Researchers are intensifying efforts to understand the mechanisms by which changes in metabolic states influence differentiation programs. An emerging objective is to define how fluctuations in metabolites influence the epigenetic states that contribute to differentiation programs. This is because metabolites such as S-adenosylmethionine, acetyl-CoA, α-ketoglutarate, 2-hydroxyglutarate, and butyrate are donors, substrates, cofactors, and antagonists for the activities of epigenetic-modifying complexes and for epigenetic modifications. We discuss this topic from the perspective of specialized CD4+ T cells as well as effector and memory T cell differentiation programs. We also highlight findings from embryonic stem cells that give mechanistic insight into how nutrients processed through pathways such as glycolysis, glutaminolysis, and one-carbon metabolism regulate metabolite levels to influence epigenetic events and discuss similar mechanistic principles in T cells. Finally, we highlight how dysregulated environments, such as the tumor microenvironment, might alter programming events.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R. 1.  et al. 2011. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35:871–82 [Google Scholar]
  2. van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC. 2.  et al. 2012. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36:68–78 [Google Scholar]
  3. Gerriets VA, Kishton RJ, Nichols AG, Macintyre AN, Inoue M. 3.  et al. 2015. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Investig. 125:194–207 [Google Scholar]
  4. Buck MD, O'Sullivan D, Pearce EL. 4.  2015. T cell metabolism drives immunity. J. Exp. Med. 212:1345–60 [Google Scholar]
  5. Ryall JG, Cliff T, Dalton S, Sartorelli V. 5.  2015. Metabolic reprogramming of stem cell epigenetics. Cell Stem Cell 17:651–62 [Google Scholar]
  6. Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vazquez G. 6.  et al. 2015. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42:41–54 [Google Scholar]
  7. Zeng H, Cohen S, Guy C, Shrestha S, Neale G. 7.  et al. 2016. mTORC1 and mTORC2 kinase signaling and glucose metabolism drive follicular helper T cell differentiation. Immunity 45:540–54 [Google Scholar]
  8. Hukelmann JL, Anderson KE, Sinclair LV, Grzes KM, Murillo AB. 8.  et al. 2016. The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nat. Immunol. 17:104–12 [Google Scholar]
  9. Pollizzi KN, Powell JD. 9.  2014. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nat. Rev. Immunol. 14:435–46 [Google Scholar]
  10. Wu J, Ocampo A, Izpisua Belmonte JC. 10.  2016. Cellular metabolism and induced pluripotency. Cell 166:1371–85 [Google Scholar]
  11. Lochner M, Berod L, Sparwasser T. 11.  2015. Fatty acid metabolism in the regulation of T cell function. Trends Immunol 36:81–91 [Google Scholar]
  12. Buck MD, Sowell RT, Kaech SM, Pearce EL. 12.  2017. Metabolic instruction of immunity. Cell 169:570–86 [Google Scholar]
  13. Pavlova NN, Thompson CB. 13.  2016. The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47 [Google Scholar]
  14. Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC. 14.  et al. 2002. The CD28 signaling pathway regulates glucose metabolism. Immunity 16:769–77 [Google Scholar]
  15. Cham CM, Gajewski TF. 15.  2005. Glucose availability regulates IFN-gamma production and p70S6 kinase activation in CD8+ effector T cells. J. Immunol. 174:4670–77 [Google Scholar]
  16. MacIver NJ, Jacobs SR, Wieman HL, Wofford JA, Coloff JL, Rathmell JC. 16.  2008. Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J. Leukoc. Biol. 84:949–57 [Google Scholar]
  17. Chang CH, Curtis JD, Maggi LB Jr., Faubert B. Villarino AV. 17.  et al. 2013. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153:1239–51 [Google Scholar]
  18. Jacobs SR, Herman CE, MacIver NJ, Wofford JA, Wieman HL. 18.  et al. 2008. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J. Immunol. 180:4476–86 [Google Scholar]
  19. Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H. 19.  et al. 2009. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460:103–7 [Google Scholar]
  20. Kidani Y, Elsaesser H, Hock MB, Vergnes L, Williams KJ. 20.  et al. 2013. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat. Immunol. 14:489–99 [Google Scholar]
  21. Bensinger SJ, Bradley MN, Joseph SB, Zelcer N, Janssen EM. 21.  et al. 2008. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134:97–111 [Google Scholar]
  22. Finlay DK, Rosenzweig E, Sinclair LV, Feijoo-Carnero C, Hukelmann JL. 22.  et al. 2012. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J. Exp. Med. 209:2441–53 [Google Scholar]
  23. Chisolm DA, Savic D, Moore AJ, Ballesteros-Tato A, Leon B. 23.  et al. 2017. CCCTC-binding factor translates IL-2- and α-ketoglutarate-sensitive metabolic changes in T cells into context-dependent gene programs. Immunity 47:251–67.e7 [Google Scholar]
  24. Klysz D, Tai X, Robert PA, Craveiro M, Cretenet G. 24.  et al. 2015. Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci. Signal. 8:ra97 [Google Scholar]
  25. Garaude J, Acin-Perez R, Martinez-Cano S, Enamorado M, Ugolini M. 25.  et al. 2016. Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nat. Immunol. 17:1037–45 [Google Scholar]
  26. Newton R, Priyadharshini B, Turka LA. 26.  2016. Immunometabolism of regulatory T cells. Nat. Immunol. 17:618–25 [Google Scholar]
  27. Boothby M, Rickert RC. 27.  2017. Metabolic regulation of the immune humoral response. Immunity 46:743–55 [Google Scholar]
  28. O'Neill LA, Pearce EJ. 28.  2016. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213:15–23 [Google Scholar]
  29. Chan LN, Chen Z, Braas D, Lee JW, Xiao G. 29.  et al. 2017. Metabolic gatekeeper function of B-lymphoid transcription factors. Nature 542:479–83 [Google Scholar]
  30. Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H. 30.  2013. mTORC1 couples immune signals and metabolic programming to establish Treg-cell function. Nature 499:485–90 [Google Scholar]
  31. Man K, Miasari M, Shi W, Xin A, Henstridge DC. 31.  et al. 2013. The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells. Nat. Immunol. 14:1155–65 [Google Scholar]
  32. Chou C, Pinto AK, Curtis JD, Persaud SP, Cella M. 32.  et al. 2014. c-Myc-induced transcription factor AP4 is required for host protection mediated by CD8+ T cells. Nat. Immunol. 15:884–93 [Google Scholar]
  33. Oestreich KJ, Read KA, Gilbertson SE, Hough KP, McDonald PW. 33.  et al. 2014. Bcl-6 directly represses the gene program of the glycolysis pathway. Nat. Immunol. 15:957–64 [Google Scholar]
  34. Angelin A, Gil-de-Gomez L, Dahiya S, Jiao J, Guo L. 34.  et al. 2017. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab 25:1282–93.e7 [Google Scholar]
  35. Mikawa T, LLeonart ME, Takaori-Kondo A, Inagaki N, Yokode M, Kondoh H. 35.  2015. Dysregulated glycolysis as an oncogenic event. Cell Mol. Life Sci. 72:1881–92 [Google Scholar]
  36. Johnson MO, Siska PJ, Contreras DC, Rathmell JC. 36.  2016. Nutrients and the microenvironment to feed a T cell army. Semin. Immunol. 28:505–13 [Google Scholar]
  37. Ward PS, Thompson CB. 37.  2012. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21:297–308 [Google Scholar]
  38. Nie Z, Hu G, Wei G, Cui K, Yamane A. 38.  et al. 2012. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 151:68–79 [Google Scholar]
  39. van Riggelen J, Yetil A, Felsher DW. 39.  2010. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat. Rev. Cancer 10:301–9 [Google Scholar]
  40. Nayar R, Enos M, Prince A, Shin H, Hemmers S. 40.  et al. 2012. TCR signaling via Tec kinase ITK and interferon regulatory factor 4 (IRF4) regulates CD8+ T-cell differentiation. PNAS 109:E2794–802 [Google Scholar]
  41. Nayar R, Schutten E, Bautista B, Daniels K, Prince AL. 41.  et al. 2014. Graded levels of IRF4 regulate CD8+ T cell differentiation and expansion, but not attrition, in response to acute virus infection. J. Immunol. 192:5881–93 [Google Scholar]
  42. Yao S, Buzo BF, Pham D, Jiang L, Taparowsky EJ. 42.  et al. 2013. Interferon regulatory factor 4 sustains CD8+ T cell expansion and effector differentiation. Immunity 39:833–45 [Google Scholar]
  43. Iwata A, Durai V, Tussiwand R, Briseno CG, Wu X. 43.  et al. 2017. Quality of TCR signaling determined by differential affinities of enhancers for the composite BATF-IRF4 transcription factor complex. Nat. Immunol. 18:563–72 [Google Scholar]
  44. Dunn SE, Youssef S, Goldstein MJ, Prod'homme T, Weber MS. 44.  et al. 2006. Isoprenoids determine Th1/Th2 fate in pathogenic T cells, providing a mechanism of modulation of autoimmunity by atorvastatin. J. Exp. Med. 203:401–12 [Google Scholar]
  45. Thurnher M, Gruenbacher G. 45.  2015. T lymphocyte regulation by mevalonate metabolism. Sci. Signal. 8:re4 [Google Scholar]
  46. Doedens AL, Phan AT, Stradner MH, Fujimoto JK, Nguyen JV. 46.  et al. 2013. Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to persistent antigen. Nat. Immunol. 14:1173–82 [Google Scholar]
  47. Gnanaprakasam JN, Sherman JW, Wang R. 47.  2017. MYC and HIF in shaping immune response and immune metabolism. Cytokine Growth Factor Rev 35:63–70 [Google Scholar]
  48. Liu XS, Haines JE, Mehanna EK, Genet MD, Ben-Sahra I. 48.  et al. 2014. ZBTB7A acts as a tumor suppressor through the transcriptional repression of glycolysis. Genes Dev 28:1917–28 [Google Scholar]
  49. Liu G, Zhou L, Zhang H, Chen R, Zhang Y. 49.  et al. 2017. Regulation of hepatic lipogenesis by the zinc finger protein Zbtb20. Nat. Commun. 8:14824 [Google Scholar]
  50. Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T. 50.  et al. 2015. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162:1229–41 [Google Scholar]
  51. Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X. 51.  et al. 2015. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162:1217–28 [Google Scholar]
  52. Nakaya M, Xiao Y, Zhou X, Chang JH, Chang M. 52.  et al. 2014. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40:692–705 [Google Scholar]
  53. Warburg O. 53.  1956. On respiratory impairment in cancer cells. Science 124:269–70 [Google Scholar]
  54. Lempradl A, Pospisilik JA, Penninger JM. 54.  2015. Exploring the emerging complexity in transcriptional regulation of energy homeostasis. Nat. Rev. Genet. 16:665–81 [Google Scholar]
  55. van der Knaap JA, Verrijzer CP. 55.  2016. Undercover: gene control by metabolites and metabolic enzymes. Genes Dev 30:2345–69 [Google Scholar]
  56. Wei G, Wei L, Zhu J, Zang C, Hu-Li J. 56.  et al. 2009. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30:155–67 [Google Scholar]
  57. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ. 57.  et al. 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–26 [Google Scholar]
  58. O'Shea JJ, Paul WE. 58.  2010. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327:1098–102 [Google Scholar]
  59. Oestreich KJ, Weinmann AS. 59.  2012. Encoding stability versus flexibility: lessons learned from examining epigenetics in T helper cell differentiation. Curr. Top. Microbiol. Immunol. 356:145–64 [Google Scholar]
  60. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V. 60.  et al. 2013. Super-enhancers in the control of cell identity and disease. Cell 155:934–47 [Google Scholar]
  61. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY. 61.  et al. 2013. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153:307–19 [Google Scholar]
  62. Vahedi G, Kanno Y, Furumoto Y, Jiang K, Parker SC. 62.  et al. 2015. Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature 520:558–62 [Google Scholar]
  63. Vahedi G, Takahashi H, Nakayamada S, Sun HW, Sartorelli V. 63.  et al. 2012. STATs shape the active enhancer landscape of T cell populations. Cell 151:981–93 [Google Scholar]
  64. Gray SM, Amezquita RA, Guan T, Kleinstein SH, Kaech SM. 64.  2017. Polycomb repressive complex 2-mediated chromatin repression guides effector CD8+ T cell terminal differentiation and loss of multipotency. Immunity 46:596–608 [Google Scholar]
  65. Philip M, Fairchild L, Sun L, Horste EL, Camara S. 65.  et al. 2017. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545:452–56 [Google Scholar]
  66. Yu B, Zhang K, Milner JJ, Toma C, Chen R. 66.  et al. 2017. Epigenetic landscapes reveal transcription factors that regulate CD8+ T cell differentiation. Nat. Immunol. 18:573–82 [Google Scholar]
  67. Hatzi K, Jiang Y, Huang C, Garrett-Bakelman F, Gearhart MD. 67.  et al. 2013. A hybrid mechanism of action for BCL6 in B cells defined by formation of functionally distinct complexes at enhancers and promoters. Cell Rep 4:578–88 [Google Scholar]
  68. Sen DR, Kaminski J, Barnitz RA, Kurachi M, Gerdemann U. 68.  et al. 2016. The epigenetic landscape of T cell exhaustion. Science 354:1165–69 [Google Scholar]
  69. Kundaje A, Meuleman W, Ernst J, Bilenky M. 69. Roadmap Epigenomics Consort. et al. 2015. Integrative analysis of 111 reference human epigenomes. Nature 518:317–30 [Google Scholar]
  70. Gosselin D, Glass CK. 70.  2014. Epigenomics of macrophages. Immunol. Rev. 262:96–112 [Google Scholar]
  71. Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB. 71.  2015. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518:413–16 [Google Scholar]
  72. Shyh-Chang N, Locasale JW, Lyssiotis CA, Zheng Y, Teo RY. 72.  et al. 2013. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339:222–26 [Google Scholar]
  73. Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G. 73.  et al. 2015. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 21:392–402 [Google Scholar]
  74. Peng M, Yin N, Chhangawala S, Xu K, Leslie CS, Li MO. 74.  2016. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354:481–84 [Google Scholar]
  75. Tyrakis PA, Palazon A, Macias D, Lee KL, Phan AT. 75.  et al. 2016. S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate. Nature 540:236–41 [Google Scholar]
  76. Palm W, Thompson CB. 76.  2017. Nutrient acquisition strategies of mammalian cells. Nature 546:234–42 [Google Scholar]
  77. Locasale JW. 77.  2013. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13:572–83 [Google Scholar]
  78. Greer EL, Shi Y. 78.  2012. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13:343–57 [Google Scholar]
  79. Li E, Zhang Y. 79.  2014. DNA methylation in mammals. Cold Spring Harb. Perspect. Biol. 6:a019133 [Google Scholar]
  80. Gao X, Reid MA, Kong M, Locasale JW. 80.  2017. Metabolic interactions with cancer epigenetics. Mol. Aspects Med. 54:50–57 [Google Scholar]
  81. Yang M, Vousden KH. 81.  2016. Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16:650–62 [Google Scholar]
  82. Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR. 82.  et al. 2011. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43:869–74 [Google Scholar]
  83. Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D. 83.  et al. 2011. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476:346–50 [Google Scholar]
  84. Field MS, Kamynina E, Watkins D, Rosenblatt DS, Stover PJ. 84.  2015. Human mutations in methylenetet-rahydrofolate dehydrogenase 1 impair nuclear de novo thymidylate biosynthesis. PNAS 112:400–5 [Google Scholar]
  85. Chimenti MS, Tucci P, Candi E, Perricone R, Melino G, Willis AE. 85.  2013. Metabolic profiling of human CD4+ cells following treatment with methotrexate and anti-TNF-α infliximab. Cell Cycle 12:3025–36 [Google Scholar]
  86. Shiraki N, Shiraki Y, Tsuyama T, Obata F, Miura M. 86.  et al. 2014. Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab 19:780–94 [Google Scholar]
  87. Jude CD, Climer L, Xu D, Artinger E, Fisher JK, Ernst P. 87.  2007. Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors. Cell Stem Cell 1:324–37 [Google Scholar]
  88. Ernst P, Fisher JK, Avery W, Wade S, Foy D, Korsmeyer SJ. 88.  2004. Definitive hematopoiesis requires the mixed-lineage leukemia gene. Dev. Cell 6:437–43 [Google Scholar]
  89. Margueron R, Reinberg D. 89.  2011. The Polycomb complex PRC2 and its mark in life. Nature 469:343–49 [Google Scholar]
  90. Kouzarides T. 90.  2007. Chromatin modifications and their function. Cell 128:693–705 [Google Scholar]
  91. Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA. 91.  et al. 2003. Role of histone H3 lysine 27 methylation in X inactivation. Science 300:131–35 [Google Scholar]
  92. Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA. 92.  et al. 2006. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441:349–53 [Google Scholar]
  93. Collinson A, Collier AJ, Morgan NP, Sienerth AR, Chandra T. 93.  et al. 2016. Deletion of the Polycomb-group protein EZH2 leads to compromised self-renewal and differentiation defects in human embryonic stem cells. Cell Rep 17:2700–14 [Google Scholar]
  94. Tumes DJ, Onodera A, Suzuki A, Shinoda K, Endo Y. 94.  et al. 2013. The polycomb protein Ezh2 regulates differentiation and plasticity of CD4+ T helper type 1 and type 2 cells. Immunity 39:819–32 [Google Scholar]
  95. Kakaradov B, Arsenio J, Widjaja CE, He Z, Aigner S. 95.  et al. 2017. Early transcriptional and epigenetic regulation of CD8+ T cell differentiation revealed by single-cell RNA sequencing. Nat. Immunol. 18:422–32 [Google Scholar]
  96. Yang XP, Jiang K, Hirahara K, Vahedi G, Afzali B. 96.  et al. 2015. EZH2 is crucial for both differentiation of regulatory T cells and T effector cell expansion. Sci. Rep. 5:10643 [Google Scholar]
  97. Tong Q, He S, Xie F, Mochizuki K, Liu Y. 97.  et al. 2014. Ezh2 regulates transcriptional and posttranslational expression of T-bet and promotes Th1 cell responses mediating aplastic anemia in mice. J. Immunol. 192:5012–22 [Google Scholar]
  98. Zhang Y, Kinkel S, Maksimovic J, Bandala-Sanchez E, Tanzer MC. 98.  et al. 2014. The polycomb repressive complex 2 governs life and death of peripheral T cells. Blood 124:737–49 [Google Scholar]
  99. Karantanos T, Chistofides A, Barhdan K, Li L, Boussiotis VA. 99.  2016. Regulation of T cell differentiation and function by EZH2. Front. Immunol. 7:172 [Google Scholar]
  100. DuPage M, Chopra G, Quiros J, Rosenthal WL, Morar MM. 100.  et al. 2015. The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation. Immunity 42:227–38 [Google Scholar]
  101. Arvey A, van der Veeken J, Samstein RM, Feng Y, Stamatoyannopoulos JA, Rudensky AY. 101.  2014. Inflammation-induced repression of chromatin bound by the transcription factor Foxp3 in regulatory T cells. Nat. Immunol. 15:580–87 [Google Scholar]
  102. Ko M, An J, Rao A. 102.  2015. DNA methylation and hydroxymethylation in hematologic differentiation and transformation. Curr. Opin. Cell Biol. 37:91–101 [Google Scholar]
  103. Rasmussen KD, Helin K. 103.  2016. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev 30:733–50 [Google Scholar]
  104. Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S. 104.  et al. 2001. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15:763–74 [Google Scholar]
  105. Chappell C, Beard C, Altman J, Jaenisch R, Jacob J. 105.  2006. DNA methylation by DNA methyltransferase 1 is critical for effector CD8 T cell expansion. J. Immunol. 176:4562–72 [Google Scholar]
  106. Thomas RM, Gamper CJ, Ladle BH, Powell JD, Wells AD. 106.  2012. De novo DNA methylation is required to restrict T helper lineage plasticity. J. Biol. Chem. 287:22900–9 [Google Scholar]
  107. Ladle BH, Li KP, Phillips MJ, Pucsek AB, Haile A. 107.  et al. 2016. De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+ T-cell fate decisions following activation. PNAS 113:10631–36 [Google Scholar]
  108. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H. 108.  et al. 2009. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–35 [Google Scholar]
  109. Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH. 109.  et al. 2006. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–16 [Google Scholar]
  110. Blaschke K, Ebata KT, Karimi MM, Zepeda-Martinez JA, Goyal P. 110.  et al. 2013. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500:222–26 [Google Scholar]
  111. Walport LJ, Hopkinson RJ, Schofield CJ. 111.  2012. Mechanisms of human histone and nucleic acid demethylases. Curr. Opin. Chem. Biol. 16:525–34 [Google Scholar]
  112. Sciacovelli M, Goncalves E, Johnson TI, Zecchini VR, da Costa AS. 112.  et al. 2016. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537:544–47 [Google Scholar]
  113. Dang L, White DW, Gross S, Bennett BD, Bittinger MA. 113.  et al. 2009. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–44 [Google Scholar]
  114. Xiao M, Yang H, Xu W, Ma S, Lin H. 114.  et al. 2012. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26:1326–38 Corrigendum. 2015 Genes Dev 29:887 [Google Scholar]
  115. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR. 115.  et al. 2004. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–53 [Google Scholar]
  116. Shi Y. 116.  2007. Histone lysine demethylases: emerging roles in development, physiology and disease. Nat. Rev. Genet. 8:829–33 [Google Scholar]
  117. Trojer P, Reinberg D. 117.  2006. Histone lysine demethylases and their impact on epigenetics. Cell 125:213–17 [Google Scholar]
  118. Agger K, Cloos PA, Christensen J, Pasini D, Rose S. 118.  et al. 2007. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449:731–34 [Google Scholar]
  119. De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G. 119.  2007. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 130:1083–94 [Google Scholar]
  120. Miller SA, Mohn SE, Weinmann AS. 120.  2010. Jmjd3 and UTX play a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression. Mol. Cell 40:594–605 [Google Scholar]
  121. Shpargel KB, Sengoku T, Yokoyama S, Magnuson T. 121.  2012. UTX and UTY demonstrate histone demethylase-independent function in mouse embryonic development. PLOS Genet 8:e1002964 [Google Scholar]
  122. Wang C, Lee JE, Cho YW, Xiao Y, Jin Q. 122.  et al. 2012. UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity. PNAS 109:15324–29 [Google Scholar]
  123. Manna S, Kim JK, Bauge C, Cam M, Zhao Y. 123.  et al. 2015. Histone H3 lysine 27 demethylases Jmjd3 and Utx are required for T-cell differentiation. Nat. Commun. 6:8152 [Google Scholar]
  124. Pham D, Yu Q, Walline CC, Muthukrishnan R, Blum JS, Kaplan MH. 124.  2013. Opposing roles of STAT4 and Dnmt3a in Th1 gene regulation. J. Immunol. 191:902–11 [Google Scholar]
  125. Miller SA, Huang AC, Miazgowicz MM, Brassil MM, Weinmann AS. 125.  2008. Coordinated but physically separable interaction with H3K27-demethylase and H3K4-methyltransferase activities are required for T-box protein-mediated activation of developmental gene expression. Genes Dev 22:2980–93 [Google Scholar]
  126. Pastor WA, Aravind L, Rao A. 126.  2013. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14:341–56 [Google Scholar]
  127. Ito S, Shen L, Dai Q, Wu SC, Collins LB. 127.  et al. 2011. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–3 [Google Scholar]
  128. He YF, Li BZ, Li Z, Liu P, Wang Y. 128.  et al. 2011. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–7 [Google Scholar]
  129. Wu X, Zhang Y. 129.  2017. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 18:517–34 [Google Scholar]
  130. Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R. 130.  et al. 2011. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473:394–97 [Google Scholar]
  131. Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F. 131.  et al. 2011. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473:398–402 [Google Scholar]
  132. Tsagaratou A, Aijo T, Lio CW, Yue X, Huang Y. 132.  et al. 2014. Dissecting the dynamic changes of 5-hydroxymethylcytosine in T-cell development and differentiation. PNAS 111:E3306–15 [Google Scholar]
  133. Zhang Q, Zhao K, Shen Q, Han Y, Gu Y. 133.  et al. 2015. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 525:389–93 [Google Scholar]
  134. Ichiyama K, Chen T, Wang X, Yan X, Kim BS. 134.  et al. 2015. The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells. Immunity 42:613–26 [Google Scholar]
  135. Lio CW, Zhang J, Gonzalez-Avalos E, Hogan PG, Chang X, Rao A. 135.  2016. Tet2 and Tet3 cooperate with B-lineage transcription factors to regulate DNA modification and chromatin accessibility. eLife 5:e18290 [Google Scholar]
  136. Yue X, Trifari S, Aijo T, Tsagaratou A, Pastor WA. 136.  et al. 2016. Control of Foxp3 stability through modulation of TET activity. J. Exp. Med. 213:377–97 [Google Scholar]
  137. Sasidharan Nair V, Song MH, Oh KI. 137.  2016. Vitamin C facilitates demethylation of the Foxp3 enhancer in a Tet-dependent manner. J. Immunol. 196:2119–31 [Google Scholar]
  138. Tsagaratou A, Gonzalez-Avalos E, Rautio S, Scott-Browne JP, Togher S. 138.  et al. 2017. TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells. Nat. Immunol. 18:45–53 [Google Scholar]
  139. Witte S, O'Shea JJ, Vahedi G. 139.  2015. Super-enhancers: asset management in immune cell genomes. Trends Immunol 36:519–26 [Google Scholar]
  140. Bannister AJ, Kouzarides T. 140.  2011. Regulation of chromatin by histone modifications. Cell Res 21:381–95 [Google Scholar]
  141. Gao B, Kong Q, Zhang Y, Yun C, Dent SYR. 141.  et al. 2017. The histone acetyltransferase Gcn5 positively regulates T cell activation. J. Immunol. 198:3927–38 [Google Scholar]
  142. Menzies KJ, Zhang H, Katsyuba E, Auwerx J. 142.  2016. Protein acetylation in metabolism—metabolites and cofactors. Nat. Rev. Endocrinol. 12:43–60 [Google Scholar]
  143. Kaelin WG Jr., McKnight SL. 143.  2013. Influence of metabolism on epigenetics and disease. Cell 153:56–69 [Google Scholar]
  144. Davie JR. 144.  2003. Inhibition of histone deacetylase activity by butyrate. J. Nutr. 133:2485S–93S [Google Scholar]
  145. Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K. 145.  et al. 2013. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339:211–14 [Google Scholar]
  146. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G. 146.  et al. 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–50 [Google Scholar]
  147. Mathewson ND, Jenq R, Mathew AV, Koenigsknecht M, Hanash A. 147.  et al. 2016. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat. Immunol. 17:505–13 [Google Scholar]
  148. Xie Z, Zhang D, Chung D, Tang Z, Huang H. 148.  et al. 2016. Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation. Mol. Cell 62:194–206 [Google Scholar]
  149. Chen Y, Sprung R, Tang Y, Ball H, Sangras B. 149.  et al. 2007. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol. Cell Proteom. 6:812–19 [Google Scholar]
  150. Goudarzi A, Zhang D, Huang H, Barral S, Kwon OK. 150.  et al. 2016. Dynamic competing histone H4 K5K8 acetylation and butyrylation are hallmarks of highly active gene promoters. Mol. Cell 62:169–80 [Google Scholar]
  151. Chalkiadaki A, Guarente L. 151.  2012. Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat. Rev. Endocrinol. 8:287–96 [Google Scholar]
  152. Gut P, Verdin E. 152.  2013. The nexus of chromatin regulation and intermediary metabolism. Nature 502:489–98 [Google Scholar]
  153. Ryall JG, Dell'Orso S, Derfoul A, Juan A, Zare H. 153.  et al. 2015. The NAD+-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 16:171–83 [Google Scholar]
  154. Lim HW, Kang SG, Ryu JK, Schilling B, Fei M. 154.  et al. 2015. SIRT1 deacetylates RORγt and enhances Th17 cell generation. J. Exp. Med. 212:607–17 [Google Scholar]
  155. Wang Y, Bi Y, Chen X, Li C, Li Y. 155.  et al. 2016. Histone deacetylase SIRT1 negatively regulates the differentiation of interleukin-9-producing CD4+ T cells. Immunity 44:1337–49 [Google Scholar]
  156. Hota SK, Bruneau BG. 156.  2016. ATP-dependent chromatin remodeling during mammalian development. Development 143:2882–97 [Google Scholar]
  157. MacIver NJ, Michalek RD, Rathmell JC. 157.  2013. Metabolic regulation of T lymphocytes. Annu. Rev. Immunol. 31:259–83 [Google Scholar]
  158. Chen J, Guo L, Zhang L, Wu H, Yang J. 158.  et al. 2013. Vitamin C modulates TET1 function during somatic cell reprogramming. Nat. Genet. 45:1504–9 [Google Scholar]
  159. TeSlaa T, Chaikovsky AC, Lipchina I, Escobar SL, Hochedlinger K. 159.  et al. 2016. α-Ketoglutarate accelerates the initial differentiation of primed human pluripotent stem cells. Cell Metab 24:485–93 [Google Scholar]
  160. Hwang IY, Kwak S, Lee S, Kim H, Lee SE. 160.  et al. 2016. Psat1-dependent fluctuations in α-ketoglutarate affect the timing of ESC differentiation. Cell Metab 24:494–501 [Google Scholar]
  161. Dang L, Su S-SM. 161.  2017. Isocitrate dehydrogenase mutation and (R)-2-hydroxyglutarate: from basic discovery to therapeutics development. Annu. Rev. Biochem. 86:305–31 [Google Scholar]
  162. Pan M, Reid MA, Lowman XH, Kulkarni RP, Tran TQ. 162.  et al. 2016. Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat. Cell Biol. 18:1090–101 [Google Scholar]
  163. Vaupel P, Kallinowski F, Okunieff P. 163.  1989. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–65 [Google Scholar]
  164. Xu W, Yang H, Liu Y, Yang Y, Wang P. 164.  et al. 2011. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30 [Google Scholar]
  165. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S. 165.  et al. 2012. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483:474–78 [Google Scholar]
  166. Wang F, Travins J, DeLaBarre B, Penard-Lacronique V, Schalm S. 166.  et al. 2013. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340:622–26 [Google Scholar]
  167. Losman JA, Kaelin WG Jr. 167.  2013. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev 27:836–52 [Google Scholar]
  168. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J. 168.  et al. 2010. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–67 [Google Scholar]
  169. Huang Y, Rao A. 169.  2014. Connections between TET proteins and aberrant DNA modification in cancer. Trends Genet 30:464–74 [Google Scholar]
  170. Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS. 170.  et al. 2016. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529:110–14 [Google Scholar]
  171. Wang J, Alexander P, Wu L, Hammer R, Cleaver O, McKnight SL. 171.  2009. Dependence of mouse embryonic stem cells on threonine catabolism. Science 325:435–39 [Google Scholar]
  172. Ma EH, Bantug G, Griss T, Condotta S, Johnson RM. 172.  et al. 2017. Serine is an essential metabolite for effector T cell expansion. Cell Metab 25:345–57 [Google Scholar]
  173. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. 173.  2009. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–80 [Google Scholar]
  174. Pauken KE, Wherry EJ. 174.  2015. Overcoming T cell exhaustion in infection and cancer. Trends Immunol 36:265–76 [Google Scholar]
  175. Baumeister SH, Freeman GJ, Dranoff G, Sharpe AH. 175.  2016. Coinhibitory pathways in immunotherapy for cancer. Annu. Rev. Immunol. 34:539–73 [Google Scholar]
  176. Oh-hora M, Rao A. 176.  2008. Calcium signaling in lymphocytes. Curr. Opin. Immunol. 20:250–58 [Google Scholar]
  177. Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J. 177.  et al. 2016. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354:1160–65 [Google Scholar]
  178. Schietinger A, Philip M, Krisnawan VE, Chiu EY, Delrow JJ. 178.  et al. 2016. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45:389–401 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error