The cytokine TGF-β plays an integral role in regulating immune responses. TGF-β has pleiotropic effects on adaptive immunity, especially in the regulation of effector and regulatory CD4+ T cell responses. Many immune and nonimmune cells can produce TGF-β, but it is always produced as an inactive complex that must be activated to exert functional effects. Thus, activation of latent TGF-β provides a crucial layer of regulation that controls TGF-β function. In this review, we highlight some of the important functional roles for TGF-β in immunity, focusing on its context-specific roles in either dampening or promoting T cell responses. We also describe how activation of TGF-β controls its function in the immune system, with a focus on the key roles for members of the integrin family in this process.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Gleizes PE, Munger JS, Nunes I, Harpel JG, Mazzieri R. 1.  et al. 1997. TGF-β latency: biological significance and mechanisms of activation. Stem Cells 15:190–97 [Google Scholar]
  2. Munger JS, Harpel JG, Gleizes PE, Mazzieri R, Nunes I, Rifkin DB. 2.  1997. Latent transforming growth factor-β: structural features and mechanisms of activation. Kidney Int. 51:1376–82 [Google Scholar]
  3. Pesu M, Watford WT, Wei L, Xu L, Fuss I. 3.  et al. 2008. T-cell-expressed proprotein convertase furin is essential for maintenance of peripheral immune tolerance. Nature 455:246–50 [Google Scholar]
  4. Shi M, Zhu J, Wang R, Chen X, Mi L. 4.  et al. 2011. Latent TGF-β structure and activation. Nature 474:343–49 [Google Scholar]
  5. Annes JP, Munger JS, Rifkin DB. 5.  2003. Making sense of latent TGFβ activation. J. Cell Sci. 116:217–24 [Google Scholar]
  6. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. 6.  2006. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol. 24:99–146 [Google Scholar]
  7. Kulkarni AB, Huh C-G, Becker D, Geiser A, Lyght M. 7.  et al. 1993. Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl. Acad. Sci. USA 90:770–74 [Google Scholar]
  8. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ. 8.  et al. 1992. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359:693–99 [Google Scholar]
  9. Kang JS, Liu C, Derynck R. 9.  2009. New regulatory mechanisms of TGF-β receptor function. Trends Cell Biol. 19:385–94 [Google Scholar]
  10. Shi YG, Massagué J. 10.  2003. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113:685–700 [Google Scholar]
  11. Daly AC, Randall RA, Hill CS. 11.  2008. Transforming growth factor β-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth. Mol. Cell. Biol. 28:6889–902 [Google Scholar]
  12. Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S. 12.  et al. 2012. Induction and molecular signature of pathogenic TH17 cells. Nat. Immunol. 13:991–99 [Google Scholar]
  13. Mu YB, Gudey SK, Landstrom M. 13.  2012. Non-Smad signaling pathways. Cell Tissue Res. 347:11–20 [Google Scholar]
  14. Hayashi H, Abdollah S, Qiu YB, Cai JX, Xu YY. 14.  et al. 1997. The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling. Cell 89:1165–73 [Google Scholar]
  15. Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL. 15.  et al. 1997. Identification of Smad7, a TGF β-inducible antagonist of TGF-β signalling. Nature 389:631–35 [Google Scholar]
  16. Shi W, Sun C, He B, Xiong W, Shi X. 16.  et al. 2004. GADD34-PP1c recruited by Smad7 dephosphorylates TGFβ type 1 receptor. J. Cell Biol. 164:291–300 [Google Scholar]
  17. Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu HT. 17.  et al. 2000. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation. Mol. Cell 6:1365–75 [Google Scholar]
  18. Massagué J. 18.  2012. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 13:616–30 [Google Scholar]
  19. Letterio JJ, Geiser AG, Kulkarni AB, Dang H, Kong L. 19.  et al. 1996. Autoimmunity associated with TGF-beta1-deficiency in mice is dependent on MHC class II antigen expression. J. Clin. Investig. 98:2109–19 [Google Scholar]
  20. Kobayashi S, Yoshida K, Ward JM, Letterio JJ, Longenecker G. 20.  et al. 1999. β2-microglobulin-deficient background ameliorates lethal phenotype of the TGF-β1 null mouse. J. Immunol. 163:4013–19 [Google Scholar]
  21. Gorelik L, Flavell RA. 21.  2000. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12:171–81 [Google Scholar]
  22. Lucas PJ, Kim S-J, Melby SJ, Gress RE. 22.  2000. Disruption of T cell homeostasis in mice expressing a T cell–specific dominant negative transforming growth factor β II receptor. J. Exp. Med. 191:1187–96 [Google Scholar]
  23. Li MO, Sanjabi S, Flavell RA. 23.  2006. Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 25:455–71 [Google Scholar]
  24. Marie JC, Liggitt D, Rudensky AY. 24.  2006. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-β receptor. Immunity 25:441–54 [Google Scholar]
  25. Liu Y, Zhang P, Li J, Kulkarni AB, Perruche S, Chen W. 25.  2008. A critical function for TGF-β signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat. Immunol. 9:632–40 [Google Scholar]
  26. Zhang N, Bevan MJ. 26.  2012. TGF-β signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation. Nat. Immunol. 13:667–73 [Google Scholar]
  27. Gu A-D, Wang Y, Lin L, Zhang SS, Wan YY. 27.  2012. Requirements of transcription factor Smad-dependent and -independent TGF-β signaling to control discrete T-cell functions. Proc. Natl. Acad. Sci. USA 109:905–10 [Google Scholar]
  28. Takimoto T, Wakabayashi Y, Sekiya T, Inoue N, Morita R. 28.  et al. 2010. Smad2 and Smad3 are redundantly essential for the TGF-β-mediated regulation of regulatory T plasticity and Th1 development. J. Immunol. 185:842–55 [Google Scholar]
  29. Kim BG, Li CL, Qiao WH, Mamura M, Kasperczak B. 29.  et al. 2006. Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 441:1015–19 [Google Scholar]
  30. Nakao A, Miike S, Hatano M, Okumura K, Tokuhisa T. 30.  et al. 2000. Blockade of transforming growth factor β/Smad signaling in T cells by overexpression of Smad7 enhances antigen-induced airway inflammation and airway reactivity. J. Exp. Med. 192:151–58 [Google Scholar]
  31. Kleiter I, Song J, Lukas D, Hasan M, Neumann B. 31.  et al. 2010. Smad7 in T cells drives T helper 1 responses in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain 133:1067–81 [Google Scholar]
  32. Monteleone G, Kumberova A, Croft NM, McKenzie C, Steer HW, MacDonald TT. 32.  2001. Blocking Smad7 restores TGF-β1 signaling in chronic inflammatory bowel disease. J. Clin. Investig. 108:601–9 [Google Scholar]
  33. Fantini MC, Rio A, Fina D, Caruso R, Sarra M. 33.  et al. 2009. Smad7 controls resistance of colitogenic T cells to regulatory T cell-mediated suppression. Gastroenterology 136:1308–16 [Google Scholar]
  34. Kehrl JH, Wakefield LM, Roberts AB, Jakowlew S, Alvarez-Mon M. 34.  et al. 1986. Production of transforming growth factor β by human T lymphocytes and its potential role in the regulation of T cell growth. J. Exp. Med. 163:1037–50 [Google Scholar]
  35. Sung JL, Lin JT, Gorham JD. 35.  2003. CD28 co-stimulation regulates the effect of transforming growth factor-β1 on the proliferation of naive CD4+ T cells. Int. Immunopharmacol. 3:233–45 [Google Scholar]
  36. Sanjabi S, Mosaheb MM, Flavell RA. 36.  2009. Opposing effects of TGF-β and IL-15 cytokines control the number of short-lived effector CD8+ T cells. Immunity 31:131–44 [Google Scholar]
  37. Tinoco R, Alcalde V, Yang Y, Sauer K, Zuniga EI. 37.  2009. Cell-intrinsic transforming growth factor-β signaling mediates virus-specific CD8+ T cell deletion and viral persistence in vivo. Immunity 31:145–57 [Google Scholar]
  38. Cerwenka A, Kovar H, Majdic O, Holter W. 38.  1996. Fas- and activation-induced apoptosis are reduced in human T cells preactivated in the presence of TGF-β. J. Immunol. 156:459–64 [Google Scholar]
  39. Ouyang W, Oh SA, Ma Q, Bivona MR, Zhu J, Li MO. 39.  2013. TGF-β cytokine signaling promotes CD8+ T cell development and low-affinity CD4+ T cell homeostasis by regulation of interleukin-7 receptor α expression. Immunity 39:335–46 [Google Scholar]
  40. Kim SV, Xiang WV, Kwak C, Yang Y, Lin XW. 40.  et al. 2013. GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science 340:1456–59 [Google Scholar]
  41. O'Garra A, Gabrysova L, Spits H. 41.  2011. Quantitative events determine the differentiation and function of helper T cells. Nat. Immunol. 12:288–94 [Google Scholar]
  42. Schoenborn JR, Wilson CB. 42.  2007. Regulation of interferon-γ during innate and adaptive immune responses. Adv. Immunol. 96:41–101 [Google Scholar]
  43. Gorelik L, Constant S, Flavell RA. 43.  2002. Mechanism of transforming growth factor β-induced inhibition of T helper type 1 differentiation. J. Exp. Med. 195:1499–505 [Google Scholar]
  44. Gorham JD, Guler ML, Fenoglio D, Gubler U, Murphy KM. 44.  1998. Low dose TGF-β attenuates IL-12 responsiveness in murine Th cells. J. Immunol. 161:1664–70 [Google Scholar]
  45. Laouar Y, Sutterwala FS, Gorelik L, Flavell RA. 45.  2005. Transforming growth factor-β controls T helper type 1 cell development through regulation of natural killer cell interferon-γ. Nat. Immunol. 6:600–7 [Google Scholar]
  46. Smeltz RB, Chen J, Shevach EM. 46.  2005. Transforming growth factor-β1 enhances the interferon-γ-dependent, interleukin-12-independent pathway of T helper 1 cell differentiation. Immunology 114:484–92 [Google Scholar]
  47. Tofukuji S, Kuwahara M, Suzuki J, Ohara O, Nakayama T, Yamashita M. 47.  2012. Identification of a new pathway for Th1 cell development induced by cooperative stimulation with IL-4 and TGF-β. J. Immunol. 188:4846–57 [Google Scholar]
  48. Gorelik L, Fields PE, Flavell RA. 48.  2000. Cutting edge: TGF-β inhibits Th type 2 development through inhibition of GATA-3 expression. J. Immunol. 165:4773–77 [Google Scholar]
  49. Heath VL, Murphy EE, Crain C, Tomlinson MG, O'Garra A. 49.  2000. TGF-β1 down-regulates Th2 development and results in decreased IL-4-induced STAT6 activation and GATA-3 expression. Eur. J. Immunol. 30:2639–49 [Google Scholar]
  50. Kuwahara M, Yamashita M, Shinoda K, Tofukuji S, Onodera A. 50.  et al. 2012. The transcription factor Sox4 is a downstream target of signaling by the cytokine TGF-β and suppresses TH2 differentiation. Nat. Immunol. 13:778–86 [Google Scholar]
  51. Hansen G, McIntire JJ, Yeung VP, Berry G, Thorbecke GJ. 51.  et al. 2000. CD4+ T helper cells engineered to produce latent TGF-β1 reverse allergen-induced airway hyperreactivity and inflammation. J. Clin. Investig. 105:61–70 [Google Scholar]
  52. Josefowicz SZ, Lu L-F, Rudensky AY. 52.  2012. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30:531–64 [Google Scholar]
  53. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB. 53.  et al. 2001. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27:68–73 [Google Scholar]
  54. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. 54.  2005. Regulatory T cell lineage specification by the forkhead transcription factor FoxP3. Immunity 22:329–41 [Google Scholar]
  55. van der Vliet HJJ, Nieuwenhuis EE. 55.  2007. IPEX as a result of mutations in FOXP3. Clin. Dev. Immunol. 2007:89017 [Google Scholar]
  56. Bilate AM, Lafaille JJ. 56.  2012. Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu. Rev. Immunol. 30:733–58 [Google Scholar]
  57. Marie JC, Letterio JJ, Gavin M, Rudensky AY. 57.  2005. TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J. Exp. Med. 201:1061–67 [Google Scholar]
  58. Ouyang W, Beckett O, Ma Q, Li MO. 58.  2010. Transforming growth factor-β signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 32:642–53 [Google Scholar]
  59. Chen WJ, Jin WW, Hardegen N, Lei KJ, Li L. 59.  et al. 2003. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198:1875–86 [Google Scholar]
  60. Davidson TS, DiPaolo RJ, Andersson J, Shevach EM. 60.  2007. Cutting edge: IL-2 is essential for TGF-β-mediated induction of Foxp3+ T regulatory cells. J. Immunol. 178:4022–26 [Google Scholar]
  61. Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA. 61.  2007. IL-2 is essential for TGF-β to convert naive CD4+CD25 cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J. Immunol. 178:2018–27 [Google Scholar]
  62. Tone Y, Furuuchi K, Kojima Y, Tykocinski ML, Greene MI, Tone M. 62.  2008. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat. Immunol. 9:194–202 [Google Scholar]
  63. Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY. 63.  2010. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463:808–12 [Google Scholar]
  64. Schlenner SM, Weigmann B, Ruan Q, Chen Y, von Boehmer H. 64.  2012. Smad3 binding to the foxp3 enhancer is dispensable for the development of regulatory T cells with the exception of the gut. J. Exp. Med. 209:1529–35 [Google Scholar]
  65. Xu L, Kitani A, Strober W. 65.  2010. Molecular mechanisms regulating TGF-β-induced Foxp3 expression. Mucosal Immunol. 3:230–38 [Google Scholar]
  66. Jana S, Jailwala P, Haribhai D, Waukau J, Glisic S. 66.  et al. 2009. The role of NF-κB and Smad3 in TGF-β-mediated Foxp3 expression. Eur. J. Immunol. 39:2571–83 [Google Scholar]
  67. Martinez GJ, Zhang Z, Chung Y, Reynolds JM, Lin X. 67.  et al. 2009. Smad3 differentially regulates the induction of regulatory and inflammatory T cell differentiation. J. Biol. Chem. 284:35283–86 [Google Scholar]
  68. Lu L, Wang J, Zhang F, Chai Y, Brand D. 68.  et al. 2010. Role of SMAD and non-SMAD signals in the development of Th17 and regulatory T cells. J. Immunol. 184:4295–306 [Google Scholar]
  69. Martinez GJ, Zhang Z, Reynolds JM, Tanaka S, Chung Y. 69.  et al. 2010. Smad2 positively regulates the generation of Th17 cells. J. Biol. Chem. 285:29039–43 [Google Scholar]
  70. Zhu J, Davidson TS, Wei G, Jankovic D, Cui K. 70.  et al. 2009. Down-regulation of Gfi-1 expression by TGF-β is important for differentiation of Th17 and CD103+ inducible regulatory T cells. J. Exp. Med. 206:329–41 [Google Scholar]
  71. Floess S, Freyer J, Siewert C, Baron U, Olek S. 71.  et al. 2007. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 5:169–78 [Google Scholar]
  72. Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A. 72.  et al. 2008. DNA methylation controls Foxp3 gene expression. Eur. J. Immunol. 38:1654–63 [Google Scholar]
  73. Benson MJ, Pino-Lagos K, Rosemblatt M, Noelle RJ. 73.  2007. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med. 204:1765–74 [Google Scholar]
  74. Coombes JL, Siddiqui KR, Arancibia-Cárcamo CV, Hall J, Sun C-M. 74.  et al. 2007. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β– and retinoic acid–dependent mechanism. J. Exp. Med. 204:1757–64 [Google Scholar]
  75. Sun C-M, Hall JA, Blank RB, Bouladoux N, Oukka M. 75.  et al. 2007. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204:1775–85 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error