embryonic and adult tissues. Arch. Biochem. Biophys. 414:91–100 [Google Scholar]
  151. Song J, Clagett-Dame M, Peterson RE, Hahn ME, Westler WM. 151.  et al. 2002. A ligand for the aryl hydrocarbon receptor isolated from lung. Proc. Natl. Acad. Sci. USA 99:14694–99 [Google Scholar]
  152. Homey B, Zlotnik A. 152.  1999. Chemokines in allergy. Curr. Opin. Immunol. 11:626–34 [Google Scholar]
  153. Wong PS, Vogel CF, Kokosinski K, Matsumura F. 153.  2010. Arylhydrocarbon receptor activation in NCI-H441 cells and C57BL/6 mice: possible mechanisms for lung dysfunction. Am. J. Respir. Cell Mol. Biol. 42:210–17 [Google Scholar]
  154. Chiba T, Uchi H, Tsuji G, Gondo H, Moroi Y, Furue M. 154.  2011. Arylhydrocarbon receptor (AhR) activation in airway epithelial cells induces MUC5AC via reactive oxygen species (ROS) production. Pulm. Pharmacol. Ther. 24:133–40 [Google Scholar]
  155. Head JL, Lawrence BP. 155.  2009. The aryl hydrocarbon receptor is a modulator of anti-viral immunity. Biochem. Pharmacol. 77:642–53 [Google Scholar]
  156. Warren TK, Mitchell KA, Lawrence BP. 156.  2000. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suppresses the humoral and cell-mediated immune responses to influenza A virus without affecting cytolytic activity in the lung. Toxicol. Sci. 56:114–23 [Google Scholar]
  157. Jin GB, Moore AJ, Head JL, Neumiller JJ, Lawrence BP. 157.  2010. Aryl hydrocarbon receptor activation reduces dendritic cell function during influenza virus infection. Toxicol. Sci. 116:514–22 [Google Scholar]
  158. Vogel CF, Goth SR, Dong B, Pessah IN, Matsumura F. 158.  2008. Aryl hydrocarbon receptor signaling mediates expression of indoleamine 2,3-dioxygenase. Biochem. Biophys. Res. Commun. 375:331–35 [Google Scholar]
  159. Nguyen NT, Kimura A, Nakahama T, Chinen I, Masuda K. 159.  et al. 2010. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc. Natl. Acad. Sci. USA 107:19961–66 [Google Scholar]
  160. Teske S, Bohn AA, Regal JF, Neumiller JJ, Lawrence BP. 160.  2005. Activation of the aryl hydrocarbon receptor increases pulmonary neutrophilia and diminishes host resistance to influenza A virus. Am. J. Physiol. Lung Cell Mol. Physiol. 289:L111–24 [Google Scholar]
  161. Wheeler JL, Martin KC, Lawrence BP. 161.  2013. Novel cellular targets of AhR underlie alterations in neutrophilic inflammation and inducible nitric oxide synthase expression during influenza virus infection. J. Immunol. 190:659–68 [Google Scholar]
  162. Jeong KT, Hwang SJ, Oh GS, Park JH. 162.  2012. FICZ, a tryptophan photoproduct, suppresses pulmonary eosinophilia and Th2-type cytokine production in a mouse model of ovalbumin-induced allergic asthma. Int. Immunopharmacol. 13:377–85 [Google Scholar]
  163. Tesmer LA, Lundy SK, Sarkar S, Fox DA. 163.  2008. Th17 cells in human disease. Immunol. Rev. 223:87–113 [Google Scholar]
  164. Molet S, Hamid Q, Davoine F, Nutku E, Taha R. 164.  et al. 2001. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J. Allergy Clin. Immunol. 108:430–38 [Google Scholar]
/content/journals/10.1146/annurev-immunol-032713-120245
Loading
/content/journals/10.1146/annurev-immunol-032713-120245
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error